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1 Introduction

1.1 What are statistical and computational phase transitions?

This course is related to the fundamental question of computational complexity theory:
which problems can be solved by computers? Precisely, one wishes to understand, for
a given problem, what are the needed ressources (e.g. in memory or computation time)
that are needed to solve it. Remarkably, some problems, while solvable in principle,
seem to require prohibitively large resources to be solved as the size of the problem gets
bigger: this phenomenon is known as computational hardness.

In this course, we introduce several tools to characterize the emergence of computational
hardness in problems arising in a large class of problems in high-dimensional statistics.
For concreteness, we will focus on two specific classes:

1. Statistical estimation/inference: Many problems in modern statistics and ma-
chine learning involve detecting or estimating structures from the indirect obser-
vation of a data. A typical modeling of this problem is the following: x0 ∈ Rd,
sometimes called the “signal”, is only observed through an indirect observation
y ∈ Rn, which can e.g. be corrupted by large amounts of noise. Given the obser-
vation of y, and some possible “prior” knowledge about the structure of x0, one
aims to recover it as well as possible. Importantly, we wish to solve such problems
in a “modern statistics” framework, where both the number of observations n but
also the number of parameters d to recover, are very large. A very non-exhaustive
list of examples of such models include:

(a) In community detection, one observes a large graph, and wishes to recover
from it hidden communities, i.e. subgraphs where members of the same com-
munities have a much higher chance of being connected than members of
different communities. This kind of structure is very common in realistic
networks, and understanding whether recovering communities is feasible has
received a lot of attention: we refer to the course of L. Massoulié [MS23].

(b) Interestingly, there is a toy model, dubbed spiked matrix model, that corre-
sponds almost exactly to the community detection problem in a large random
graph. There the observations take the form of a matrix, and the signal is
assumed to have a low-rank structure:

Y =
√

λx0x⊤
0 + W (1)

Here W is a matrix with i.i.d. N (0, 1) elements. One can also generalize this
problem to recovering a rank-one tensor:

Y =
√

λx⊗p
0 + W, (2)

where p ≥ 2 is the order of the tensor, and Wi1,··· ,ip
i.i.d.∼ N (0, 1). Eq. (1)

corresponds to the case p = 2. Here, the structure of the signal x0 can be
modeled at will, e.g. by chosing a prior distribution x0 ∼ P0.

(c) Imagine that x0 ∈ Rd corresponds to a signal written in a basis where it is
k-sparse, i.e. all but k entries of x0 are zero, and k ≪ d. This is for instance
true of audio signals in the Fourier basis, or images in the wavelet basis. In
compressive sensing, one aims at leveraging this structure to invert a large
linear system

Rn ∋ y = Ax0, (3)
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where n ≪ d, and A is a so-called “measurement” matrix, which is also known
to the observer. The goal of compressive sensing is to exploit the sparsify of x0
to invert this under-determined linear system: it has particularly important
applications in MRI imaging, and we refer to [BSS23, Chapter 10] for the
basis of the theory of compressed sensing.

(d) Generalizing eq. (3), one may consider more general observations of the type

yi = g (ai · x0) , (4)

where the dataset is composed of D := {(yi, ai)}di=1. This is a so-called single-
index model, and (along with natural generalizations known as multi-index
models) can serve as a theoretical playground to understand the feasibility of
learning some hidden structure in a large dataset, e.g. by neural networks.

2. Optimization: In these kind of problems, one is given a real function R(θ) on a
high-dimensional set (θ ∈ M), and the aim is to compute

θ⋆ := arg min
θ∈M

R(θ).

As we will discuss more in Section 6, the optimization of such high-dimensional
empirical risk/loss functions is the workhorse of modern machine learning. There,
a prototypical example of a function R(θ) may be given as

R̂D(θ) := 1
n

n∑
i=1

(yi − fθ(xi))2 ,

and depends on a dataset D = {(xi, yi)} of output/input pairs, from which we aim
at learning the underlying input-to-output function. A somewhat simpler example
is given by Maximum Likelihood Estimation (MLE) in the spiked tensor model
above (eq. (2)). If we assume that ∥x0∥2 = 1, the MLE estimator is

x̂ := arg max
∥x∥=1

⟨x⊗p, Y⟩ = arg max
∥x∥=1

 ∑
1≤i1,··· ,ip≤d

Wi1,··· ,ipxi1 · · · xip +
√

λ(x · x0)p
 .

Statistical vs algorithmic performance – As we mentioned already, our goal is to
answer, for very high dimensions (d ≫ 1), the following questions:

1. When is estimation/detection/optimization possible at all (regardless of the com-
putation time)?

2. If it is possible, can it be done with efficient algorithms, e.g. that run in polynomial
time (in the parameters of the problem), or local optimization procedures?

The answer to these questions may change drastically as the parameters of the problem
change, e.g. when the noise level gets smaller, or the size of the training dataset gets
bigger: this can lead to sharp phase transitions, where the algorithmic feasibility of this
problem can change very abruptly. Characterizing these phenomena is one of the main
goals of this lecture.

Random high-dimensional measures – Tackling these questions has historically
been a very inter-disciplianary endeavor, with a blend of tools from probability theory,
information theory, computer science, and statistical physics. The later might be a
bit surprising, but as we will see the main techniques we will see in this course have
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been developed in the broad study of high-dimensional random probability measures:
probability distributions over Rd (with d ≫ 1) which can usually be written as

µ(dx) ∝ eβH(x)µ0(dx). (5)

Here µ0 is a deterministic reference measure (typically µ0 = Unif({±1}d), or µ0 =
Unif(Sd−1), the uniform distribution over the unit sphere). β > 0 is sometimes called
the inverse temperature, H : Rd → R, the Hamiltonian of the system1, which is here a
random function. While these distributions arose in the statistical physics of peculiar
material called “spin glasses”, it was soon realized that they are ubiquitous in other
fields, among them high-dimensional statistics. To take the two examples we detailed
above:

• In statistical inference/estimation, the Bayesian posterior P(x0|y) ∝ P(y|x0)P(x0)
is a random probability distribution over Rd (since y is random, e.g. through the
noise). The prior distribution P(x0) plays the role of the reference measure in
eq. (5), while the log-likelihood logP(y|x0) is akin to the Hamiltonian function.

• In optimization, a way to understand the feasibility of optimization is to study the
geometry of the sub-level sets S(ℓ) := {θ : R(θ) ≥ ℓ}. The “Gibbs-Boltzmann”
measure of eq. (5) can yield many information about the structure of these subelevel
sets: for instance β → ∞ corresponds to the uniform distribution over minimizers,
and more generally we expect in many cases that µβ is related to the uniform
distribution over S(ℓβ) for some S(ℓβ). Notice that

1.2 Structure of the course

The lecture will be organized around different ways to investigate statistical and compu-
tational hardness in high-dimensional statistics. For the majority of the course, we will
study the models of eqs. (1) and (2) as our driving examples, and mention extensions
to other models along the way.

• We start in Section 2 by introducing a broad class of Gaussian additive models
(which includes the spiked matrix and tensor models). We give some reminders of
classical results in information theory, and introduce a statistical physics nomen-
clature. We also see a first example of a phase transition in a high-dimensional
estimation problem (Gaussian mean location).

• Coming back to the spiked Wigner problem, we analyze in Section 3 a simple spec-
tral method motivated by PCA, and derive sharp asymptotics for its performance
using tools from random matrix theory.

• Section 4 is devoted to approaches from statistical physics. We will derive sharp
information-theoretic results using this framework, as well as analyze approximate
message-passing, a powerful class of algorithms: we will compare them to the
performance of the PCA algorithm derived earlier. This will give us a sharp
picture of statistical and computational phase transitions in the spiked Wigner
model.

• In Section 5 we take a different point of view on computational hardness. We
consider the detection problem: e.g. when can we distinguish a sample Y from
eq. (1) from pure noise? We will introduce the important notion of contiguity

1Notice that in physics one usually considers the sign convention e−βH for the weight.
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to argue about feasibility of detection problems, and introduce the so-called low-
degree likelihood ratio method, based on the performance of algorithms which are
low-degree polynomials of the data. This yields another way to probe statistical
and computational hardness of many prolems in high-dimensional statistics, and
we will compare its predictions to the statistical physics approach.

• Finally, in Section 6 we consider optimization problems in high-dimension, with the
driving example of maximum likelihood estimation for the spiked tensor problem.
We introduce the Kac-Rice formula of random differential geometry, and show how
this allows to characterize the topology of high-dimensional non-convex landscapes,
and probe when local optimization is feasible.

1.3 A disclaimer on mathematical rigor

This course is targeted at students in mathematics, with a good background in proba-
bility theory, and in particular some experience in high-dimensional probability (some
reminders and classical results are given in Appendix A). While this course is mathemat-
ical, some of the arguments presented in Section 4 are inherently heuristic arguments of
statistical physics, and some derivations and arguments there will not be rigorous. We
will precise when this is the case, and also present how mathematicians have now been
able to prove the large majority of these physics results.

1.4 References

Particular credit – These notes are heavily inspired by existing lectures and reviews,
and I wish to give particular credit for many things that were borrowed from [El 21]
(Ahmed El Alaoui. 2021. url: https://courses.cit.cornell.edu/stsci6940/) in
Sections 2, 4 and 5, in [Kun25] (Tim Kunisky. 2025. url: http://www.kunisky.com/
static/teaching/2025fall-rmt/rmt-notes-2025.pdf) in Section 3, and in [MS24]
(Montanari and Sen (2024), “A friendly tutorial on mean-field spin glass techniques for
non-physicists”) in Section 4.

Some other important references I used while making these notes include:

• Antoine Maillard. 2024. url: https://anmaillard.github.io/assets/pdf/
lecture_notes/MDS_Fall_2024.pdf: a set of lecture notes for a class I taught
at ETH Zürich in 2024.

• [BN11] (Benaych-Georges and Nadakuditi (2011), “The eigenvalues and eigenvec-
tors of finite, low rank perturbations of large random matrices”) for Section 3

• [KWB19] for Section 5.

• [Ben+19; Sel24] for Section 6.

More references are also given in the corresponding sections. Finally, here is a very
non-exhaustive and personal list of some great books and reviews for readers interested
in these topics.

• [AGZ10] : Anderson, Guionnet, and Zeitouni (2010), An introduction to random
matrices

• [PB20] : Potters and Bouchaud (2020), A first course in random matrix theory:
for physicists, engineers and data scientists

• [BSS23] : Bandeira, Singer, and Strohmer (2023), Mathematics of Data Science
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• [Han14] : Ramon van Handel. Probability in High Dimension. 2014. url: https:
//web.math.princeton.edu/~rvan/APC550.pdf

• [Ver18] : Vershynin (2018), High-dimensional probability: An introduction with
applications in data science

• [Tal10] : Talagrand (2010), Mean field models for spin glasses: Volume I: Basic
examples

• [ZK16] : Zdeborová and Krzakala (2016), “Statistical physics of inference: Thresh-
olds and algorithms”

• [KZ24] : Krzakala and Zdeborová (2024), “Statistical physics methods in optimiza-
tion and machine learning”

• [Bar19] : Barbier (2019), Mean-field theory of high-dimensional Bayesian inference

1.5 Notations

x, x, Φ Scalar, vector, matrix.
x · y or x⊺y Dot product between x and y.
Sd−1(r), Sd−1 Euclidean sphere in Rd of radius r, unit Euclidean sphere in Rd.
Sd, S+

d d × d symmetric matrices, d × d positive semidefinite matrices.
vmax(Y) Generic notation for the eigenvector of Y ∈ Sd with the largest eigenvalue.
R+, R⋆+ Set of non-negative and strictly positive reals.
C+ Complex numbers with strictly positive imaginary part.
x = Θ(y) Two variables of the same order, i.e. x = O(y) and y = O(x).
In The identity matrix of size n.
P(R) The set of real probability distributions.
E Expectation with respect to all involved random variables.
EX,Y Expectation with respect to X, Y only.
X

d= Y X and Y have the same distribution.
∥x∥0 The number of non-zero elements of x.
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2 Gaussian additive models and reminders of Bayesian in-
ference

2.1 Definition

We introduce here a particular class of statistical models for estimation and detection.
They are conceptually very simple, which will allow us to develop a precise mathematical
analysis of their high-dimensional limit while keeping the exposition relatively accessi-
ble. We will see specific examples of such models later on, here we introduce them in
generality: informally, they correspond to recovering/detecting a signal “blurred” by
additive Gaussian noise.
Definition 2.1 (Gaussian additive model)

Let d ≥ 1, and X0 ∈ Rd be drawn from P0 (called the “prior”), a probability
distribution over Rd with a finite second moment. Let W ∼ N (0, Id) and λ ≥ 0. We
define Pλ as the law of

Y = W +
√

λX0.

Remark – P0, Pλ should be written as P
(d)
0 ,P(d)

λ , as they are sequences of probability
distributions on Rd. We however refrain from writing this d-dependency explicity, as it
will always be clear in the arguments.

Signal-to-noise ratio – λ ≥ 0 plays the role of a signal-to-noise ratio (SNR): equiv-
alently one can write the observationshas Ỹ = X +

√
∆W, with ∆ := λ−1 the noise

variance.

Estimation and detection – In a statistical setting, the statistician has access to a
sample of Y. Crucially, we will assume throughout this class that the statistican also
knows the value of λ > 0 and the prior distribution P0. The statistican wishes to answer
the following questions:

• Detection: Can she distinguish a sample Y ∼ Pλ from a sample W ∼ P0?

• Recovery/estimation: Can she recover the value of X0 (exactly, or approximately)
from Y?

We will make these questions mathematically more precise later on. Crucially, we want
to answer these questions in the high-dimensional limit, i.e. as d → ∞.

2.2 Posterior measure, free energy, and mutual information

Let us now introduce some classical objects of Bayesian statistics applied to the Gaussian
additive model. For more motivations on Bayesian statistics and inference, we refer the
reader e.g. to the introduction of the course [Bar19].

Minimal MSE estimator – We focus for now on the recovery problem. For a given
estimator X̂(Y), a natural way to gauge its quality is via its mean squared error (MSE),
which is defined as

MSE(X̂) := EY
[
∥X̂(Y) − X0∥2

2

]
. (6)

The best estimator in terms of MSE is simply the posterior average of X.

Theorem 2.1 (Bayes-optimal estimator)

The estimator X̂ : Rd → Rd that achieves the minimum MSE is given by the posterior
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mean

X̂opt(Y) := E[X|Y].

We call its error the minimal mean squared error (MMSE)

MMSE := arg min
X̂(Y)

MSE(X̂) = EY
[
∥E[X|Y] − X∥2

2

]
.

In probability terms, the conditional expectation E[X|Y] is the orthogonal projection
of X onto the vector space of all square-integrables Y-measurable random variables.
Proof of Theorem 2.1 – For any estimator X̂, we have

MSE(X̂) = E[∥X̂(Y) − X0∥2],
= E[∥X̂(Y) − E[X|Y] + E[X|Y] − X0∥2],
= MSE(Y → E[X|Y]) + E[∥X̂(Y) − E[X|Y]∥2]

+ 2E[(X̂(Y) − E[X|Y]) · (E[X|Y] − X0)].

By the tower property of expectation:

E[f(Y) · (E[X|Y] − X0)] = EY[f(Y) · EX∼P(·|Y)(E[X|Y] − X)] = 0.

Thus

MSE(X̂) = MSE(Y → E[X|Y]) + E[∥X̂(Y) − E[X|Y]∥2],

which ends the proof. □

Posterior distribution – Theorem 2.1 motivates to consider the posterior distribution
of X given Y (i.e. the probability that Y was generated by the value X0 = X). It is
given by Bayes’ rule

dP(X|Y) = φ(Y|X)
Z̃(Y)

· dP0(X),

where φ(Y|X) is the density of Y given X0 = X, and Z̃(Y) =
∫

dP0(X)φ(Y|X) is a
normalization2. In the Gaussian additive model of Definition 2.1, we get after simple
manipulations:

dP(X|Y) = e− λ
2 ∥X∥2+

√
λY·X

Z(λ; Y) dP0(X). (7)

The statistical physics nomenclature – By analogy with the Gibbs-Boltzmann dis-
tribution in statistical physics (see the introduction), we introduce a series of definitions
whoses names often come from statistical physics, but which are merely rebrandings of
classical quantities in information theory. Still, we use the statistical physics terminol-
ogy in the majority of this class: this will be particularly useful in Section 4, to connect
to the existing literature connecting statistical physics and high-dimensional statistics.
Definition 2.2 (Statistical physics nomenclature)

We define several quantities for the problem of Definition 2.1.

2Z̃(Y) is the density of the random variable Y.
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(1) The log-likelihood function, or Hamiltonian, is

H(X) := −λ

2 ∥X∥2 +
√

λY · X. (8)

Notice that H(X) also depends on (λ, Y): it is a random function.

(2) The partition function, is

Z(λ; Y) :=
∫

e− λ
2 ∥X∥2+

√
λY·XdP0(X) =

∫
eH(X)dP0(X). (9)

The corresponding free entropy3 is

F (λ) := E log Z(λ; Y). (10)

(3) The posterior distribution of eq. (7) is called the Gibbs (or Gibbs-Boltzmann)
measure. Often, we will denote it

⟨g(X)⟩ := E[g(X)|Y], (11)

omitting the dependency on Y of ⟨·⟩ when it is not ambiguous. Keep in mind
that this is a random probability measure!

Thermodynamic limit – Recall that we wish to consider these models in the high-
dimensional limit, i.e. when d → ∞. Sometimes, we will also use a physics language,
and describe it as the thermodynamic limit.
The Nishimori identity – The following elementary property of posterior distributions
will play a crucial role in our analysis later on.
Proposition 2.2 (Nishimori identity)

Recall that Y =
√

λX0 + W. Let X1, X2 drawn independently from the posterior
distribution of eq. (7). Then

(X1, X2, Y) d= (X1, X0, Y)

Proposition 2.2 is called the “Nishimori identity” in statistical physics for historical
reasons, however it is a quite trivial consequence of Bayes’ formula.
Proof of Proposition 2.2 – It is equivalent to sample (X, Y) according to their joint
law, or to sample first Y according to its marginal distribution and then sample X from
the posterior distribution P(·|Y). To make it more concrete, one can consider Ψ any
test function, and write:

E[Ψ(X1, X0, Y)] = EY,X0EX1∼P(·|Y)[Ψ(X1, X0, Y)],
= EYEX0∼P(·|Y)EX1∼P(·|Y)[Ψ(X1, X0, Y)],
= E[Ψ(X1, X2, Y)].

□

A trivial corollary is the following, where we also introduce the notion of overlap, which
will be very useful later.

3In physics, one often considers the free energy, which is equal to −E log Z(λ; Y). Sometimes there is
also a global temperature factor.
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Corollary 2.3 (Equivalence of overlaps)

Recall that Y =
√

λX0 + W. Define the overlaps{
R01 := X0 · X1,

R12 := X1 · X2.
(12)

If X0 ∼ P0 and X1, X2 ∼ P(X|Y), then R01
d= R12.

Mutual information – Recall that for two random variables (x, y), with joint distri-
bution Pxy, and marginals (Px, Py), the mutual information is defined as4:

I(y; x) = I(x; y) := DKL(Pxy||Px ⊗ Py). (13)

The following shows that the free entropy is essentially the mutual information, up to a
sign and an additive constant.
Proposition 2.4 (Free entropy and mutual information)

For the model of Definition 2.1,

I(X0; Y) = λ

2E[∥X0∥2] − F (λ).

Proof of Proposition 2.4 – To simplify, we denote here PX = P0, PY = Pλ the
marginal laws of X0 and Y, and PX,Y their joint law. Using the definition of the
mutual information in eq. (13):

I(X0; Y) = EX,Y

[
log dPX,Y

d(PX ⊗ PY)

]
,

= EX,Y

[
log

dPY(Y) · dPX|Y(X)
dPX(X) · dPY (Y)

]
,

= EX,Y

[
log

dPX|Y(X)
dPX(X)

]
,

(a)= EX,Y

[
log e− λ

2 ∥X∥2+
√
λY·X

Z(λ; Y)

]
,

= EX,Y

[
−λ

2 ∥X∥2 +
√

λY · X
]

− F (λ),

(b)= −λ

2E[∥X∥2] +
√

λE[(
√

λX + W) · X] − F (λ),

= λ

2E[∥X∥2] − F (λ),

using eq. (7) in (a), and Definition 2.1 in (b). □

Notice that I(X0; Y) ≥ 0: in particular, we showed that F (λ) ≤ (λ/2)E[∥X0∥2].
The MMSE is also related to the derivative of the free entropy (or of the mutual infor-
mation) with respect to the SNR λ.
Proposition 2.5 (I-MMSE formula)

Consider the model of Definition 2.1, and denote its MMSE as MMSE(λ). For any

4Recall the KL divergence is DKL(P ||Q) := EP log dP/dQ.
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λ ≥ 0 we have

F ′(λ) = 1
2E[∥X2

0∥] − 1
2MMSE(λ) = 1

2EY
[
∥E[X|Y]∥2

]
.

This formula can be stated equivalently in the language of the mutual information by
using Proposition 2.4:

∂I(X; Y)
∂λ

= 1
2MMSE(λ). (14)

Proof of Proposition 2.5 – First, the middle and right-hand side of the sought
identity are equal, since by Proposition 2.2

E[∥E[X|Y]∥2] = E[E[X|Y] · X0]

For the rest of the proof, we leverage Gaussian integration by parts (see Lemma A.3).
We have

F (λ) = E log
∫

e
√
λY·X− λ

2 ∥X∥2 dP0(X). (15)

Recall that Y =
√

λX0 + W. We also recall the notations introduced in Definition 2.2.
This yields:

F ′(λ) = ∂

∂λ
EW,X0 log

∫
e

√
λW·X+λX0·X− λ

2 ∥X∥2 dP0(X),

= EW,X0

[
X0 · ⟨X⟩ − 1

2⟨∥X∥2⟩ + 1
2
√

λ
W · ⟨X⟩

]
,

(a)= EW,X0

[
∥⟨X⟩∥2 − 1

2∥X0∥2 + 1
2
√

λ
W · ⟨X⟩

]
,

(b)= EW,X0

[
∥⟨X⟩∥2 − 1

2∥X0∥2 + 1
2
√

λ

d∑
i=1

∂

∂Wi
⟨Xi⟩

]
,

= EW,X0

[
∥⟨X⟩∥2 − 1

2∥X0∥2 + 1
2

d∑
i=1

(⟨X2
i ⟩ − ⟨Xi⟩2)

]
,

(c)= 1
2E[∥⟨X⟩∥2].

In (a) and (c) we used the Nishimori identity (Proposition 2.2), and in (b) Gaussian
integration by parts. □

Notably, a corollary of Proposition 2.5 is the following. Proving it involves heavy com-
putations but follows exactly the same lines as the proof of Proposition 2.5, so we leave
it as an exercise.
Corollary 2.6 (Properties of the free entropy)

Consider the model of Definition 2.1. The free entropy F : λ ≥ 0 7→ F (λ) is a
non-decreasing and non-negative function of λ, and further

F ′′(λ) = 1
2E
[
∥cov(X|Y)∥2

F

]
= 1

2
∑
i,j

E
[
(⟨XiXj⟩ − ⟨Xi⟩⟨Xj⟩)2

]
. (16)

In particular, F is convex.

This last conclusion is intuitively very natural given Proposition 2.5: it is just saying
that λ 7→ MMSE(λ) is decreasing, i.e. that as the signal strength gets higher, the optimal
mean-squared error decreases.
Other estimators – One can also consider other estimators X̂(Y), which can optimize
different objectives than the mean-squared error. Some examples include:

12



• When P0 has a density, the Maximum A Posteriori estimator, which maximizes
the posterior density:

X̂MAP(Y) := arg max
X̂(Y)

logP(X|Y) = arg max
X̂(Y)

[log φ(Y|X̂) + log P0(X̂)]. (17)

• The Maximum Likelihood estimator, which maximizes only the likelihood term:

X̂MLE(Y) := arg max
X̂(Y)∈suppP0

log φ(Y|X̂). (18)

Notice that these two estimators coincide when P0 is the uniform distribution on
its support.

One can also define more general class of estimators. We will focus mainly on the
MSE estimator for the moment, and will come back to the MLE/MAP estimators when
discussing optimization procedures in Section 6 when discussing optimization. Indeed,
notice that in a Gaussian additive model:

X̂MLE(Y) = arg max
X∈suppP0

[
Y · X − λ

2 ∥X∥2
]

and one can attack this problem e.g. by local optimization procedures.

2.3 The simplest example: scalar denoising

Let us start with the simplest instance of a Gaussian additive model: the scalar setting
d = 1. The observations are generated as

y =
√

λx0 + z, (19)

with x0 ∼ P0 and z ∼ N (0, 1). Then

F (λ) = Ey log
∫

e
√
λxy− λ

2 x
2dP0(x),

= Ez,x0 log
∫

e
√
λxz+λxx0− λ

2 x
2dP0(x). (20)

2.3.1 Gaussian prior

We start with the simplest example: P0 = N (0, 1). The integral is now explicit

F (λ) = E log
∫ dx√

2π
e− 1+λ

2 x2+x[λx0+
√
λz],

= E log e
(λx0+

√
λz)2

2(1+λ)
√

1 + λ
,

= −1
2 log(1 + λ) + E

[
(λx0 +

√
λz)2

2(1 + λ)

]
,

= −1
2 log(1 + λ) + λ

2 . (21)

From there we get the mutual information and MMSE as:
I(x0; y) = 1

2 log(1 + λ),

MMSE(λ) = 1
1 + λ

.
(22)

13



The optimal estimator x̂opt = E[x0|y] of Theorem 2.1 is also easy to write here. Indeed,
notice that (x0, y) are jointly Gaussian random variables. We can thus use classical
Gaussian conditioning result, which essentially states that the conditional expectation
is linear in the case of jointly Gaussian random variables:

Theorem 2.7 (Gaussian conditioning)
Let n, p ≥ 1 and u, v ∈ Rn × Rp be zero-mean and jointly Gaussian vectors. Then

E[u|v] = A⋆v, (23)

where A⋆ ∈ Rn×p is the solution to the least-squares problem

A⋆ = arg min
A∈Rn×p

Eu,v
[
∥u − A⋆v∥2

]
. (24)

We leave the proof of Theorem 2.7 as an exercise5. In our simple case, n = p = 1 and
thus E[x0|y] is the orthogonal projection of x0 on y (with the L2 norm), thus

x̂opt(y) = E[x0|y] = E[x0y]
E[y2] y =

√
λ

1 + λ
y. (25)

2.3.2 Generic prior

We now consider a generic P0 with mean zero and variance 1. Notice that the estimator
of eq. (25) still reaches

MSE
(

y 7→
√

λ

1 + λ
y

)
= E

(x0 −
√

λ

1 + λ
y

)2
 (a)= 1

1 + λ
.

Indeed, notice that (a) holds for P0 = N (0, 1) (as we showed), and it clearly involves
only the first two moments of P0, which we assumed to be (0, 1). In particular, this
implies that

MMSE(P0; λ) ≤ MMSE(N (0, 1); λ) = 1
1 + λ

. (26)

This formalizes that the Gaussian prior is thus the “least-informative” one, in the sense
that the MMSE is the highest for this choice of prior. In information theory, this is
known as the Shannon-Hartley theorem. By integrating out the I-MMSE formula, this
can also be stated in terms of free entropy and mutual information:

IP0;λ(x0; y) = 1
2

∫ λ

0
MMSE(P0; t)dt ≤ 1

2 log(1 + λ) = IN (0,1);λ(x0; y),

FP0(λ) = 1
2

[
1 −

∫ λ

0
MMSE(P0; t)dt

]
≥ λ

2 − 1
2 log(1 + λ) = FN (0,1)(λ),

(27)

where the inequalities holds for any P0 with zero mean and unit variance.

5Recall that E[u|v] is the orthogonal projection of u onto the set of square-integrable v-measurable
random variables. It is thus enough to show that there exists A such that u − Av is independent from
v. Since these are Gaussian random variables, independence can be deduced simply from computing
their correlation.
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2.4 A warm-up: 1-sparse signal denoising

As a slightly harder warm-up, let us analyze a second, and not completely trivial, ex-
ample of a Gaussian additive model. It will be useful to illustrate some of the phe-
nomenology that will appear later in the class, as this is a high-dimensional model.

Definition 2.3 (1-sparse signal denoising – Gaussian mean location)

Let d ≥ 1, and with n := 2d, we denote e1, · · · , en the canonical basis in Rn. Let
z ∼ N (0, In), and σ0 ∼ Unif({1, · · · , n}). We observe

y :=
√

λd · eσ0 + z.

Definition 2.3 defines a Gaussian additive model in the sense of Definition 2.1, with
X0 :=

√
d eσ0 a 1-sparse vector. Informally, we observe a very high-dimensional Gaussian

vector, whose mean has been shifted slightly in one random direction of the canonical
basis: our goal is to recover this direction.

2.4.1 Maximum likelihood estimation

Let us analyze a natural candidate for σ0, when observing y, which is the maximum-
likelihood estimate of eq. (18): it is an estimate of σ0 based on maximizing the log-
likelihood log φ(y|σ). Notice that for any σ ∈ {1, · · · , n}, we have (we write equalities
up to constants independent of σ):

log φ(y|σ) = −1
2∥y −

√
λdeσ∥2 =

√
λd yσ + C(y)

The maximum likelihood estimator of eq. (18) is thus simply

σ̂(y) := arg max
σ∈[n]

yσ. (28)

This is a very natural guess: we simply take the largest coordinate of y. We have

yσ =
√

λd1{σ = σ0} + zσ.

Recall log n = d log 2. By classical properties of the Gaussian distribution (Proposi-
tion A.4), for any ε > 0 we have with probability 1 − o(1) as d → ∞:

max
σ∈[n]\{σ0}

yσ ∈
√

2d log 2 · [1 − ε, 1 + ε].

On the other hand yσ0 =
√

λd + zσ0 , where zσ0 ∼ N (0, 1).

Thus, if λ > λMLE := 2 log 2, we have yσ0 > maxσ∈[n]\{σ0} yσ with probability 1 − od(1).
On the other hand, for λ < λMLE, then yσ0 < maxσ∈[n]\{σ0} yσ with probability 1−od(1).

Stated differently, the MLE succeeds above the critical threshold λMLE = 2 log 2, and
fails below it: this is a first example of a sharp transition for recovery, here with the
MLE estimator.

2.4.2 The free entropy / mutual information

Is the MLE threshold sharp, or can one still recover σ0 for λ < λMLE ? We will investigate
this question by computing the MMSE of the problem for any λ > 0. As motivated
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above, we achieve this by computing the free entropy (or mutual information) that we
defined in Section 2.2.

Fd(λ) := Ey log Zd(λ; y),

= Ey log
(

1
n

n∑
σ=1

e− λd
2 ∥eσ∥2+

√
λd (y·eσ)

)
,

= −λd

2 + Ey log
(

1
n

n∑
σ=1

e
√
λd yσ

)
. (29)

How to compute the RHS of eq. (29) ?

A first bound: Jensen’s inequality – A first upper bound on Fd(λ) is obtained
by using Jensen’s inequality, since E log[· · · ] ≤ logE[· · · ]. In the physics jargon, this is
called an annealed upper bound on the free entropy. Here, this yields:

Fd(λ) ≤ −λd

2 + log
(

1
n

n∑
σ=1

Ey
[
e

√
λd yσ

])
. (30)

For any σ ∈ [n], we have

Ey
[
e

√
λd yσ

]
=
(
Eσ0eλd1{σ=σ0}

)
·
(
Ez∼N (0,1)e

√
λdz
)

,

=
( 1

n
[(n − 1) + eλd]

)
· e

λd
2 .

Plugging it back in eq. (30) we get (recall n = 2d):

Fd(λ) ≤ log
(
1 − 2−d + e(λ−log 2)d

)
.

Taking d → ∞, we reach:

lim sup
d→∞

1
d

Fd(λ) ≤ max(0, λ − log 2). (31)

In particular, by eq. (31), if λ < λann. := log 2, (1/d)Fd(λ) → 0 as d → ∞. By the
I-MMSE theorem (Proposition 2.5), this implies that

Qd(λ) := E[∥E[X|y]∥2] = dE[∥E[eσ|Y]∥2]

satisfies, for any λ ∈ [0, log 2):

1
d

∫ λ

0
Qd(τ)dτ = 2

d
Fd(λ) → 0.

Thus Qd(λ)/d → 0 as d → ∞, for almost every λ < log 2. Since λ → Qd(λ) is non-
decreasing by Corollary 2.6, we reach that Qd(λ)/d → 0 as d → ∞ for all λ < log 2.
Formally, for λ < λann. = log 2, it is impossible to estimate σ0 with a mean-squared
error that is asymptotically better than the trivial estimator:

1
d

MMSE(λ) = 1
d
EP0 [∥X∥2] − 1

d
Qd(λ) = 1 − o(1).

Finer control: conditional Jensen’s inequality – Still, this is not completely sat-
isfactory: combining this with the results of Section 2.4.1 leaves an open region for
λann. = log 2 < λ < λMLE = 2 log 2. Moreover, we know from the relation between free
entropy and mutual information (Proposition 2.4) that Fd(λ) ≤ (λ/2), so eq. (31) can
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not be tight. A finer control can be achieved by conditioning explicitly on yσ0 in the use
of Jensen’s inequality. We come back to eq. (29):

Fd(λ) = −λd

2 + Ey log
(

1
n

n∑
σ=1

e
√
λd yσ

)
,

≤ −λd

2 + Eσ0,yσ0
log

(
1
n
E
[

n∑
σ=1

e
√
λd yσ

∣∣∣∣∣yσ0

])
,

= −λd

2 + Eσ0,yσ0
log

( 1
n

e
√
λdyσ0 + n − 1

n
e

λd
2

)
,

= Eσ0,yσ0
log

(
e

√
λdyσ0 − λd

2 −d log 2 + 1 − 2−d
)

,

(a)= Ezσ0
log

(
e( λ

2 −log 2)d+
√
λdzσ0 + 1 − 2−d

)
,

≤ Ez∼N (0,1) log
(
1 + e( λ

2 −log 2)d+
√
λdz
)

.

In (a) we used yσ0 =
√

λd + zσ0 . Thus we have (since 1 + ex ≤ 2emax(0,x)):

1
d

Fd(λ) ≤ log 2
d

+ Ez∼N (0,1) max

0,

(
λ

2 − log 2
)

+

√
λ

d
z︸ ︷︷ ︸

=:wd

 .

Since wd → (λ/2− log 2) in probability as d → ∞, and E[max(0, wd)2] ≤ E[w2
d] = Od(1),

we get:

lim sup
d→∞

1
d

Fd(λ) ≤ max
(

0,
λ

2 − log 2
)

.

One can easily obtain a corresponding lower bound:

1
d

Fd(λ) = −λ

2 + 1
d
Ey log

(
1
n

n∑
σ=1

e
√
λd yσ

)
,

≥ −λ

2 + 1
d
Ey log

( 1
n

e
√
λd yσ0

)
,

= λ

2 − log 2 +

√
λ

d
Ez∼N (0,1)[z],

= λ

2 − log 2.

Recalling that Fd(λ) ≥ 0, we have finally proven the following
Lemma 2.8

For any λ ≥ 0,
lim
d→∞

1
d

Fd(λ) = max
(

0,
λ

2 − log 2
)

.

From there we can deduce the behavior of the MMSE. Recall that

1
d

MMSE(λ) = E∥eσ0 − ⟨eσ⟩∥2
2 = 1 − E[∥⟨eσ⟩∥2].
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Corollary 2.9
The asymptotic overlap and asymptototic MMSE satisfy, for all λ ̸= λc:

lim
d→∞

1
d

MMSE(λ) = 1 − lim
d→∞

1
d

Qd(λ) = 1{λ < λc}.

Proof of Corollary 2.9 – It is a simple consequence of Lemma 2.8 combined with the
I-MMSE theorem (Proposition 2.5), and the following classical result of convex analysis

Lemma 2.10
If fd : R → R is a sequence of convex and differentiable functions, which converge

pointwise to a limit f . Then (i) f is convex, and (ii) for all t ∈ R at which f is
differentiable6, we have f ′

d(t) → fd(t) as d → ∞.

As a remark, recall that any convex function is differentiable everywhere but in a count-
able set of points. □

A first-order phase transition – The results above draw the picture of a sharp
transition for recovery of the hidden direction σ0:

• For λ < λc := 2 log 2, one cannot estimate the direction σ0 better than a random
guess, and the asymptotic MMSE is simply the norm of the prior distribution

MMSE(λ) = 1
d
E[∥X0∥2] − od(1) = 1 − od(1).

• For λ > λc, recovery of σ0 is possible with a probability 1 − od(1), and an explicit
procedure is given by the MLE estimator of eq. (28).

Notice that the asymptotic free entropy has a discontinuous derivative at λ = λc: in
the physics jargon, this is called a first-order phase transition: it corresponds to a
discontinuity in the MMSE, and a sharp transition from impossible non-trivial recovery
to perfect recovery. On the other hand, a second-order phase transition would correspond
to a discontinuous second derivative of F (λ): in this kind of transitions, the MMSE is
continuous at the critical λc: we will see examples of both transitions in the following.

Why did naïve Jensen failed ? – The failure of the naïve use of Jensen’s inequality
is symptomatic of a phenomenon where a random variable Xd

7 can have a seemingly
simple behavior, e.g. Xd → x as d → ∞ in L2 (for x ∈ R a real value), however

lim
d→∞

1
d

logE[exp(dXd)] > lim
d→∞

E[Xd] = x. (32)

7Here Xd = (1/d) log Zd(λ; y).
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Notice that the LHS of eq. (32) is always greater than the RHS by Jensen’s inequality.
The strict inequality in eq. (32) can arise if E[edXd ] is dominated by rare events, where
Xd is much greater than its typical value x. In the Gaussian mean location problem,
exemples of such events are

Eτ := {zσ0 ≥
√

τd}. (33)

Clearly, under N (0, 1), Eτ has probability P(Eτ ) such that logP(Eτ ) ∼ − τd
2 for any fixed

τ > 0. While this probability is exponentially small, notice that

logEZd(λ; y) ≥ logE [Zd(λ; y)|Eτ ] + logP[Eτ ],

≥ −τd

2 − d log 2 + λd

2 +
√

λτd + o(d).

Taking τ = λ to maximize this lower bound, we reach that

logEZd(λ; y) ≥ (λ − log 2)d + o(d).

What we just showed is that the “annealed” average EZd(λ; y) is actually dominated
by the events Eλ of eq. (33), although these events have exponentially small probability.
As we later conditioned on zσ0 before applying Jensen’s inequality, such spurious events
could no longer impact the annealed average.

The following is a sufficient condition for Jensen’s inequality to be asymptotically sharp.

Challenge 2.1. Assume Xd is a real r.v. such that Xd → x (in probability) as d → ∞,
and |Xd| ≤ M (a.s.) for some M > 0. Show that a sufficient condition for eq. (32) to
be an equality is that for all t > 0:

lim
d→∞

1
d

logP[|Xd − x| ≥ t] = −∞. (34)

Eq. (34) is called a large deviations upper bound: informally it is a very strong form
of concentration, as events where Xd differ from x by a O(1) quantity have probability
exp(−ω(d)).

2.5 Spiked matrix and spiked tensor models

For much of this class (in the majority of Sections 3,4,5,6), we will consider a specific
instance of Gaussian additive models as our toy setting for questions of detection, esti-
mation and optimization. In these models, the observations Y are given in the form of
a matrix or a tensor, and the signal X0 has a low-rank structure.

2.5.1 The spiked Wigner/spiked matrix model

We first introduce the matrix setting of this problem, for which we need to define a
Gaussian distribution over symmetric matrices.
Definition 2.4 (Gaussian Orthogonal Ensemble)

Let d ≥ 1. We say that W ∈ Sd is drawn from the Gaussian orthogonal ensemble (or
GOE(d)) if its elements are drawn independently (up to the symmetry Wij = Wji),
with

{
Wij ∼ N (0, 1/d) for i < j,

Wii ∼ N (0, 2/d).
(35)
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The normalization convention for diagonal and off-diagonal elements in Definition 2.4
implies the nice fact that the probability density of W can be written (up to a constant)
in the compact form:

φ(W) ∝ exp
{

−d

4Tr[W2]
}

.

We can now introduce the spiked Wigner (or spiked matrix) model, which is an instance
of a Gaussian additive model where the signal is a rank-one matrix.
Definition 2.5 (Spiked Wigner/Spiked matrix model)

Let d ≥ 1, λ ≥ 0, and x0 ∈ Rd be drawn from a prior distribution P0 over Rd such
that E[∥x∥2] = d. We observe Y ∈ Sd, the symmetric matrix built as

Y =
√

λ

d
x0x⊤

0 + W, (36)

where W ∼ GOE(d).

Remark – The normalization E[∥x0∥2] = d ensures that the two matrices in eq. (36)
have comparable spectral norms as we will discuss in Section 3. Note that this just
amounts to a rescaling of λ.

A remark on symmetry – Notice that if P0 is symmetric around the origin, then
the Bayes-optimal estimator of Theorem 2.1 is identically zero by symmetry, as the
Gibbs (posterior) measure ⟨·⟩ is invariant under reflections A → −A. In particular
E[x|Y] = 0. Still, the posterior measure might have information about x0, it just has a
global symmetry and can be decomposed into two components.

In the following, we will mostly ignore this problem, and notice that it is usually solved
in several ways:

1. Slightly break the symmetry of P0, e.g. by setting E[xi] = ε ≪ 1. One takes then
the limit ε ↓ 0 after d → ∞.

2. Another similar fix consists in adding a small side information to the model, e.g.

y′ =
√

εx0 + z,

with z ∼ N (0, Id) Gaussian noise, and again ε → 0 after d → ∞. In both
these cases, the assumption is that when taking ε ↓ 0 after d → ∞, the various
expectations we will compute become expectations under ⟨·⟩+.

3. The arguably cleanest approach is simply to consider the estimation of the rank-
one matrix X0 = x0x⊤

0 , e.g. computing the MMSE for X0 instead of the one
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of x0. Notice that from X̂opt(Y) = E[X|Y] = ⟨X⟩, denoting (λmax, vmax) its top
eigenvalue-eigenvector pair, one can build easily an estimator for x0 (up to a global
sign) as

x̂(Y) :=
√

λmax[X̂(Y)] vmax[X̂(Y)].

We refer to [MS24, Section 1.1.2] for more details on this point. The PhD thesis [Mio19]
is also a great reference on spiked models.

Further motivations – Let us mention a few motivations behind the spiked Wigner
model:

1. Group synchronization – In the group synchronization problem, one is given a
finite graph G = (V, E) (with V = [n]) and a group G. We assign to each edge a
group element gi ∈ G, and for each edge (i, j) ∈ E we observe

Yij = gig
−1
j + noise.

The goal is to recover {gi}i∈[n] from these noisy observations. This has applications
in imaging for instance: consider the problem of reconstructing a 3D image from
various 2D pictures taken by cameras in different positions. Determining the relative
positions of the cameras is then a group synchronization problem with G = SO(3).
We refer to [Abb+18] for more details. The arguably simplest setting of this problem
is Z2-synchronization, where G = Z2, G = Kn is the complete graph, and the noise
is Gaussian. This corresponds exactly to the spiked Wigner model of eq. (36), with
x0 ∈ {±1}d!

2. Sparse PCA – A model for sparse PCA (i.e. computing a sparse large-variance
direction in the data) is the following. Let x0 ∈ Rd be k-sparse, i.e. ∥x0∥0 = k. We
observe n samples from a Gaussian with a preferred sparse direction:

y1, · · · , yn
i.i.d.∼ N

(
0, Id +

√
λ

k
x0x⊤

0

)
.

The question is then to recover x0 from the empirical covariance matrix

Y := 1
n

n∑
i=1

yiy⊤
i

d=
(

Id +
√

λ

k
x0x⊤

0

)1/2 1
n

n∑
i=1

ziz⊤
i

(
Id +

√
λ

k
x0x⊤

0

)1/2

,

with zi
i.i.d.∼ N (0, Id). This is sometimes known as a spiked Wishart model. The

spiked Wigner model corresponds to a simplification where the low-rank perturbation
is additive, and the noise matrix is Wigner instead of Wishart. All the tools we will
develop in this class for the spiked Wigner model can be generalized to spiked Wishart
models.

3. Community detection – This topic is discussed in detail in [MS23]. Consider a
stochastic block model (SBM) with two communities: for some σ ∈ {±1}n represent-
ing the two communities, onw draws the adjacency matrix Aij ∈ {0, 1} for i < j with
independent elements, and

P(Aij = 1|σi, σj) =
{

pin if σi = σj ,

pout if σi ̸= σj .

It is then easy to check that, up to global rank-one change

Ā := A − pin + pout
2 11⊤ = ∆σσ⊤ + W,
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with ∆ := (pin − pout)/2, and W := A − E[A] is a noise matrix, with independent
elements. Replacing the distribution of these elements by i.i.d. centered Gaussians
yields again a spiked Wigner model. Beyond [MS23], we refer to [DAM16] for a
rigorous connection, and to [BSS23, Section 7.2] for a short introduction to the SBM.

A graph generated from a SBM (a), and the same graph with the communities
colored (b). From [BSS23].

2.5.2 Tensor PCA and the spiked tensor model

The spiked Wigner model can be generalized to tensors, i.e. multi-dimensional arrays.
It was introduced in [MR14], and we refer to this work for other motivations and its
connection to so-called tensor PCA. To define the model formally, we we first generalize
Definition 2.4 to a notion of symmetric Gaussian tensors.
Definition 2.6 (Symmetric Gaussian tensor)

Let d ≥ 1 and k ≥ 2. Let G ∈ (Rd)⊗k with Gi1,··· ,ik
i.i.d.∼ N (0, 1). For a permutation

π ∈ Sk, Gπ is the tensor with indices Gπ
i1,··· ,ik := Giπ(1),··· ,iπ(k) . We say that W ∈

(Rd)⊗k is drawn as a symmetric Gaussian tensor (denoted W ∼ ST(k; d)) if it is
distributed as

W = 1√
k!d

∑
π∈Sk

Gπ.

Remarks –

(i) For k = 2 we recover the GOE(d) distribution: ST(2; d) = GOE(d).

(ii) For all i1 < · · · < ik, we have Wi1···ik
i.i.d.∼ N (0, 1/d).

(iii) W ∼ ST(k; d) is a symmetric tensor: for all π ∈ Sk, Wπ = W.

(iv) The distribution ST(k; d) enjoys a rotation-invariance property. For O ∈ O(d) and
T ∈ (Rd)⊗k, we define (T#O)i1,··· ,ik :=

∑
j1,··· ,jk Tj1,··· ,jkOi1j1 · · · Oikjk the rotation

of T by O. If W ∼ ST(k; d), then for any O ∈ O(d), W#O ∼ ST(k; d). In the
case k = 2, for any W ∼ GOE(d) we have OWO⊤ ∼ GOE(d): in particular, the
eigenvectors of W form an orthogonal matrix drawn from the Haar measure on
the orthogonal group O(d), and they are independent of the eigenvalues of W.

We can now introduce the spiked tensor model, the counterpart to Definition 2.7 in the
tensor world. Note that we use slightly different normalizations.
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Definition 2.7 (Spiked tensor model)
Let d ≥ 1, and x0 ∈ Rd be drawn from a prior distribution P0 over Rd. Let k ≥ 1

and W ∼ ST(k; d). We observe Y ∈ (Rd)⊗k, the symmetric tensor built as

Y = W +
√

λ x⊗k
0 .
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Figure 1: Schematic view of the question we want to answer regarding the model of
eq. (37).

3 Spectral algorithms in the spiked matrix model
We consider the spiked Wigner model of Definition 2.5. The statistician is given an
observation under the form of a symmetric matrix Y, built as:

Y = W +
√

λ

d
x0x⊤

0 ∈ Sd

In this section, we will assume that x = x0 is fixed, and on the Euclidean sphere of
radius

√
d. Notice that by rescaling it as x → x/

√
d, it is equivalent to consider

Y = W +
√

λxx⊤ ∈ Sd, (37)

with ∥x∥ = 1, i.e. x ∈ Sd−1. The normalization will be more convenient for this section.

The main goal in Section 3 is to answer the following question:

Does the top eigenvector vmax(Y) contain information about x?

Since vmax(Y) is efficient to compute, this estimator (the PCA estimator) already gives
us a baseline for efficient recovery of x in a general spiked Wigner model. Notice that
what we will discuss can be generalized for W beyond Gaussian matrices to other i.i.d.
matrices, as well as a large class of matrix distributions that enjoy a rotation-invariance
property: see [Mai24, Section 5] for more on this point.

3.1 The asymptotic spectrum of Wigner matrices: reminders

The seminal work of Wigner [Wig55], that can be seen as the start of random matrix
theory, proves that the GOE(d) ensemble satisfies the following:

Theorem 3.1 (Asymptotic spectrum of Wigner matrices)
Let W ∼ GOE(d), with eigenvalues w1 ≥ · · · ≥ wd. Then:

(i) The empirical spectral distribution of W converges8:

µ̂W := 1
d

d∑
i=1

δwi

weakly−−−−→
d→∞

σs.c. (a.s.),

where σs.c. is called Wigner’s semicircle law

σs.c.(dx) :=
√

4 − x2

2π
1{|x| ≤ 2}dx. (38)
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(ii) The top eigenvalue of W converges to the right edge of the support of σs.c.:

w1 = max
i∈[d]

zi −−−→
d→∞

2 (a.s.)

3.1.1 The bulk of Wigner matrices: sketch of proof

We sketch here a proof of Theorem 3.1-(i) using the Stieltjes/Cauchy transform, or
resolvent, method. As this result is very classical, we only aim to present the main
ideas, and we refer to [AGZ10; Kun25] for mathematical proofs. The resolvent method
is very powerful and will play a crucial role in the spectral analysis of the spiked model.

Definition 3.1 (Resolvent and Cauchy transform)
For a matrix M ∈ Sd, we define its resolvent RM(z) and Cauchy transform GM(z)

as follows: {
RM(z) := (zId − M)−1,

GM(z) := (1/d)Tr[R(z)],

for any z ∈ C\Sp(M). z 7→ −GM(z) is usually called the Stieltjes transform.

More generally, one can define the Cauchy transform of any real probability measure as

Definition 3.2 (Cauchy transform)
For any µ ∈ P(R) and z ∈ C\ supp(µ), we define the Cauchy transform as:

Gµ(z) := EX∼µ[(z − X)−1].

The Cauchy transform enjoys remarkable properties: in particular it fully characterizes
the associated probability measure as this next theorem shows. We refer to [AGZ10,
Section 2.4] for more properties, and their associated proofs.
Proposition 3.2 (Properties of the Cauchy transform)

If (µn)n≥1 and µ are real probability measures, then

µn
(w.)−−−→
n→∞

µ ⇔ lim
n→∞

Gµn(z) = Gµ(z) ∀z ∈ C\R.

We will sketch here a proof that GW(z) → Gs.c.(z), for any z ∈ C\R and as d →
∞, which will thus imply Theorem 3.1-(i). A complete proof is available in [AGZ10,
Section 2.4]. We start with this simple property.
Lemma 3.3

The Stieltjes transform Gs.c. of the semicircle law of eq. (38) satisfies, for all t > 2:

Gs.c.(t) = t −
√

t2 − 4
2 . (39)

8Don’t be confused by the mix of weak and almost sure convergence: the convergence happens almost
surely, but the convergence itself is the weak convergence of measures.
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Challenge 3.1. Prove Lemma 3.3. (Hint: try to write it as an integral over the complex
unit circle, and use the residue theorem)

The crux of the proof is a leave-one-out argument (also called “cavity method” in sta-
tistical physics, we will revisit this later on!). Notice that

GW(z) = 1
d

d∑
i=1

[zId − W]−1
ii .

The matrix element of this inverse can be expressed using the Schur complement formula:(
a b⊤

b C

)−1

11
= 1

a − b⊤C−1b , (40)

for any a, b, C (symmetric) such that these quantities are well-defined. Using eq. (40):

GW(z) = 1
d

d∑
i=1

1
(z − Wii) − w̃i · (zId−1 − W−i)−1w̃i

. (41)

Up to now, our derivation was exact. We now give the sketch of the rest of the proof
at a very heuristic level: the rigorous derivation follows exactly the same lines, using
precise concentration inequalities in several steps. Notice that Wii = Θ(1/

√
d), so we

simplify eq. (41) to leading order as d → ∞ as:

GW(z) = 1
d

d∑
i=1

1
z − w̃i · (zId−1 − W−i)−1w̃i

. (42)

Here W−i is the (d−1)×(d−1) matrix with i-th row and column removed, and w̃i ∈ Rd−1

is the i-th row of W with the i-th element removed. The crucial remark is that w̃i is
independent of W−i! Therefore by concentration of measure (see Appendix A.4 e.g., )
we have

w̃i · (zId−1 − W−i)−1w̃i ≃ Ew̃i · (zId−1 − W−i)−1w̃i = 1
d

Tr[(zId−1 − W−i)−1].

Plugging it back in eq. (42), since all elements of the sum have the same law, and using
again concentration of measure, we expect:

GW(z) ≃ EWGW(z),

≃ 1
z − 1

dETr[(zId−1 − W−1)−1]
,

≃ 1
z − EGW(d−1)(z) .

This heuristic derivations suggests that GW(z) → G(z) for G(z) a solution to

G(z) = 1
z − G(z) . (43)

One checks then easily from Lemma 3.3 that Gs.c.(z) is the only solution to eq. (43)
such that G(z) → 0 as |z| → ∞.
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3.1.2 The top eigenvalue of Wigner matrices

We give here a proof of point (ii) of Theorem 3.1. First notice that

{w1 < 2 − ε} ⇒ µ̂W([2 − ε, 2]) = 0.

Using point (i) of Theorem 3.1, we reach that, almost surely:

lim inf
d→∞

w1 ≥ 2. (44)

The upper bound can be obtained in several steps. The first is to use Sudakov-Fernique’s
inequality, see Lemma A.5, to control E[w1]. Indeed, notice that

w1 = max
∥x∥=1

x⊤Wx.

Let X(x) := (
√

d/2) x⊤Wx. Then X is a Gaussian process (indexed by the unit sphere
Sd−1). Define Y (x) :=

√
2 (x · g). for g ∼ N (0, Id). Then we have, for any x, x′ ∈ Sd−1:
E[X(x)] = E[Y (x)] = 0,

E[(X(x) − X(x′))2] = 2[1 − (x · x′)2],
E[(Y (x) − Y (x′))2] = 4[1 − (x · x′)].

Since 1 − q2 ≤ 2(1 − q) for all q ∈ [−1, 1], applying Lemma A.5, we get:√
d

2 E[w1] = E
[

max
x∈Sd−1

X(x)
]

,

≤ E
[

max
x∈Sd−1

Y (x)
]

,

=
√

2E[∥g∥],

≤
√

2E[∥g∥2],

=
√

2d.

We showed E[w1] ≤ 2.
Next, denote Zij for i ≤ j be the i.i.d. N (0, 1) random variables such that Wij = Wji =
Zij/

√
d, and Wii = (

√
2/d) Zii. For any W, W′ (and associated Z, Z′), we have

∥λmax(W − W′)∥2 ≤ ∥W − W′∥2
F = 2

d

∑
i≤j

(Zij − Z ′
ij)2.

Stated differently, Z 7→ max∥x∥=1 x⊤Wx is (
√

2/d)-Lipschitz. We can thus leverage
Gaussian concentration (Theorem A.8), which gives for any t ≥ 0:

P (|w1 − E[w1]| ≥ t) ≤ 2 exp
{

−dt2

4

}
.

Combining it with the bound E[w1] ≤ 2, we reach

P (w1 ≥ 2 + t) ≤ 2 exp
{

−dt2

4

}
.

By the Borel-Cantelli lemma (Lemma A.1), almost surely:

lim sup
d→∞

w1 ≤ 2. (45)

Combining eqs. (44) and (45) ends the proof.
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3.2 Emergence of a single outlier

The following proposition shows that the eigenvalues of W and Y are interlaced.
Proposition 3.4 (Interlacing)

Let λ ≥ 0, and W ∈ Sd, x ∈ Sd−1. Let Y = W +
√

λxx⊤. Denote y1 ≥ · · · yd and
w1 ≥ · · · wd the eigenvalues of Y and W. Then

(i) w1 ≤ y1.

(ii) wi ≤ yi ≤ wi−1 for all i ∈ {2, · · · , d}.

Proof of Proposition 3.4 – The lower bound on yi (for i ∈ [d]) is trivial, since√
λxx⊤ ⪰ 0. Let us denote u1, · · · , ud the eigenvectors of W. The lower bound on yi

for i ≥ 2 follows from the Courant-Fischer characterization of eigenvalues:

yi = max
dim(V )=i

min
v∈V

∥v∥=1

v⊤Yv.

Since i ≥ 2, any subspace V ⊆ Rd with dimension i must contain a non-zero vector v
orthogonal to Span(x, {uj}j≤i−2). Thus

v⊤Yv = v⊤Wv
(a)
≤ wi−1,

where (a) comes from v being orthogonal to {uj}j≤i−2. □

Proposition 3.4 is a special case of Weyl’s interlacing inequality. It implies that the
“bulk” of eigenvalues of Y and W behave similarly as d → ∞.
Corollary 3.5
For Y as in Proposition 3.4, the empirical distribution of Y converges:

µ̂Y := 1
d

d∑
i=1

δyi

weakly−−−−→
d→∞

σs.c. (a.s.),

More specifically, all y2 ≥ · · · yd will (with high probability) lie in the interval [−2 −
o(1), 2 + o(1)]. Thus it is only y1 = λmax(Y) that might be an outlier, see Fig. 1.
A simple bound – Notice that y1 = max∥v∥=1 v⊤Yv ≥ x⊤Yx = x⊤Wx +

√
λ.

Furthermore, it is easy to see that, for any x ∈ Sd−1, z := x⊤Wx ∼ N (0, 2/d). In
particular P(z ≥ t) ≤ exp{−dt2/4} for any t ≥ 0. This can be easily shown to imply
(via the Borel-Cantelli lemma) that

lim inf
d→∞

y1 ≥
√

λ. (a.s.) (46)

In particular, if λ > 4, then lim inf y1 > 2 (a.s.): we see an outlier in the spectrum of
Y! Further, if v1 is the top eigenvector of Y, we have

y1 = v⊤
1 Yv1 ≤ w1 +

√
λ(v1 · x)2.

Using Theorem 3.1 and eq. (46), we have for λ > 2:

lim inf
d→∞

(v1 · x)2 ≥ 1 − 2√
λ

. (a.s.) (47)

So the outlier is associated to an eigenvector which correlates positively with x! Further,
this correlation goes to 1 as λ → ∞. But are eqs. (46),(47) sharp? We saw that λ > 4
is sufficient for an outlier to appear in the spectrum, with an eigenvector positively
correlated with x: is this also necessary?
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3.3 The BBP transition

The following theorem is the main result of this section. It is usually refered to as
the Baik-Ben Arous-Péché (BBP) transition, from the authors of [BBP05], and it pro-
vides a sharp answer to the question above. While the authors of [BBP05] analyzed a
spiked version of covariance matrices (see the discussion on spiked Wishart models in
Section 2.5), the statement for the spiked Wigner model can be found in [FP07]9, and
a much generalized version in [BN11].

Theorem 3.6 (The BBP transition in the spiked Wigner model)
Let d ≥ 1 and λ > 0. Let x ∈ Sd−1 an arbitrary unit-norm vector. We draw

Y = W +
√

λxx⊤ with W ∼ GOE(d). Denote y1 ≥ · · · ≥ yd the eigenvalues of Y,
and v1, · · · , vd a set of corresponding eigenvectors (unit-normed). Then:

(i) If λ ≤ 1, then y1
(a.s.)−−−→
d→∞

2, and (v1 · x)2 (a.s.)−−−→
d→∞

0.

(ii) If λ > 1, then y1
(a.s.)−−−→
d→∞

λ1/2 + λ−1/2, and (v1 · x)2 (a.s.)−−−→
d→∞

1 − λ−1.

Moreover, for any λ > 0, y2
(a.s.)−−−→
d→∞

2.
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3.3.1 Discussion

Theorem 3.6 shows several key features:

1. There is sharp phase transition at λc = 1: the model behaves very differently for
λ < λc and λ > λc!

2. The sufficient condition λ > 4 to have an outlier that we derived in Section 3.2 is
not sharp. What happens is that for λ = 1 + ε, the top eigenvector is very slightly
correlated with x, but not enough to make x⊤Yx be dominated by the rank-one
perturbation.

3. Notice that (y1, v1) are inconsistent estimators of (
√

λ, ±x) even if λ > 1. Indeed,
for any such λ, y1 →

√
λ + 1/

√
λ >

√
λ, and maxε∈{±1} ∥v1 − εx∥2 ̸→ 0. Instead, the

distance maxε∈{±1} ∥v1 − εx∥2 → 2[1 −
√

1 − λ−1] ∼ λ−1 is finite, and goes to 0 only
as λ → ∞.

9The authors of [BBP05; FP07] analyzed much more detailed properties of the fluctuations of the top
eigenvalue, not just the value of its limit as stated here.
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3.3.2 Proof of Theorem 3.6: eigenvalue transition

We prove here the statements of Theorem 3.6 related to the eigenvalues yi, by simplifying
the proof of [BN11]. Notice first that the statement on y2 is a direct consequence of our
analysis in Section 3.2, so we focus on the statement concerning y1.

Like the proof of Theorem 3.1 that we discussed in Section 3.1.1, a possible proof is
based on the analysis of the Cauchy, or Stieltjes, transform of probability measures, see
Definition 3.1.

Denote w1 ≥ · · · wd the eigenvalues of Wd, with a set of corresponding eigenvectors
u1, · · · , ud. By the remark below Definition 2.6, (u1, · · · , ud) is an orthogonal matrix
uniformly drawn from the Haar measure on O(d), and is independent of (w1, · · · , wd).

Recall that y1 is the largest eigenvalue of Y. In the following we sometimes denote it
y

(d)
1 to clarify its dependency on the dimension. We now use the fact that eigenvalues

are roots of the characteristic polynomial, so y
(d)
1 is a solution to:

det[yId − (W +
√

λxx⊤)] = 0.

Furthermore, y1 ≥ u⊤
1 Wu1 = w1 +

√
λ(u1 · x)2, so y1 > w1 with probability 1 since

u1 ∼ Unif(Sd−1). In particular, (y1Id − W) is almost surely invertible, and we reach:

det[Id −
√

λxx⊤(yId − W)−1] = 0,

i.e. 1 is an eigenvalue of
√

λxx⊤(yId − W)−1. This is a rank-one matrix, so it has a
single non-zero eigenvalue, which is also equal to its trace. Combining this fact with
Proposition 3.4, this yields that y = y

(d)
1 is the only solution in (w1, ∞) to the equation

1√
λ

= x⊤(yId − W)−1x. (48)

We can decompose x =
∑d
i=1 αiui along the eigenbasis of x. Because ∥x∥2 = 1 and x is

independent of W, α := (α1, · · · , αd) is uniformly sampled from the unit sphere Sd−1

and . independent of (w1, · · · , wd). Eq. (48) reads:

1√
λ

=
d∑
i=1

α2
i

y − wi
. (49)

Let us denote

νd :=
d∑
i=1

α2
i δwi ∈ P(R). (50)

Eq. (49) can be reframed by saying that y
(d)
1 is the unique zero in (w1, ∞) of the function

Md(y) := 1 −
√

λGνd
(y), (51)

with Gνd
the Cauchy transform of νd.

Notice that E[νd] = E[µW] → σs.c. as d → ∞ by Theorem 3.1. The next lemma crucially
shows that, by concentration of measure, one can essentially replace νd by σs.c. as d → ∞.

Lemma 3.7 (Convergence of νd)

(i) νd
(a.s.)−−−→
d→∞

σs.c., for the weak convergence of probability measures.
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(ii) For all η > 0, Gνd
(z) (a.s.)−−−→

d→∞
Gs.c.(z), uniformly on Kη := {z ∈ C : d(z, [−2, 2]) ≥

η}.

The following properties of Gs.c.(z) are elementary consequences of Lemma 3.3 and left
to show as an exercise:
Proposition 3.8

Let λ ≥ 0, and Mλ(z) := 1 −
√

λGs.c.(z) for z ∈ C\[−2, 2]. Then, y 7→ Mλ(y) is
strictly increasing on (2, ∞), with Mλ(∞) = 1, and Mλ(2+) = 1 −

√
λ. For λ > 1, we

denote y⋆(λ) the unique zero of Mλ(y) on (2, ∞). Then:

(i) y⋆(λ) = λ1/2 + λ−1/2.

(ii) y⋆(λ) is a simple root of Mλ(z).

Finally, the next lemma (borrowed from [BN11] and tailored for our setting), follows
from considerations in complex analysis.
Lemma 3.9

Let (ad, bd)d≥1 such that limd→∞ ad = −2, limd→∞ bd = 2, and Nd(z) be an analytic
function of z defined on C\[ad, bd], and such that:

(i) For all d ≥ 1 and z ∈ C\R, Nd(z) ̸= 0.

(ii) For all η > 0, Nd(z) → Mλ(z), uniformly on Kη := {z ∈ C : d(z, [−2, 2]) ≥ η}.

Then, if λ > 1, there exists a real sequence (γd)d≥1 such that γd > bd, and:

(a) γd → y⋆(λ) as d → ∞.

(b) γd is a simple root of Nd.

(c) For all ε > 0 small enough and d ≥ 1 large enough,

∀y ∈ (2 + ε, ∞), Nd(y) = 0 ⇔ y = γd.

Further, if λ ≤ 1, then any (γd)d≥1 such that γd > bd and Nd(γd) = 0 must satisfy
γd → 2 as d → ∞.

We defer the proofs of Lemma 3.7 and 3.9 to Section 3.3.4.

We know that y
(d)
1 is the unique zero of Md(y) on (w1, ∞) and that w1

(a.s.)−−−→
d→∞

2.
Lemma 3.7-(ii) shows then that one can apply Lemma 3.9 to Nd = Md given by eq. (51),
and we reach that

• If λ ≤ 1, y
(d)
1

(a.s.)−−−→
d→∞

2.

• If λ > 1, y
(d)
1

(a.s.)−−−→
d→∞

y⋆(λ) > 2.

3.3.3 Proof of Theorem 3.6: eigenvector correlation

We now consider the correlation of the top eigenvector v1 (associated with the eigenvalue
y1) with the signal x. By definition:

(y1Id − W)v1 =
√

λ(v1 · x)x.
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As we argued above, (y1Id − W) is almost surely invertible, which yields:

v1 =
√

λ(v1 · x)(y1Id − W)−1x.

While this equation still involves v1 on both sides, since ∥v1∥ = 1 we have:

v1 = ± (y1Id − W)−1x√
x⊤(y1Id − W)−2x

.

And in particular:

(v1 · x)2 =

(
x⊤(y1Id − W)−1x

)2

x⊤(y1Id − W)−2x .

By eq. (48), we can further simplify it into:

(v1 · x)2 =
(
λx⊤(y1Id − W)−2x

)−1
. (52)

We now analyze the limit as d → ∞ of eq. (52) in a very similar way to what we did to
analyze the limit of x⊤(y1Id − W)−1x above. We separate the cases λ ≤ 1 and λ > 1.

λ > 1 – Using the same notations as in eqs. (49) and (50):

x⊤(y1Id − W)−2x =
d∑
i=1

α2
i

(y1 − wi)2 =
∫

νd(dw)
(y1 − w)2 .

Since y1
(a.s.)−−−→
d→∞

y⋆(λ) > 2, and νd
(a.s.)−−−→
d→∞

σs.c. by Lemma 3.7-(i), we immediately obtain

(v1 · x)−2 = λ

∫
νd(dw)

(y1 − w)2
(a.s.)−−−→
d→∞

λ

∫
ρs.c.(dw)

(y⋆(λ) − w)2 = −λG′
s.c.[y⋆(λ)].

Since y⋆(λ) = λ1/2 + λ−1/2, and by Lemma 3.3, we get λG′
s.c.[y⋆(λ)] = −(1 − λ−1)−1.

λ ≤ 1 – Notice that G′
s.c.(2+) = −∞, i.e.∫

ρs.c.(dw)
(2 − w)2 = +∞.

Since y1
(a.s.)−−−→
d→∞

2 and νd
(a.s.)−−−→
d→∞

σs.c. by Lemma 3.7-(i):

ν̃d :=
d∑
i=1

α2
i δwi+2−y1

(a.s.)−−−→
d→∞

σs.c..

Again, convergence is meant in the sense of weak convergence of probability measures.
Thus, almost surely:

lim inf
d→∞

(v1 · x)−2 = lim inf
d→∞

λ

∫
ν̃d(dw)

(2 − w)2

(a)
≥ λ

∫
ρs.c.(dw)
(2 − w)2 = +∞,

using Fatou’s lemma in (a).
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3.3.4 Proof of Theorem 3.6: auxiliary results

We prove here the technical Lemmas 3.7 and 3.9.

Proof of Lemma 3.7 – We start with (i). Let f be a continuous bounded function
on R. By concentration of measure (Theorem A.9), for any x ∈ Rd and any t > 0:

Pα

[∣∣∣∣∣
d∑
i=1

α2
i xi − 1

d

d∑
i=1

xi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

{
− cdt2

∥x∥2
∞

}
,

for some universal constant c > 0. Indeed, if g(α) :=
∑
i α

2
i xi, then ∥∇g(α)∥2 ≤ 2∥x∥∞

for any α ∈ Sd−1. Using the Borel-Cantelli lemma, and combining it with Theorem 3.1
which implies (1/d)

∑d
i=1 f(wi) →

∫
σs.c.(dw) f(w) almost surely as d → ∞, we obtain

∫
f(w)νd(dw) =

d∑
i=1

α2
i f(wi)

(a.s.)−−−→
d→∞

∫
ρs.c.(dw) f(w),

which proves point (i).

We turn to point (ii). Let η > 0. Since w1
a.s.→ 2 and wd

a.s.→ −2 as d → ∞,

Gνd
(z) =

d∑
i=1

α2
i

z − wi

are a.s. uniformly bounded and Lipschitz on Kη. By the Arzelà-Ascoli theorem, any
subsequence of (Gνd

) must admit a subsequence that is uniformly convergent on Kη.
Moreover, for any z ∈ Kη, Gνd

(z) → G(z) (a.s.) by point (i). This implies the almost-
sure convergence of Gνd

(z) to G(z) holds uniformly over z ∈ Kη. □

Proof of Lemma 3.9 – Notice that Gs.c.(z) → 0 as |z| → ∞. By (ii), this implies
that for some R > 0, and d ≥ 1 large enough, Nd(z) = 0 ⇒ |z| ≤ R. By (i), we even
have that for all z ∈ C, Nd(z) = 0 ⇒ z ∈ [−R, R]. We will show

(H) Let10 (a, b) ∈ (2, ∞)\{y⋆(λ)} such that a < b. Let Γd(a, b) be the number of zeroes
of Nd(z) located inside the real interval (a, b), counted with multiplicity. Then

Γd(a, b) −−−→
d→∞

Γ(a, b) := 1{y⋆(λ) ∈ (a, b)}.

Indeed, assume (H) holds, and λ > 1. Then for all ε > 0 small enough, and d ≥ 1 large
enough, there is exactly one zero11 γd ∈ (2 + ε, R] of γ 7→ Nd(γ), and it is a simple root.
By the point above, it is the only zero in (2+ε, ∞). Further, since Γd(y⋆−η, y⋆+η) → 1
for any η > 0, we get γd → y⋆(λ) as d → ∞. Similarly, if λ ≤ 1, then for any ε > 0
there is no zero of γ 7→ Nd(γ) in (2 + ε, ∞), so any γd > bd with Nd(γd) = 0 must satisfy
γd → 2 as d → ∞.

It remains to prove (H). Let C be the circle in the complex plane with diameter [a, b].
Since a, b ̸= y⋆(λ), by (ii), Nd(z) does not vanish on C. Thus, by the argument principle
and the remark above on the zeroes of Nd:

Γd(a, b) = 1
2iπ

∮
C

N ′
d(z)

Nd(z)dz.

10If λ ≤ 1, set y⋆(λ) = 2 by convention.
11Notice that γd does not depend on the choice of ε.
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By the Cauchy integral formula, if Nd → Mλ uniformly on Kη, then N ′
d → M ′

λ uniformly
on Kη. Therefore, we get

lim
d→∞

Γd(a, b) = 1
2iπ

∮
C

M ′
λ(z)

Mλ(z)dz = 1{y⋆(λ) ∈ (a, b)},

which ends the proof. □

3.4 (Some) generalizations

The careful reader will have noticed that the proof of Theorem 3.6 is very generic, and
one can generalize it in several ways. Let us mention a few of them.

• Beyond rotational invariance – We used critically that the eigenvectors of W
are completely delocalized, since the distribution of W is rotationally invariant. This
can be relaxed to approximate delocalization, allowing in particular matrices with
i.i.d. non-Gaussian elements. Moreover, one can even completely drop randomness
assumptions on the eigenvectors of W, by assuming instead that the signal x is
randomly sampled (independently of W).

• Beyond the semicircular law – Our proof can be straightforwardly applied to
any noise matrix W that satisfies the delocalization property just mentioned, and a
convergence of its spectrum and extreme eigenvalues to some density ν, similar to
Theorem 3.1. In this case the BBP threshold λc and the asymptotic values of y1
and (v1 · x)2 depend on the Cauchy transform of ν: see [Mai24, Chapter 5] for more
details.

• Multiple spikes – The argument can also be generalized to the case of “multi-spike”
models, i.e. we consider instead

Y = W +
r∑
i=1

√
λixix⊤

i , (53)

for some r ≥ 1 (fixed as d → ∞). We can assume without loss of generality that the
xi’s are orthonormal vectors, and we assume that λ1 > · · · > λr. We get the following
generalization of Theorem 3.6.

Theorem 3.10 (“Multi-spike” BBP transition)
Let Y be generated from eq. (53), denote its eigenvalues y1 ≥ · · · ≥ yd, and corre-

sponding eigenvectors (v1, · · · , vd). Let i⋆ ∈ {0, · · · , r} such that λi⋆ > 1 ≥ λi⋆+1.
Then:

– For all i ∈ {1, · · · , i⋆}, yi
(a.s.)−−−→
d→∞

λ
1/2
i + λ

−1/2
i , and (vi · x)2 (a.s.)−−−→

d→∞
1 − λ−1

i .

– For all i ∈ {i⋆, · · · r}, yi
(a.s.)−−−→
d→∞

2, and (vi · x)2 (a.s.)−−−→
d→∞

0.
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Everything happens as if the different spikes in eq. (53) each had its own independent
BBP transition! The case where there is degeneracy in the spiked matrix, i.e. if
λi = λj is slightly more subtle, and we refer to [BN11] for more on this setting.
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4 Optimal estimation: approaches from statistical physics
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5 Detection: contiguity, likelihood ratio, and the low-degree
method
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6 Optimization: Local minima in high-dimensional land-
scapes
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A Some reminders in probability theory

A.1 General reminders in probability

We assume here that we have fixed a probability space (Ω, F ,P) on which all the following
events and random variables are defined.
Lemma A.1 (Borel-Cantelli)

Let (En)n≥1 be a sequence of events. Then

∞∑
n=1

P(En) < ∞ ⇒ P(lim sup
n→∞

En) = 0.

Recall that lim sup En := ∩n≥1 ∪k≥n Ek.

Let (Xn)n≥1 be a sequence of real-valued random variables. Recall that Xn
a.s.→n→∞ X

if P(lim Xn = X) = 1.
Proposition A.2 (Reminder on almost sure convergence)

Let (Xn)n≥1 be a sequence of real-valued random variables. Then

(i) Xn
a.s.→ X as n → ∞ if and only if, for all ε > 0:

P
(

lim sup
n→∞

{|Xn − X| ≥ ε}
)

= 0.

(ii) If for all ε > 0,
∑
n≥1 P(|Xn − X| ≥ ε) < ∞, then Xn

a.s.→ X as n → ∞.

A.2 Gaussian random variables

The following elementary result is sometimes called Stein’s lemma.
Lemma A.3 (Gaussian integration by parts)

Let X ∼ N (0, σ2) and g : R → R a differentiable function such that E[|Xg(X)|] < ∞,
E[|g′(X)|] < ∞. Then

E[Xg(X)] = σ2E[g′(X)].

The following is a classical property of maxima of Gaussian random variables [Ver18]:
Proposition A.4 (Maximum of independent Gaussians)

Let z1, · · · , zn
i.i.d.∼ N (0, 1). Then

lim
n→∞

E[maxi∈[n] zi]√
2 log n

= 1 and p-lim
n→∞

maxi∈[n] zi√
2 log n

= 1.

Finally, we cite a useful result allowing to compare the maxima Gaussian processes
through their covariances. Recall that a random process (Xt)t∈T is called a Gaussian
process if for every finite subset T0 ⊆ T the vector (Xt)t∈T0 has normal distribution.
Lemma A.5 (Slepian/Sudakov-Fernique inequality)

Let (Xt)t∈T and (Yt)t∈T be two mean-zero Gaussian processes. Assume that for all
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(s, t) ∈ T we have
E[(Xs − Xt)2] ≤ E[(Ys − Yt)2].

Then
E[max

t∈T
Xt] ≤ E[max

t∈T
Yt].

A.3 Sub-Gaussian random variables
Definition A.1 (Sub-Gaussian random variable)

A centered random variable X is sub-Gaussian if it satisfies one of the following three
conditions.

(i) (Tail) For all t > 0, P[|X| ≥ t] ≤ 2 exp{−t2/(2K2
1 )}, for some K1 > 0.

(ii) (MGF) For all λ ∈ R, E[exp{λX}] ≤ exp{λ2K2
2/2}, for some K2 > 0.

(iii) (Moments) For all p ≥ 1, ∥X∥p := [E|X|p]1/p ≤ K3
√

p, for some K3 > 0.

We will say that X is σ-sub-Gaussian (or SG(σ)) if E[exp{λX}] ≤ exp{λ2σ2/2} for
all λ ∈ R.

Challenge A.1. Check that the conditions (i), (ii), (iii) in Definition A.1 are equiva-
lent, and that (K1, K2, K3) differ by at most an absolute multiplicative constant.

This challenge shows that bounded random variables are sub-Gaussian (which is not
surprising, since bounded random variables have tails P(|X| ≥ t) = 0 for large enough
t!).

Challenge A.2. Show that if |X| ≤ a, then X is SG(Ka), for K > 0 an absolute
constant.

We have a similar upper bound to Proposition A.4 when considering sub-Gaussian
random variables.
Proposition A.6 (Maximum of sub-Gaussian random variables)

Let n ≥ 2, and X1, · · · , Xn be sub-Gaussian random variables, not necessarily inde-
pendent. Then Z := maxi∈[n] Xi is also sub-Gaussian, and we have (≲ means “up to
a global constant”) 

∥Z∥ψ2 ≲

(
max
i∈[n]

∥Xi∥ψ2

)
·
√

log n,

E[Z] ≲

(
max
i∈[n]

∥Xi∥ψ2

)
·
√

log n.

A.4 Concentration inequalities

The following concentration inequality is very useful.

Theorem A.7 (Hoeffding’s inequality)
Let X1, · · · , Xn be independent and centered sub-Gaussian random variables, with
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sub-Gaussian parameters σ1, · · · , σn. Then for all a ∈ Rn and all t > 0:

P
(∣∣∣∣∣

n∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− t2

2
∑n
i=1 a2

iσ
2
i

}
.

Beyond sums of independent random variables, one can show that Lipschitz functions
of Gaussian random variables also enjoy fast concentration properties.

Theorem A.8 (Gaussian concentration)

Let d ≥ 1 and X ∼ N (0, Id). Let F : Rd → R a L-Lipschitz function, i.e. such that
|F (x) − F (y)| ≤ L∥x − y∥2 for all x, y ∈ Rd. Then, for any t > 0

P(|F (X) − EF (X)| ≥ t) ≤ 2 exp
{

− t2

2L2

}
.

In particular, for any F as in Theorem A.8 and any γ ∈ R we have

Eeγ[F (X)−EF (X)] ≤ e
cγ2L2

2 , (54)

for some c > 0 a universal constant.

A similar result holds for the uniform distribution on the unit sphere.

Theorem A.9 (Lipschitz concentration on the sphere)

There is c > 0 such that the following holds. Let d ≥ 1 and u ∼ Unif(Sd−1). Let
F : Rd → R a L-Lipschitz function for the Euclidean distance. Then for any t > 0

P(|F (u) − EF (u)| ≥ t) ≤ 2 exp
{

−cdt2

L2

}
.

B Solutions to problems

B.1 Section 3

Solution of Challenge 3.1 – Let t > 2. Changing variables to x = 2 cos θ we get:

Gs.c.(t) = 2
π

∫ π

0

sin2 θ

t − 2 cos θ
dθ,

= 1
π

∫ π

−π

sin2 θ

t − 2 cos θ
dθ.

Writing ζ = eiθ, this can be written as:

Gs.c.(t) = 1
π

∮
|ζ|=1

(
ζ − ζ−1

2i

)2 1
t − (ζ + ζ−1)

dζ

iζ
,

= 1
4iπ

∮
|ζ|=1

(ζ2 − 1)2

ζ2(ζ2 − tζ + 1)dζ. (55)
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The integrand in eq. (55) has three poles, in ζ ∈ {0, (t ±
√

t2 − 4)/2}. Since t > 2, the
only two poles inside the unit circle are 0 and (t −

√
t2 − 4)/2, and they respectively

have residues

Res0

[
(ζ2 − 1)2

ζ2(ζ2 − tζ + 1)

]
= t,

Res(t−
√
t2−4)/2

[
(ζ2 − 1)2

ζ2(ζ2 − tζ + 1)

]
= −

√
t2 − 4.

Using the residue theorem in eq. (55), we finally find

Gs.c.(t) = t −
√

t2 − 4
2 ,

which ends the proof.
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