

Lectures notes on statistical and computational phase transitions in high-dimensional statistics

Winter 2026

Antoine Maillard
antoine.maillard@inria.fr

Last update: February 12, 2026

Overview

These notes form the core material for a 20-hours master's course in the program “Mathématiques de l'Aléatoire” ([M2MDA](#)) at Université Paris Saclay, from January to April 2026. Given the time constraints, it is likely that not all the present material will be/has been covered during the lectures: one purpose of these notes is for interested students to dive into the lecture topics at a deeper level.

Evaluation – For students that wish to validate, the course will be evaluated through presentations of research papers in the last session. A list of possible choices for papers will be given on the course's page on my website.

Acknowledgements – I am particularly grateful to B. Loureiro and F. Krzakala for helpful discussions during the writing of these notes.

Important disclaimer – *This draft is subject to possible future changes, adds and removals. If you find any typos or mistakes, please let me know! This draft was last updated on February 12, 2026.*

Contents

1	Introduction	3
1.1	What are statistical and computational phase transitions?	3
1.2	Structure of the course	5
1.3	A disclaimer on mathematical rigor	6
1.4	References	6
1.5	Notations	7
2	Gaussian additive models and reminders of Bayesian inference	8
2.1	Definition	8
2.2	Posterior measure, free energy, and mutual information	8
2.3	The simplest example: scalar denoising	13
2.3.1	Gaussian prior	13
2.3.2	Generic prior	14
2.4	A warm-up: 1-sparse signal denoising	15
2.4.1	Maximum likelihood estimation	15
2.4.2	The free entropy / mutual information	15
2.5	Spiked matrix and spiked tensor models	19

2.5.1	The spiked Wigner/spiked matrix model	19
2.5.2	Tensor PCA and the spiked tensor model	22
3	Spectral algorithms in the spiked matrix model	24
3.1	The asymptotic spectrum of Wigner matrices: reminders	24
3.1.1	The bulk of Wigner matrices: sketch of proof	25
3.1.2	The top eigenvalue of Wigner matrices	27
3.2	Emergence of a single outlier	28
3.3	The BBP transition	29
3.3.1	Discussion	29
3.3.2	Proof of Theorem 3.6: eigenvalue transition	30
3.3.3	Proof of Theorem 3.6: eigenvector correlation	31
3.3.4	Proof of Theorem 3.6: auxiliary results	33
3.4	(Some) generalizations	34
4	Optimal estimation: approaches from statistical physics	36
4.1	The replica-symmetric formula for the free entropy	36
4.1.1	Notations, and a simplification	36
4.1.2	The main theorem	37
4.2	Heuristic derivation of the replica-symmetric formula: the cavity method	37
4.2.1	Assumption 1: Replica symmetry	39
4.2.2	Assumption 2: The distribution of cavity fields	40
4.2.3	The asymptotic free entropy as a function of the overlap	42
4.2.4	Self-consistent equation on the overlap, and conclusion	42
4.3	Proof of the replica-symmetric formula	44
4.3.1	Lower bound: Guerra’s interpolation method	44
4.3.2	Strategies for the upper bound	46
4.3.3	Upper bound: constrained free entropy	47
4.4	Statistically optimal estimation	51
4.4.1	From the free entropy to the MMSE	51
4.4.2	A first application: the Gaussian prior	53
4.5	Algorithms: approximate message-passing (AMP)	54
4.5.1	Heuristic derivation from the cavity method	54
4.5.2	The state evolution of AMP: heuristics	58
4.5.3	General AMP algorithms and state evolution	59
4.5.4	Optimality of Bayes-AMP	63
4.6	Conclusion: phase diagrams of the spiked matrix model	64
5	Detection: contiguity, likelihood ratio, and the low-degree method	65
6	Optimization: Local minima in high-dimensional landscapes	66
A	Some reminders in probability theory	70
B	Solutions to problems	72
C	Extra material for Section 4	73

1 Introduction

1.1 What are statistical and computational phase transitions?

This course is related to the fundamental question of computational complexity theory: which problems can be solved by computers? Precisely, one wishes to understand, for a given problem, what are the needed resources (e.g. in memory or computation time) that are needed to solve it. Remarkably, some problems, while solvable in principle, seem to require prohibitively large resources to be solved as the size of the problem gets bigger: this phenomenon is known as *computational hardness*.

In this course, we introduce several tools to characterize the emergence of computational hardness in problems arising in a large class of problems in high-dimensional statistics. For concreteness, we will focus on two specific classes:

1. **Statistical estimation/inference:** Many problems in modern statistics and machine learning involve detecting or estimating structures from the indirect observation of a data. A typical modeling of this problem is the following: $\mathbf{x}_0 \in \mathbb{R}^d$, sometimes called the “signal”, is only observed through an indirect observation $\mathbf{y} \in \mathbb{R}^n$, which can e.g. be corrupted by large amounts of noise. Given the observation of \mathbf{y} , and some possible “prior” knowledge about the structure of \mathbf{x}_0 , one aims to recover it as well as possible. Importantly, we wish to solve such problems in a “modern statistics” framework, where both the number of observations n but also the number of parameters d to recover, are very large. A very non-exhaustive list of examples of such models include:
 - (a) In *community detection*, one observes a large graph, and wishes to recover from it hidden *communities*, i.e. subgraphs where members of the same communities have a much higher chance of being connected than members of different communities. This kind of structure is very common in realistic networks, and understanding whether recovering communities is feasible has received a lot of attention: we refer to the course of L. Massoulié [MS23].
 - (b) Interestingly, there is a toy model, dubbed *spiked matrix model*, that corresponds almost exactly to the community detection problem in a large random graph. There the observations take the form of a matrix, and the signal is assumed to have a *low-rank* structure:

$$\mathbf{Y} = \sqrt{\lambda} \mathbf{x}_0 \mathbf{x}_0^\top + \mathbf{W} \quad (1)$$

Here \mathbf{W} is a matrix with i.i.d. $\mathcal{N}(0, 1)$ elements. One can also generalize this problem to recovering a rank-one tensor:

$$\mathbf{Y} = \sqrt{\lambda} \mathbf{x}_0^{\otimes p} + \mathbf{W}, \quad (2)$$

where $p \geq 2$ is the *order of the tensor*, and $W_{i_1, \dots, i_p} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$. Eq. (1) corresponds to the case $p = 2$. Here, the structure of the signal \mathbf{x}_0 can be modeled at will, e.g. by choosing a prior distribution $\mathbf{x}_0 \sim P_0$.

- (c) Imagine that $\mathbf{x}_0 \in \mathbb{R}^d$ corresponds to a signal written in a basis where it is k -sparse, i.e. all but k entries of \mathbf{x}_0 are zero, and $k \ll d$. This is for instance true of audio signals in the Fourier basis, or images in the wavelet basis. In *compressive sensing*, one aims at leveraging this structure to invert a large linear system

$$\mathbb{R}^n \ni \mathbf{y} = \mathbf{A} \mathbf{x}_0, \quad (3)$$

where $n \ll d$, and \mathbf{A} is a so-called ‘‘measurement’’ matrix, which is also known to the observer. The goal of compressive sensing is to exploit the sparsify of \mathbf{x}_0 to invert this under-determined linear system: it has particularly important applications in MRI imaging, and we refer to [BSS23, Chapter 10] for the basis of the theory of compressed sensing.

(d) Generalizing eq. (3), one may consider more general observations of the type

$$y_i = g(\mathbf{a}_i \cdot \mathbf{x}_0), \quad (4)$$

where the dataset is composed of $\mathcal{D} := \{(y_i, \mathbf{a}_i)\}_{i=1}^d$. This is a so-called *single-index model*, and (along with natural generalizations known as *multi-index* models) can serve as a theoretical playground to understand the feasibility of learning some hidden structure in a large dataset, e.g. by neural networks.

2. **Optimization:** In these kind of problems, one is given a real function $R(\boldsymbol{\theta})$ on a high-dimensional set $(\boldsymbol{\theta} \in \mathcal{M})$, and the aim is to compute

$$\boldsymbol{\theta}^* := \arg \min_{\boldsymbol{\theta} \in \mathcal{M}} R(\boldsymbol{\theta}).$$

As we will discuss more in Section 6, the optimization of such high-dimensional *empirical risk/loss functions* is the workhorse of modern machine learning. There, a prototypical example of a function $R(\boldsymbol{\theta})$ may be given as

$$\hat{R}_{\mathcal{D}}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^n (y_i - f_{\boldsymbol{\theta}}(\mathbf{x}_i))^2,$$

and depends on a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}$ of output/input pairs, from which we aim at learning the underlying input-to-output function. A somewhat simpler example is given by Maximum Likelihood Estimation (MLE) in the spiked tensor model above (eq. (2)). If we assume that $\|\mathbf{x}_0\|_2 = 1$, the MLE estimator is

$$\hat{\mathbf{x}} := \arg \max_{\|\mathbf{x}\|=1} \langle \mathbf{x}^{\otimes p}, \mathbf{Y} \rangle = \arg \max_{\|\mathbf{x}\|=1} \left[\sum_{1 \leq i_1, \dots, i_p \leq d} W_{i_1, \dots, i_p} x_{i_1} \cdots x_{i_p} + \sqrt{\lambda} (\mathbf{x} \cdot \mathbf{x}_0)^p \right].$$

Statistical vs algorithmic performance – As we mentioned already, our goal is to answer, for *very high dimensions* ($d \gg 1$), the following questions:

1. When is estimation/detection/optimization possible at all (regardless of the computation time)?
2. If it is possible, can it be done with efficient algorithms, e.g. that run in polynomial time (in the parameters of the problem), or local optimization procedures?

The answer to these questions may change drastically as the parameters of the problem change, e.g. when the noise level gets smaller, or the size of the training dataset gets bigger: this can lead to sharp *phase transitions*, where the algorithmic feasibility of this problem can change very abruptly. Characterizing these phenomena is one of the main goals of this lecture.

Random high-dimensional measures – Tackling these questions has historically been a very inter-disciplinary endeavor, with a blend of tools from *probability theory*, *information theory*, *computer science*, and *statistical physics*. The later might be a bit surprising, but as we will see the main techniques we will see in this course have

been developed in the broad study of *high-dimensional random probability measures*: probability distributions over \mathbb{R}^d (with $d \gg 1$) which can usually be written as

$$\mu(d\mathbf{x}) \propto e^{\beta H(\mathbf{x})} \mu_0(d\mathbf{x}). \quad (5)$$

Here μ_0 is a deterministic reference measure (typically $\mu_0 = \text{Unif}(\{\pm 1\}^d)$, or $\mu_0 = \text{Unif}(\mathcal{S}^{d-1})$, the uniform distribution over the unit sphere). $\beta > 0$ is sometimes called the *inverse temperature*, $H : \mathbb{R}^d \rightarrow \mathbb{R}$, the *Hamiltonian* of the system¹, which is here a *random function*. While these distributions arose in the statistical physics of peculiar material called “spin glasses”, it was soon realized that they are ubiquitous in other fields, among them high-dimensional statistics. To take the two examples we detailed above:

- In statistical inference/estimation, the *Bayesian posterior* $\mathbb{P}(\mathbf{x}_0|\mathbf{y}) \propto \mathbb{P}(\mathbf{y}|\mathbf{x}_0)\mathbb{P}(\mathbf{x}_0)$ is a random probability distribution over \mathbb{R}^d (since \mathbf{y} is random, e.g. through the noise). The *prior* distribution $\mathbb{P}(\mathbf{x}_0)$ plays the role of the reference measure in eq. (5), while the *log-likelihood* $\log \mathbb{P}(\mathbf{y}|\mathbf{x}_0)$ is akin to the Hamiltonian function.
- In optimization, a way to understand the feasibility of optimization is to study the geometry of the sub-level sets $S(\ell) := \{\boldsymbol{\theta} : R(\boldsymbol{\theta}) \geq \ell\}$. The “Gibbs-Boltzmann” measure of eq. (5) can yield many information about the structure of these sublevel sets: for instance $\beta \rightarrow \infty$ corresponds to the uniform distribution over minimizers, and more generally we expect in many cases that μ_β is related to the uniform distribution over $S(\ell_\beta)$ for some $S(\ell_\beta)$. Notice that

1.2 Structure of the course

The lecture will be organized around different ways to investigate statistical and computational hardness in high-dimensional statistics. For the majority of the course, we will study the models of eqs. (1) and (2) as our driving examples, and mention extensions to other models along the way.

- We start in Section 2 by introducing a broad class of Gaussian additive models (which includes the spiked matrix and tensor models). We give some reminders of classical results in information theory, and introduce a statistical physics nomenclature. We also see a first example of a phase transition in a high-dimensional estimation problem (Gaussian mean location).
- Coming back to the spiked Wigner problem, we analyze in Section 3 a simple spectral method motivated by PCA, and derive sharp asymptotics for its performance using tools from random matrix theory.
- Section 4 is devoted to approaches from statistical physics. We will derive sharp information-theoretic results using this framework, as well as analyze *approximate message-passing*, a powerful class of algorithms: we will compare them to the performance of the PCA algorithm derived earlier. This will give us a sharp picture of statistical and computational phase transitions in the spiked Wigner model.
- In Section 5 we take a different point of view on computational hardness. We consider the *detection* problem: e.g. when can we distinguish a sample \mathbf{Y} from eq. (1) from pure noise? We will introduce the important notion of contiguity

¹Notice that in physics one usually considers the sign convention $e^{-\beta H}$ for the weight.

to argue about feasibility of detection problems, and introduce the so-called *low-degree likelihood ratio* method, based on the performance of algorithms which are low-degree polynomials of the data. This yields another way to probe statistical and computational hardness of many problems in high-dimensional statistics, and we will compare its predictions to the statistical physics approach.

- Finally, in Section 6 we consider optimization problems in high-dimension, with the driving example of maximum likelihood estimation for the spiked tensor problem. We introduce the Kac-Rice formula of random differential geometry, and show how this allows to characterize the topology of high-dimensional non-convex landscapes, and probe when local optimization is feasible.

1.3 A disclaimer on mathematical rigor

This course is targeted at students in mathematics, with a good background in probability theory, and in particular some experience in high-dimensional probability (some reminders and classical results are given in Appendix A). While this course is mathematical, some of the arguments presented in Section 4 are inherently heuristic arguments of statistical physics, and some derivations and arguments there will not be rigorous. We will precise when this is the case, and also present how mathematicians have now been able to prove the large majority of these physics results.

1.4 References

Particular credit – These notes are heavily inspired by existing lectures and reviews, and I wish to give particular credit for many things that were borrowed from [El 21] (Ahmed El Alaoui. 2021. URL: <https://courses.cit.cornell.edu/stsci6940/>) in Sections 2, 4 and 5, in [Kun25] (Tim Kunisky. 2025. URL: <http://www.kunisky.com/static/teaching/2025fall-rmt/rmt-notes-2025.pdf>) in Section 3, and in [MS24] (Montanari and Sen (2024), “*A friendly tutorial on mean-field spin glass techniques for non-physicists*”) in Section 4.

Some other important references I used while making these notes include:

- Antoine Maillard. 2024. URL: https://anmaillard.github.io/assets/pdf/lecture_notes/MDS_Fall_2024.pdf: a set of lecture notes for a class I taught at ETH Zürich in 2024.
- [BN11] (Benaych-Georges and Nadakuditi (2011), “*The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices*”) for Section 3
- [KWB19] for Section 5.
- [Ben+19; Sel24] for Section 6.

More references are also given in the corresponding sections. Finally, here is a very non-exhaustive and personal list of some great books and reviews for readers interested in these topics.

- [AGZ10] : Anderson, Guionnet, and Zeitouni (2010), An introduction to random matrices
- [PB20] : Potters and Bouchaud (2020), A first course in random matrix theory: for physicists, engineers and data scientists
- [BSS23] : Bandeira, Singer, and Strohmer (2023), Mathematics of Data Science

- [Han14] : Ramon van Handel. *Probability in High Dimension*. 2014. URL: <https://web.math.princeton.edu/~rvan/APC550.pdf>
- [Ver18] : Vershynin (2018), High-dimensional probability: An introduction with applications in data science
- [Tal10] : Talagrand (2010), Mean field models for spin glasses: Volume I: Basic examples
- [ZK16] : Zdeborová and Krzakala (2016), “*Statistical physics of inference: Thresholds and algorithms*”
- [KZ24] : Krzakala and Zdeborová (2024), “*Statistical physics methods in optimization and machine learning*”
- [Bar19] : Barbier (2019), Mean-field theory of high-dimensional Bayesian inference

1.5 Notations

x, \mathbf{x}, Φ	Scalar, vector, matrix.
$\mathbf{x} \cdot \mathbf{y}$ or $\mathbf{x}^\top \mathbf{y}$	Dot product between \mathbf{x} and \mathbf{y} .
$\mathcal{S}^{d-1}(r), \mathcal{S}^{d-1}$	Euclidean sphere in \mathbb{R}^d of radius r , unit Euclidean sphere in \mathbb{R}^d .
$\mathbb{S}_d, \mathbb{S}_d^+$	$d \times d$ symmetric matrices, $d \times d$ positive semidefinite matrices.
$v_{\max}(\mathbf{Y})$	Generic notation for the eigenvector of $\mathbf{Y} \in \mathbb{S}_d$ with the largest eigenvalue.
$\mathbb{R}_+, \mathbb{R}_+^*$	Set of non-negative and strictly positive reals.
\mathbb{C}_+	Complex numbers with strictly positive imaginary part.
$x = \Theta(y)$	Two variables of the same order, i.e. $x = \mathcal{O}(y)$ and $y = \mathcal{O}(x)$.
\mathbf{I}_n	The identity matrix of size n .
$\mathcal{P}(\mathbb{R})$	The set of real probability distributions.
\mathbb{E}	Expectation with respect to all involved random variables.
$\mathbb{E}_{X,Y}$	Expectation with respect to X, Y only.
$X \stackrel{d}{=} Y$	X and Y have the same distribution.
$\ \mathbf{x}\ _0$	The number of non-zero elements of \mathbf{x} .

2 Gaussian additive models and reminders of Bayesian inference

2.1 Definition

We introduce here a particular class of statistical models for estimation and detection. They are conceptually very simple, which will allow us to develop a precise mathematical analysis of their high-dimensional limit while keeping the exposition relatively accessible. We will see specific examples of such models later on, here we introduce them in generality: informally, they correspond to recovering/detecting a signal “blurred” by additive Gaussian noise.

Definition 2.1 (Gaussian additive model)

Let $d \geq 1$, and $\mathbf{X}_0 \in \mathbb{R}^d$ be drawn from P_0 (called the “prior”), a probability distribution over \mathbb{R}^d with a finite second moment. Let $\mathbf{W} \sim \mathcal{N}(0, \mathbf{I}_d)$ and $\lambda \geq 0$. We define \mathbb{P}_λ as the law of

$$\mathbf{Y} = \mathbf{W} + \sqrt{\lambda} \mathbf{X}_0.$$

Remark – P_0, \mathbb{P}_λ should be written as $P_0^{(d)}, \mathbb{P}_\lambda^{(d)}$, as they are sequences of probability distributions on \mathbb{R}^d . We however refrain from writing this d -dependency explicitly, as it will always be clear in the arguments.

Signal-to-noise ratio – $\lambda \geq 0$ plays the role of a signal-to-noise ratio (SNR): equivalently one can write the observations has $\tilde{\mathbf{Y}} = \mathbf{X} + \sqrt{\Delta} \mathbf{W}$, with $\Delta := \lambda^{-1}$ the noise variance.

Estimation and detection – In a statistical setting, the statistician has access to a sample of \mathbf{Y} . Crucially, we will assume throughout this class that the statistician also *knows the value of $\lambda > 0$ and the prior distribution P_0* . The statistician wishes to answer the following questions:

- **Detection:** Can she distinguish a sample $\mathbf{Y} \sim \mathbb{P}_\lambda$ from a sample $\mathbf{W} \sim \mathbb{P}_0$?
- **Recovery/estimation:** Can she recover the value of \mathbf{X}_0 (exactly, or approximately) from \mathbf{Y} ?

We will make these questions mathematically more precise later on. Crucially, we want to answer these questions *in the high-dimensional limit*, i.e. as $d \rightarrow \infty$.

2.2 Posterior measure, free energy, and mutual information

Let us now introduce some classical objects of Bayesian statistics applied to the Gaussian additive model. For more motivations on Bayesian statistics and inference, we refer the reader e.g. to the introduction of the course [Bar19].

Minimal MSE estimator – We focus for now on the recovery problem. For a given estimator $\hat{\mathbf{X}}(\mathbf{Y})$, a natural way to gauge its quality is via its *mean squared error* (MSE), which is defined as

$$\text{MSE}(\hat{\mathbf{X}}) := \mathbb{E}_{\mathbf{Y}} \left[\|\hat{\mathbf{X}}(\mathbf{Y}) - \mathbf{X}_0\|_2^2 \right]. \quad (6)$$

The best estimator in terms of MSE is simply the posterior average of \mathbf{X} .

Theorem 2.1 (Bayes-optimal estimator)

The estimator $\hat{\mathbf{X}} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ that achieves the minimum MSE is given by the posterior

mean

$$\hat{\mathbf{X}}_{\text{opt}}(\mathbf{Y}) := \mathbb{E}[\mathbf{X}|\mathbf{Y}].$$

We call its error the *minimal mean squared error* (MMSE)

$$\text{MMSE} := \arg \min_{\hat{\mathbf{X}}(\mathbf{Y})} \text{MSE}(\hat{\mathbf{X}}) = \mathbb{E}_{\mathbf{Y}} \left[\|\mathbb{E}[\mathbf{X}|\mathbf{Y}] - \mathbf{X}\|_2^2 \right].$$

In probability terms, the conditional expectation $\mathbb{E}[\mathbf{X}|\mathbf{Y}]$ is the orthogonal projection of \mathbf{X} onto the vector space of all square-integrable \mathbf{Y} -measurable random variables.

Proof of Theorem 2.1 – For any estimator $\hat{\mathbf{X}}$, we have

$$\begin{aligned} \text{MSE}(\hat{\mathbf{X}}) &= \mathbb{E}[\|\hat{\mathbf{X}}(\mathbf{Y}) - \mathbf{X}_0\|^2], \\ &= \mathbb{E}[\|\hat{\mathbf{X}}(\mathbf{Y}) - \mathbb{E}[\mathbf{X}|\mathbf{Y}] + \mathbb{E}[\mathbf{X}|\mathbf{Y}] - \mathbf{X}_0\|^2], \\ &= \text{MSE}(\mathbf{Y} \rightarrow \mathbb{E}[\mathbf{X}|\mathbf{Y}]) + \mathbb{E}[\|\hat{\mathbf{X}}(\mathbf{Y}) - \mathbb{E}[\mathbf{X}|\mathbf{Y}]\|^2] \\ &\quad + 2\mathbb{E}[(\hat{\mathbf{X}}(\mathbf{Y}) - \mathbb{E}[\mathbf{X}|\mathbf{Y}]) \cdot (\mathbb{E}[\mathbf{X}|\mathbf{Y}] - \mathbf{X}_0)]. \end{aligned}$$

By the tower property of expectation:

$$\mathbb{E}[f(\mathbf{Y}) \cdot (\mathbb{E}[\mathbf{X}|\mathbf{Y}] - \mathbf{X}_0)] = \mathbb{E}_{\mathbf{Y}}[f(\mathbf{Y}) \cdot \mathbb{E}_{\mathbf{X} \sim \mathbb{P}(\cdot|\mathbf{Y})}(\mathbb{E}[\mathbf{X}|\mathbf{Y}] - \mathbf{X})] = 0.$$

Thus

$$\text{MSE}(\hat{\mathbf{X}}) = \text{MSE}(\mathbf{Y} \rightarrow \mathbb{E}[\mathbf{X}|\mathbf{Y}]) + \mathbb{E}[\|\hat{\mathbf{X}}(\mathbf{Y}) - \mathbb{E}[\mathbf{X}|\mathbf{Y}]\|^2],$$

which ends the proof. \square

Posterior distribution – Theorem 2.1 motivates to consider the posterior distribution of \mathbf{X} given \mathbf{Y} (i.e. the probability that \mathbf{Y} was generated by the value $\mathbf{X}_0 = \mathbf{X}$). It is given by Bayes' rule

$$d\mathbb{P}(\mathbf{X}|\mathbf{Y}) = \frac{\varphi(\mathbf{Y}|\mathbf{X})}{\tilde{\mathcal{Z}}(\mathbf{Y})} \cdot dP_0(\mathbf{X}),$$

where $\varphi(\mathbf{Y}|\mathbf{X})$ is the density of \mathbf{Y} given $\mathbf{X}_0 = \mathbf{X}$, and $\tilde{\mathcal{Z}}(\mathbf{Y}) = \int dP_0(\mathbf{X})\varphi(\mathbf{Y}|\mathbf{X})$ is a normalization². In the Gaussian additive model of Definition 2.1, we get after simple manipulations:

$$d\mathbb{P}(\mathbf{X}|\mathbf{Y}) = \frac{e^{-\frac{\lambda}{2}\|\mathbf{X}\|^2 + \sqrt{\lambda}\mathbf{Y} \cdot \mathbf{X}}}{\mathcal{Z}(\lambda; \mathbf{Y})} dP_0(\mathbf{X}). \quad (7)$$

The statistical physics nomenclature – By analogy with the Gibbs-Boltzmann distribution in statistical physics (see the introduction), we introduce a series of definitions whose names often come from statistical physics, but which are merely rebrandings of classical quantities in information theory. Still, we use the statistical physics terminology in the majority of this class: this will be particularly useful in Section 4, to connect to the existing literature connecting statistical physics and high-dimensional statistics.

Definition 2.2 (Statistical physics nomenclature)

We define several quantities for the problem of Definition 2.1.

² $\tilde{\mathcal{Z}}(\mathbf{Y})$ is the density of the random variable \mathbf{Y} .

(1) The log-likelihood function, or *Hamiltonian*, is

$$H(\mathbf{X}) := -\frac{\lambda}{2} \|\mathbf{X}\|^2 + \sqrt{\lambda} \mathbf{Y} \cdot \mathbf{X}. \quad (8)$$

Notice that $H(\mathbf{X})$ also depends on (λ, \mathbf{Y}) : it is a random function.

(2) The *partition function*, is

$$\mathcal{Z}(\lambda; \mathbf{Y}) := \int e^{-\frac{\lambda}{2} \|\mathbf{X}\|^2 + \sqrt{\lambda} \mathbf{Y} \cdot \mathbf{X}} dP_0(\mathbf{X}) = \int e^{H(\mathbf{X})} dP_0(\mathbf{X}). \quad (9)$$

The corresponding *free entropy*³ is

$$F(\lambda) := \mathbb{E} \log \mathcal{Z}(\lambda; \mathbf{Y}). \quad (10)$$

(3) The posterior distribution of eq. (7) is called the *Gibbs (or Gibbs-Boltzmann) measure*. Often, we will denote it

$$\langle g(\mathbf{X}) \rangle := \mathbb{E}[g(\mathbf{X}) | \mathbf{Y}], \quad (11)$$

omitting the dependency on \mathbf{Y} of $\langle \cdot \rangle$ when it is not ambiguous. Keep in mind that this is a random probability measure!

Thermodynamic limit – Recall that we wish to consider these models in the high-dimensional limit, i.e. when $d \rightarrow \infty$. Sometimes, we will also use a physics language, and describe it as the *thermodynamic limit*.

The Nishimori identity – The following elementary property of posterior distributions will play a crucial role in our analysis later on.

Proposition 2.2 (Nishimori identity)

Recall that $\mathbf{Y} = \sqrt{\lambda} \mathbf{X}_0 + \mathbf{W}$. Let $\mathbf{X}_1, \mathbf{X}_2$ drawn independently from the posterior distribution of eq. (7). Then

$$(\mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \stackrel{d}{=} (\mathbf{X}_1, \mathbf{X}_0, \mathbf{Y})$$

Proposition 2.2 is called the “Nishimori identity” in statistical physics for historical reasons, however it is a quite trivial consequence of Bayes’ formula.

Proof of Proposition 2.2 – It is equivalent to sample (\mathbf{X}, \mathbf{Y}) according to their joint law, or to sample first \mathbf{Y} according to its marginal distribution and then sample \mathbf{X} from the posterior distribution $\mathbb{P}(\cdot | \mathbf{Y})$. To make it more concrete, one can consider Ψ any test function, and write:

$$\begin{aligned} \mathbb{E}[\Psi(\mathbf{X}_1, \mathbf{X}_0, \mathbf{Y})] &= \mathbb{E}_{\mathbf{Y}, \mathbf{X}_0} \mathbb{E}_{\mathbf{X}_1 \sim \mathbb{P}(\cdot | \mathbf{Y})} [\Psi(\mathbf{X}_1, \mathbf{X}_0, \mathbf{Y})], \\ &= \mathbb{E}_{\mathbf{Y}} \mathbb{E}_{\mathbf{X}_0 \sim \mathbb{P}(\cdot | \mathbf{Y})} \mathbb{E}_{\mathbf{X}_1 \sim \mathbb{P}(\cdot | \mathbf{Y})} [\Psi(\mathbf{X}_1, \mathbf{X}_0, \mathbf{Y})], \\ &= \mathbb{E}[\Psi(\mathbf{X}_1, \mathbf{X}_2, \mathbf{Y})]. \end{aligned}$$

□

A trivial corollary is the following, where we also introduce the notion of *overlap*, which will be very useful later.

³In physics, one often considers the *free energy*, which is equal to $-\mathbb{E} \log \mathcal{Z}(\lambda; \mathbf{Y})$. Sometimes there is also a global temperature factor.

Corollary 2.3 (Equivalence of overlaps)

Recall that $\mathbf{Y} = \sqrt{\lambda} \mathbf{X}_0 + \mathbf{W}$. Define the overlaps

$$\begin{cases} R_{01} &:= \mathbf{X}_0 \cdot \mathbf{X}_1, \\ R_{12} &:= \mathbf{X}_1 \cdot \mathbf{X}_2. \end{cases} \quad (12)$$

If $\mathbf{X}_0 \sim P_0$ and $\mathbf{X}_1, \mathbf{X}_2 \sim \mathbb{P}(\mathbf{X}|\mathbf{Y})$, then $R_{01} \stackrel{d}{=} R_{12}$.

Mutual information – Recall that for two random variables (x, y) , with joint distribution P_{xy} , and marginals (P_x, P_y) , the mutual information is defined as⁴:

$$I(y; x) = I(x; y) := D_{\text{KL}}(P_{xy} || P_x \otimes P_y). \quad (13)$$

The following shows that the free entropy is essentially the mutual information, up to a sign and an additive constant.

Proposition 2.4 (Free entropy and mutual information)

For the model of Definition 2.1,

$$I(\mathbf{X}_0; \mathbf{Y}) = \frac{\lambda}{2} \mathbb{E}[\|\mathbf{X}_0\|^2] - F(\lambda).$$

Proof of Proposition 2.4 – To simplify, we denote here $\mathbb{P}_{\mathbf{X}} = P_0$, $\mathbb{P}_{\mathbf{Y}} = \mathbb{P}_{\lambda}$ the marginal laws of \mathbf{X}_0 and \mathbf{Y} , and $\mathbb{P}_{\mathbf{X}, \mathbf{Y}}$ their joint law. Using the definition of the mutual information in eq. (13):

$$\begin{aligned} I(\mathbf{X}_0; \mathbf{Y}) &= \mathbb{E}_{\mathbf{X}, \mathbf{Y}} \left[\log \frac{d\mathbb{P}_{\mathbf{X}, \mathbf{Y}}}{d(\mathbb{P}_{\mathbf{X}} \otimes \mathbb{P}_{\mathbf{Y}})} \right], \\ &= \mathbb{E}_{\mathbf{X}, \mathbf{Y}} \left[\log \frac{d\mathbb{P}_{\mathbf{Y}}(\mathbf{Y}) \cdot d\mathbb{P}_{\mathbf{X}|\mathbf{Y}}(\mathbf{X})}{d\mathbb{P}_{\mathbf{X}}(\mathbf{X}) \cdot d\mathbb{P}_{\mathbf{Y}}(\mathbf{Y})} \right], \\ &= \mathbb{E}_{\mathbf{X}, \mathbf{Y}} \left[\log \frac{d\mathbb{P}_{\mathbf{X}|\mathbf{Y}}(\mathbf{X})}{d\mathbb{P}_{\mathbf{X}}(\mathbf{X})} \right], \\ &\stackrel{(a)}{=} \mathbb{E}_{\mathbf{X}, \mathbf{Y}} \left[\log \frac{e^{-\frac{\lambda}{2}\|\mathbf{X}\|^2 + \sqrt{\lambda}\mathbf{Y} \cdot \mathbf{X}}}{\mathcal{Z}(\lambda; \mathbf{Y})} \right], \\ &= \mathbb{E}_{\mathbf{X}, \mathbf{Y}} \left[-\frac{\lambda}{2}\|\mathbf{X}\|^2 + \sqrt{\lambda}\mathbf{Y} \cdot \mathbf{X} \right] - F(\lambda), \\ &\stackrel{(b)}{=} -\frac{\lambda}{2}\mathbb{E}[\|\mathbf{X}\|^2] + \sqrt{\lambda}\mathbb{E}[(\sqrt{\lambda}\mathbf{X} + \mathbf{W}) \cdot \mathbf{X}] - F(\lambda), \\ &= \frac{\lambda}{2}\mathbb{E}[\|\mathbf{X}\|^2] - F(\lambda), \end{aligned}$$

using eq. (7) in (a), and Definition 2.1 in (b). \square

Notice that $I(\mathbf{X}_0; \mathbf{Y}) \geq 0$: in particular, we showed that $F(\lambda) \leq (\lambda/2)\mathbb{E}[\|\mathbf{X}_0\|^2]$.

The MMSE is also related to the derivative of the free entropy (or of the mutual information) with respect to the SNR λ .

Proposition 2.5 (I-MMSE formula)

Consider the model of Definition 2.1, and denote its MMSE as $\text{MMSE}(\lambda)$. For any

⁴Recall the KL divergence is $D_{\text{KL}}(P || Q) := \mathbb{E}_P \log dP/dQ$.

$\lambda \geq 0$ we have

$$F'(\lambda) = \frac{1}{2}\mathbb{E}[\|\mathbf{X}_0^2\|] - \frac{1}{2}\text{MMSE}(\lambda) = \frac{1}{2}\mathbb{E}_{\mathbf{Y}}\left[\|\mathbb{E}[\mathbf{X}|\mathbf{Y}]\|^2\right].$$

This formula can be stated equivalently in the language of the mutual information by using Proposition 2.4:

$$\frac{\partial I(\mathbf{X}; \mathbf{Y})}{\partial \lambda} = \frac{1}{2}\text{MMSE}(\lambda). \quad (14)$$

Proof of Proposition 2.5 – First, the middle and right-hand side of the sought identity are equal, since by Proposition 2.2

$$\mathbb{E}[\|\mathbb{E}[\mathbf{X}|\mathbf{Y}]\|^2] = \mathbb{E}[\mathbb{E}[\mathbf{X}|\mathbf{Y}] \cdot \mathbf{X}_0]$$

For the rest of the proof, we leverage Gaussian integration by parts (see Lemma A.3). We have

$$F(\lambda) = \mathbb{E} \log \int e^{\sqrt{\lambda} \mathbf{Y} \cdot \mathbf{X} - \frac{\lambda}{2} \|\mathbf{X}\|^2} dP_0(\mathbf{X}). \quad (15)$$

Recall that $Y = \sqrt{\lambda} \mathbf{X}_0 + \mathbf{W}$. We also recall the notations introduced in Definition 2.2. This yields:

$$\begin{aligned} F'(\lambda) &= \frac{\partial}{\partial \lambda} \mathbb{E}_{\mathbf{W}, \mathbf{X}_0} \log \int e^{\sqrt{\lambda} \mathbf{W} \cdot \mathbf{X} + \lambda \mathbf{X}_0 \cdot \mathbf{X} - \frac{\lambda}{2} \|\mathbf{X}\|^2} dP_0(\mathbf{X}), \\ &= \mathbb{E}_{\mathbf{W}, \mathbf{X}_0} \left[\mathbf{X}_0 \cdot \langle \mathbf{X} \rangle - \frac{1}{2} \langle \|\mathbf{X}\|^2 \rangle + \frac{1}{2\sqrt{\lambda}} \mathbf{W} \cdot \langle \mathbf{X} \rangle \right], \\ &\stackrel{(a)}{=} \mathbb{E}_{\mathbf{W}, \mathbf{X}_0} \left[\|\langle \mathbf{X} \rangle\|^2 - \frac{1}{2} \|\mathbf{X}_0\|^2 + \frac{1}{2\sqrt{\lambda}} \mathbf{W} \cdot \langle \mathbf{X} \rangle \right], \\ &\stackrel{(b)}{=} \mathbb{E}_{\mathbf{W}, \mathbf{X}_0} \left[\|\langle \mathbf{X} \rangle\|^2 - \frac{1}{2} \|\mathbf{X}_0\|^2 + \frac{1}{2\sqrt{\lambda}} \sum_{i=1}^d \frac{\partial}{\partial W_i} \langle X_i \rangle \right], \\ &= \mathbb{E}_{\mathbf{W}, \mathbf{X}_0} \left[\|\langle \mathbf{X} \rangle\|^2 - \frac{1}{2} \|\mathbf{X}_0\|^2 + \frac{1}{2} \sum_{i=1}^d (\langle X_i^2 \rangle - \langle X_i \rangle^2) \right], \\ &\stackrel{(c)}{=} \frac{1}{2} \mathbb{E}[\|\langle \mathbf{X} \rangle\|^2]. \end{aligned}$$

In (a) and (c) we used the Nishimori identity (Proposition 2.2), and in (b) Gaussian integration by parts. \square

Notably, a corollary of Proposition 2.5 is the following. Proving it involves heavy computations but follows exactly the same lines as the proof of Proposition 2.5, so we leave it as an exercise.

Corollary 2.6 (Properties of the free entropy)

Consider the model of Definition 2.1. The free entropy $F : \lambda \geq 0 \mapsto F(\lambda)$ is a non-decreasing and non-negative function of λ , and further

$$F''(\lambda) = \frac{1}{2}\mathbb{E}\left[\|\text{cov}(\mathbf{X}|\mathbf{Y})\|_F^2\right] = \frac{1}{2}\sum_{i,j}\mathbb{E}\left[(\langle X_i X_j \rangle - \langle X_i \rangle \langle X_j \rangle)^2\right]. \quad (16)$$

In particular, F is convex.

This last conclusion is intuitively very natural given Proposition 2.5: it is just saying that $\lambda \mapsto \text{MMSE}(\lambda)$ is decreasing, i.e. that as the signal strength gets higher, the optimal mean-squared error decreases.

Other estimators – One can also consider other estimators $\hat{\mathbf{X}}(\mathbf{Y})$, which can optimize different objectives than the mean-squared error. Some examples include:

- When P_0 has a density, the *Maximum A Posteriori* estimator, which maximizes the posterior density:

$$\hat{\mathbf{X}}_{\text{MAP}}(\mathbf{Y}) := \arg \max_{\hat{\mathbf{X}}(\mathbf{Y})} \log \mathbb{P}(\mathbf{X}|\mathbf{Y}) = \arg \max_{\hat{\mathbf{X}}(\mathbf{Y})} [\log \varphi(\mathbf{Y}|\hat{\mathbf{X}}) + \log P_0(\hat{\mathbf{X}})]. \quad (17)$$

- The *Maximum Likelihood* estimator, which maximizes only the likelihood term:

$$\hat{\mathbf{X}}_{\text{MLE}}(\mathbf{Y}) := \arg \max_{\hat{\mathbf{X}}(\mathbf{Y}) \in \text{supp } P_0} \log \varphi(\mathbf{Y}|\hat{\mathbf{X}}). \quad (18)$$

Notice that these two estimators coincide when P_0 is the uniform distribution on its support.

One can also define more general class of estimators. We will focus mainly on the MSE estimator for the moment, and will come back to the MLE/MAP estimators when discussing optimization procedures in Section 6 when discussing optimization. Indeed, notice that in a Gaussian additive model:

$$\hat{\mathbf{X}}_{\text{MLE}}(\mathbf{Y}) = \arg \max_{\mathbf{X} \in \text{supp } P_0} \left[\mathbf{Y} \cdot \mathbf{X} - \frac{\lambda}{2} \|\mathbf{X}\|^2 \right]$$

and one can attack this problem e.g. by local optimization procedures.

2.3 The simplest example: scalar denoising

Let us start with the simplest instance of a Gaussian additive model: the scalar setting $d = 1$. The observations are generated as

$$y = \sqrt{\lambda}x_0 + z, \quad (19)$$

with $x_0 \sim P_0$ and $z \sim \mathcal{N}(0, 1)$. Then

$$\begin{aligned} F(\lambda) &= \mathbb{E}_y \log \int e^{\sqrt{\lambda}xy - \frac{\lambda}{2}x^2} dP_0(x), \\ &= \mathbb{E}_{z,x_0} \log \int e^{\sqrt{\lambda}xz + \lambda x x_0 - \frac{\lambda}{2}x^2} dP_0(x). \end{aligned} \quad (20)$$

2.3.1 Gaussian prior

We start with the simplest example: $P_0 = \mathcal{N}(0, 1)$. The integral is now explicit

$$\begin{aligned} F(\lambda) &= \mathbb{E} \log \int \frac{dx}{\sqrt{2\pi}} e^{-\frac{1+\lambda}{2}x^2 + x[\lambda x_0 + \sqrt{\lambda}z]}, \\ &= \mathbb{E} \log \frac{e^{\frac{(\lambda x_0 + \sqrt{\lambda}z)^2}{2(1+\lambda)}}}{\sqrt{1+\lambda}}, \\ &= -\frac{1}{2} \log(1+\lambda) + \mathbb{E} \left[\frac{(\lambda x_0 + \sqrt{\lambda}z)^2}{2(1+\lambda)} \right], \\ &= -\frac{1}{2} \log(1+\lambda) + \frac{\lambda}{2}. \end{aligned} \quad (21)$$

From there we get the mutual information and MMSE as:

$$\begin{cases} I(x_0; y) &= \frac{1}{2} \log(1+\lambda), \\ \text{MMSE}(\lambda) &= \frac{1}{1+\lambda}. \end{cases} \quad (22)$$

The optimal estimator $\hat{x}_{\text{opt}} = \mathbb{E}[x_0|y]$ of Theorem 2.1 is also easy to write here. Indeed, notice that (x_0, y) are jointly Gaussian random variables. We can thus use classical *Gaussian conditioning* result, which essentially states that the conditional expectation is linear in the case of jointly Gaussian random variables:

Theorem 2.7 (Gaussian conditioning)

Let $n, p \geq 1$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \times \mathbb{R}^p$ be zero-mean and jointly Gaussian vectors. Then

$$\mathbb{E}[\mathbf{u}|\mathbf{v}] = \mathbf{A}^* \mathbf{v}, \quad (23)$$

where $\mathbf{A}^* \in \mathbb{R}^{n \times p}$ is the solution to the least-squares problem

$$\mathbf{A}^* = \arg \min_{\mathbf{A} \in \mathbb{R}^{n \times p}} \mathbb{E}_{\mathbf{u}, \mathbf{v}} [\|\mathbf{u} - \mathbf{A}^* \mathbf{v}\|^2]. \quad (24)$$

We leave the proof of Theorem 2.7 as an exercise⁵. In our simple case, $n = p = 1$ and thus $\mathbb{E}[x_0|y]$ is the orthogonal projection of x_0 on y (with the L^2 norm), thus

$$\hat{x}_{\text{opt}}(y) = \mathbb{E}[x_0|y] = \frac{\mathbb{E}[x_0y]}{\mathbb{E}[y^2]} y = \frac{\sqrt{\lambda}}{1 + \lambda} y. \quad (25)$$

2.3.2 Generic prior

We now consider a generic P_0 with mean zero and variance 1. Notice that the estimator of eq. (25) still reaches

$$\text{MSE} \left(y \mapsto \frac{\sqrt{\lambda}}{1 + \lambda} y \right) = \mathbb{E} \left[\left(x_0 - \frac{\sqrt{\lambda}}{1 + \lambda} y \right)^2 \right] \stackrel{(a)}{=} \frac{1}{1 + \lambda}.$$

Indeed, notice that (a) holds for $P_0 = \mathcal{N}(0, 1)$ (as we showed), and it clearly involves only the first two moments of P_0 , which we assumed to be $(0, 1)$. In particular, this implies that

$$\text{MMSE}(P_0; \lambda) \leq \text{MMSE}(\mathcal{N}(0, 1); \lambda) = \frac{1}{1 + \lambda}. \quad (26)$$

This formalizes that the Gaussian prior is thus the “*least-informative*” one, in the sense that the MMSE is the highest for this choice of prior. In information theory, this is known as the Shannon-Hartley theorem. By integrating out the I-MMSE formula, this can also be stated in terms of free entropy and mutual information:

$$\begin{cases} I_{P_0; \lambda}(x_0; y) &= \frac{1}{2} \int_0^\lambda \text{MMSE}(P_0; t) dt \leq \frac{1}{2} \log(1 + \lambda) = I_{\mathcal{N}(0, 1); \lambda}(x_0; y), \\ F_{P_0}(\lambda) &= \frac{1}{2} \left[1 - \int_0^\lambda \text{MMSE}(P_0; t) dt \right] \geq \frac{\lambda}{2} - \frac{1}{2} \log(1 + \lambda) = F_{\mathcal{N}(0, 1)}(\lambda), \end{cases} \quad (27)$$

where the inequalities holds for any P_0 with zero mean and unit variance.

⁵Recall that $\mathbb{E}[\mathbf{u}|\mathbf{v}]$ is the orthogonal projection of \mathbf{u} onto the set of square-integrable \mathbf{v} -measurable random variables. It is thus enough to show that there exists \mathbf{A} such that $\mathbf{u} - \mathbf{A}\mathbf{v}$ is independent from \mathbf{v} . Since these are Gaussian random variables, independence can be deduced simply from computing their correlation.

2.4 A warm-up: 1-sparse signal denoising

As a slightly harder warm-up, let us analyze a second, and not completely trivial, example of a Gaussian additive model. It will be useful to illustrate some of the phenomenology that will appear later in the class, as this is a high-dimensional model.

Definition 2.3 (1-sparse signal denoising – Gaussian mean location)

Let $d \geq 1$, and with $n := 2^d$, we denote $\mathbf{e}_1, \dots, \mathbf{e}_n$ the canonical basis in \mathbb{R}^n . Let $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}_n)$, and $\sigma_0 \sim \text{Unif}(\{1, \dots, n\})$. We observe

$$\mathbf{y} := \sqrt{\lambda d} \cdot \mathbf{e}_{\sigma_0} + \mathbf{z}.$$

Definition 2.3 defines a Gaussian additive model in the sense of Definition 2.1, with $\mathbf{X}_0 := \sqrt{d} \mathbf{e}_{\sigma_0}$ a 1-sparse vector. Informally, we observe a very high-dimensional Gaussian vector, whose mean has been shifted slightly in one random direction of the canonical basis: our goal is to recover this direction.

2.4.1 Maximum likelihood estimation

Let us analyze a natural candidate for σ_0 , when observing \mathbf{y} , which is the maximum-likelihood estimate of eq. (18): it is an estimate of σ_0 based on maximizing the log-likelihood $\log \varphi(\mathbf{y}|\sigma)$. Notice that for any $\sigma \in \{1, \dots, n\}$, we have (we write equalities up to constants independent of σ):

$$\log \varphi(\mathbf{y}|\sigma) = -\frac{1}{2} \|\mathbf{y} - \sqrt{\lambda d} \mathbf{e}_\sigma\|^2 = \sqrt{\lambda d} y_\sigma + C(\mathbf{y})$$

The maximum likelihood estimator of eq. (18) is thus simply

$$\hat{\sigma}(\mathbf{y}) := \arg \max_{\sigma \in [n]} y_\sigma. \quad (28)$$

This is a very natural guess: we simply take the largest coordinate of \mathbf{y} . We have

$$y_\sigma = \sqrt{\lambda d} \mathbf{1}\{\sigma = \sigma_0\} + z_\sigma.$$

Recall $\log n = d \log 2$. By classical properties of the Gaussian distribution (Proposition A.4), for any $\varepsilon > 0$ we have with probability $1 - o(1)$ as $d \rightarrow \infty$:

$$\max_{\sigma \in [n] \setminus \{\sigma_0\}} y_\sigma \in \sqrt{2d \log 2} \cdot [1 - \varepsilon, 1 + \varepsilon].$$

On the other hand $y_{\sigma_0} = \sqrt{\lambda d} + z_{\sigma_0}$, where $z_{\sigma_0} \sim \mathcal{N}(0, 1)$.

Thus, if $\lambda > \lambda_{\text{MLE}} := 2 \log 2$, we have $y_{\sigma_0} > \max_{\sigma \in [n] \setminus \{\sigma_0\}} y_\sigma$ with probability $1 - o_d(1)$. On the other hand, for $\lambda < \lambda_{\text{MLE}}$, then $y_{\sigma_0} < \max_{\sigma \in [n] \setminus \{\sigma_0\}} y_\sigma$ with probability $1 - o_d(1)$.

Stated differently, the MLE succeeds above the critical threshold $\lambda_{\text{MLE}} = 2 \log 2$, and fails below it: this is a first example of a sharp transition for recovery, here with the MLE estimator.

2.4.2 The free entropy / mutual information

Is the MLE threshold sharp, or can one still recover σ_0 for $\lambda < \lambda_{\text{MLE}}$? We will investigate this question by computing the MMSE of the problem *for any* $\lambda > 0$. As motivated

above, we achieve this by computing the free entropy (or mutual information) that we defined in Section 2.2.

$$\begin{aligned}
F_d(\lambda) &:= \mathbb{E}_{\mathbf{y}} \log \mathcal{Z}_d(\lambda; \mathbf{y}), \\
&= \mathbb{E}_{\mathbf{y}} \log \left(\frac{1}{n} \sum_{\sigma=1}^n e^{-\frac{\lambda d}{2} \|\mathbf{e}_\sigma\|^2 + \sqrt{\lambda d} (\mathbf{y} \cdot \mathbf{e}_\sigma)} \right), \\
&= -\frac{\lambda d}{2} + \mathbb{E}_{\mathbf{y}} \log \left(\frac{1}{n} \sum_{\sigma=1}^n e^{\sqrt{\lambda d} y_\sigma} \right).
\end{aligned} \tag{29}$$

How to compute the RHS of eq. (29) ?

A first bound: Jensen's inequality – A first upper bound on $F_d(\lambda)$ is obtained by using Jensen's inequality, since $\mathbb{E} \log[\dots] \leq \log \mathbb{E}[\dots]$. In the physics jargon, this is called an *annealed* upper bound on the free entropy. Here, this yields:

$$F_d(\lambda) \leq -\frac{\lambda d}{2} + \log \left(\frac{1}{n} \sum_{\sigma=1}^n \mathbb{E}_{\mathbf{y}} [e^{\sqrt{\lambda d} y_\sigma}] \right). \tag{30}$$

For any $\sigma \in [n]$, we have

$$\begin{aligned}
\mathbb{E}_{\mathbf{y}} [e^{\sqrt{\lambda d} y_\sigma}] &= (\mathbb{E}_{\sigma_0} e^{\lambda d \mathbf{1}\{\sigma=\sigma_0\}}) \cdot (\mathbb{E}_{z \sim \mathcal{N}(0,1)} e^{\sqrt{\lambda d} z}), \\
&= \left(\frac{1}{n} [(n-1) + e^{\lambda d}] \right) \cdot e^{\frac{\lambda d}{2}}.
\end{aligned}$$

Plugging it back in eq. (30) we get (recall $n = 2^d$):

$$F_d(\lambda) \leq \log \left(1 - 2^{-d} + e^{(\lambda - \log 2)d} \right).$$

Taking $d \rightarrow \infty$, we reach:

$$\limsup_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \leq \max(0, \lambda - \log 2). \tag{31}$$

In particular, by eq. (31), if $\lambda < \lambda_{\text{ann.}} := \log 2$, $(1/d)F_d(\lambda) \rightarrow 0$ as $d \rightarrow \infty$. By the I-MMSE theorem (Proposition 2.5), this implies that

$$Q_d(\lambda) := \mathbb{E}[\|\mathbb{E}[\mathbf{X}|\mathbf{y}]\|^2] = d\mathbb{E}[\|\mathbb{E}[\mathbf{e}_\sigma|\mathbf{Y}]\|^2]$$

satisfies, for any $\lambda \in [0, \log 2]$:

$$\frac{1}{d} \int_0^\lambda Q_d(\tau) d\tau = \frac{2}{d} F_d(\lambda) \rightarrow 0.$$

Thus $Q_d(\lambda)/d \rightarrow 0$ as $d \rightarrow \infty$, for almost every $\lambda < \log 2$. Since $\lambda \rightarrow Q_d(\lambda)$ is non-decreasing by Corollary 2.6, we reach that $Q_d(\lambda)/d \rightarrow 0$ as $d \rightarrow \infty$ for all $\lambda < \log 2$. Formally, for $\lambda < \lambda_{\text{ann.}} = \log 2$, it is impossible to estimate σ_0 with a mean-squared error that is asymptotically better than the trivial estimator:

$$\frac{1}{d} \text{MMSE}(\lambda) = \frac{1}{d} \mathbb{E}_{P_0} [\|\mathbf{X}\|^2] - \frac{1}{d} Q_d(\lambda) = 1 - o(1).$$

Finer control: conditional Jensen's inequality – Still, this is not completely satisfactory: combining this with the results of Section 2.4.1 leaves an open region for $\lambda_{\text{ann.}} = \log 2 < \lambda < \lambda_{\text{MLE}} = 2 \log 2$. Moreover, we know from the relation between free entropy and mutual information (Proposition 2.4) that $F_d(\lambda) \leq (\lambda/2)$, so eq. (31) can

not be tight. A finer control can be achieved by conditioning explicitly on y_{σ_0} in the use of Jensen's inequality. We come back to eq. (29):

$$\begin{aligned}
F_d(\lambda) &= -\frac{\lambda d}{2} + \mathbb{E}_{\mathbf{y}} \log \left(\frac{1}{n} \sum_{\sigma=1}^n e^{\sqrt{\lambda d} y_{\sigma}} \right), \\
&\leq -\frac{\lambda d}{2} + \mathbb{E}_{\sigma_0, y_{\sigma_0}} \log \left(\frac{1}{n} \mathbb{E} \left[\sum_{\sigma=1}^n e^{\sqrt{\lambda d} y_{\sigma}} \middle| y_{\sigma_0} \right] \right), \\
&= -\frac{\lambda d}{2} + \mathbb{E}_{\sigma_0, y_{\sigma_0}} \log \left(\frac{1}{n} e^{\sqrt{\lambda d} y_{\sigma_0}} + \frac{n-1}{n} e^{\frac{\lambda d}{2}} \right), \\
&= \mathbb{E}_{\sigma_0, y_{\sigma_0}} \log \left(e^{\sqrt{\lambda d} y_{\sigma_0} - \frac{\lambda d}{2} - d \log 2} + 1 - 2^{-d} \right), \\
&\stackrel{(a)}{=} \mathbb{E}_{z \sim \mathcal{N}(0,1)} \log \left(e^{(\frac{\lambda}{2} - \log 2)d + \sqrt{\lambda d} z_{\sigma_0}} + 1 - 2^{-d} \right), \\
&\leq \mathbb{E}_{z \sim \mathcal{N}(0,1)} \log \left(1 + e^{(\frac{\lambda}{2} - \log 2)d + \sqrt{\lambda d} z} \right).
\end{aligned}$$

In (a) we used $y_{\sigma_0} = \sqrt{\lambda d} + z_{\sigma_0}$. Thus we have (since $1 + e^x \leq 2e^{\max(0,x)}$):

$$\frac{1}{d} F_d(\lambda) \leq \frac{\log 2}{d} + \mathbb{E}_{z \sim \mathcal{N}(0,1)} \max \left\{ 0, \underbrace{\left(\frac{\lambda}{2} - \log 2 \right) + \sqrt{\frac{\lambda}{d}} z}_{=: w_d} \right\}.$$

Since $w_d \rightarrow (\lambda/2 - \log 2)$ in probability as $d \rightarrow \infty$, and $\mathbb{E}[\max(0, w_d)^2] \leq \mathbb{E}[w_d^2] = \mathcal{O}_d(1)$, we get:

$$\limsup_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \leq \max \left(0, \frac{\lambda}{2} - \log 2 \right).$$

One can easily obtain a corresponding lower bound:

$$\begin{aligned}
\frac{1}{d} F_d(\lambda) &= -\frac{\lambda}{2} + \frac{1}{d} \mathbb{E}_{\mathbf{y}} \log \left(\frac{1}{n} \sum_{\sigma=1}^n e^{\sqrt{\lambda d} y_{\sigma}} \right), \\
&\geq -\frac{\lambda}{2} + \frac{1}{d} \mathbb{E}_{\mathbf{y}} \log \left(\frac{1}{n} e^{\sqrt{\lambda d} y_{\sigma_0}} \right), \\
&= \frac{\lambda}{2} - \log 2 + \sqrt{\frac{\lambda}{d}} \mathbb{E}_{z \sim \mathcal{N}(0,1)}[z], \\
&= \frac{\lambda}{2} - \log 2.
\end{aligned}$$

Recalling that $F_d(\lambda) \geq 0$, we have finally proven the following

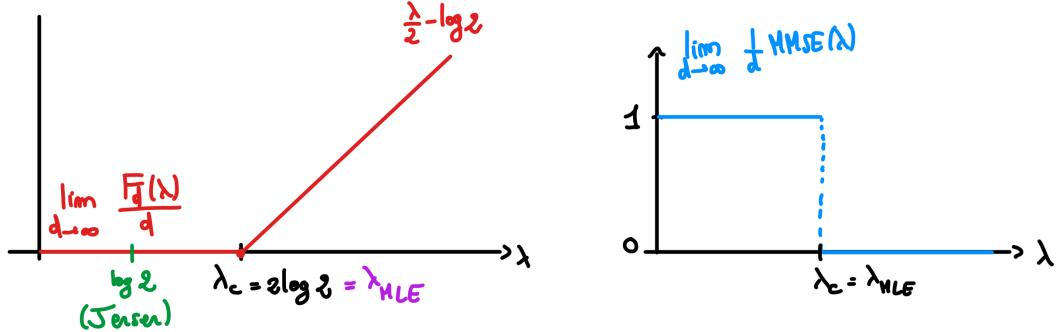
Lemma 2.8

For any $\lambda \geq 0$,

$$\lim_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) = \max \left(0, \frac{\lambda}{2} - \log 2 \right).$$

From there we can deduce the behavior of the MMSE. Recall that

$$\frac{1}{d} \text{MMSE}(\lambda) = \mathbb{E} \|\mathbf{e}_{\sigma_0} - \langle \mathbf{e}_{\sigma} \rangle\|_2^2 = 1 - \mathbb{E}[\|\langle \mathbf{e}_{\sigma} \rangle\|^2].$$



Corollary 2.9

The asymptotic overlap and asymptotic MMSE satisfy, for all $\lambda \neq \lambda_c$:

$$\lim_{d \rightarrow \infty} \frac{1}{d} \text{MMSE}(\lambda) = 1 - \lim_{d \rightarrow \infty} \frac{1}{d} Q_d(\lambda) = \mathbb{1}\{\lambda < \lambda_c\}.$$

Proof of Corollary 2.9 – It is a simple consequence of Lemma 2.8 combined with the I-MMSE theorem (Proposition 2.5), and the following classical result of convex analysis

Lemma 2.10

If $f_d : \mathbb{R} \rightarrow \mathbb{R}$ is a sequence of convex and differentiable functions, which converge pointwise to a limit f . Then (i) f is convex, and (ii) for all $t \in \mathbb{R}$ at which f is differentiable⁶, we have $f'_d(t) \rightarrow f_d(t)$ as $d \rightarrow \infty$.

As a remark, recall that any convex function is differentiable everywhere but in a *countable* set of points. \square

A first-order phase transition – The results above draw the picture of a sharp transition for recovery of the hidden direction σ_0 :

- For $\lambda < \lambda_c := 2 \log 2$, one cannot estimate the direction σ_0 better than a random guess, and the asymptotic MMSE is simply the norm of the prior distribution

$$\text{MMSE}(\lambda) = \frac{1}{d} \mathbb{E}[\|\mathbf{X}_0\|^2] - o_d(1) = 1 - o_d(1).$$

- For $\lambda > \lambda_c$, recovery of σ_0 is possible with a probability $1 - o_d(1)$, and an explicit procedure is given by the MLE estimator of eq. (28).

Notice that the asymptotic free entropy has a discontinuous derivative at $\lambda = \lambda_c$: in the physics jargon, this is called a *first-order phase transition*: it corresponds to a discontinuity in the MMSE, and a sharp transition from impossible non-trivial recovery to perfect recovery. On the other hand, a *second-order phase transition* would correspond to a discontinuous second derivative of $F(\lambda)$: in this kind of transitions, the MMSE is continuous at the critical λ_c : we will see examples of both transitions in the following.

Why did naïve Jensen failed ? – The failure of the naïve use of Jensen's inequality is symptomatic of a phenomenon where a random variable X_d ⁷ can have a seemingly simple behavior, e.g. $X_d \rightarrow x$ as $d \rightarrow \infty$ in L^2 (for $x \in \mathbb{R}$ a real value), however

$$\lim_{d \rightarrow \infty} \frac{1}{d} \log \mathbb{E}[\exp(dX_d)] > \lim_{d \rightarrow \infty} \mathbb{E}[X_d] = x. \quad (32)$$

⁷Here $X_d = (1/d) \log \mathcal{Z}_d(\lambda; \mathbf{y})$.

Notice that the LHS of eq. (32) is always greater than the RHS by Jensen's inequality. The strict inequality in eq. (32) can arise if $\mathbb{E}[e^{dX_d}]$ is dominated by rare events, where X_d is much greater than its typical value x . In the Gaussian mean location problem, examples of such events are

$$\mathcal{E}_\tau := \{z_{\sigma_0} \geq \sqrt{\tau d}\}. \quad (33)$$

Clearly, under $\mathcal{N}(0, 1)$, \mathcal{E}_τ has probability $\mathbb{P}(\mathcal{E}_\tau)$ such that $\log \mathbb{P}(\mathcal{E}_\tau) \sim -\frac{\tau d}{2}$ for any fixed $\tau > 0$. While this probability is exponentially small, notice that

$$\begin{aligned} \log \mathbb{E} \mathcal{Z}_d(\lambda; \mathbf{y}) &\geq \log \mathbb{E} [\mathcal{Z}_d(\lambda; \mathbf{y}) | \mathcal{E}_\tau] + \log \mathbb{P}[\mathcal{E}_\tau], \\ &\geq -\frac{\tau d}{2} - d \log 2 + \frac{\lambda d}{2} + \sqrt{\lambda \tau d} + o(d). \end{aligned}$$

Taking $\tau = \lambda$ to maximize this lower bound, we reach that

$$\log \mathbb{E} \mathcal{Z}_d(\lambda; \mathbf{y}) \geq (\lambda - \log 2)d + o(d).$$

What we just showed is that the “annealed” average $\mathbb{E} \mathcal{Z}_d(\lambda; \mathbf{y})$ is actually dominated by the events \mathcal{E}_λ of eq. (33), although these events have exponentially small probability. As we later conditioned on z_{σ_0} before applying Jensen's inequality, such spurious events could no longer impact the annealed average.

The following is a sufficient condition for Jensen's inequality to be asymptotically sharp.

Challenge 2.1. *Assume X_d is a real r.v. such that $X_d \rightarrow x$ (in probability) as $d \rightarrow \infty$, and $|X_d| \leq M$ (a.s.) for some $M > 0$. Show that a sufficient condition for eq. (32) to be an equality is that for all $t > 0$:*

$$\lim_{d \rightarrow \infty} \frac{1}{d} \log \mathbb{P}[|X_d - x| \geq t] = -\infty. \quad (34)$$

Eq. (34) is called a *large deviations* upper bound: informally it is a very strong form of concentration, as events where X_d differ from x by a $\mathcal{O}(1)$ quantity have probability $\exp(-\omega(d))$.

2.5 Spiked matrix and spiked tensor models

For much of this class (in the majority of Sections 3,4,5,6), we will consider a specific instance of Gaussian additive models as our toy setting for questions of detection, estimation and optimization. In these models, the observations \mathbf{Y} are given in the form of a matrix or a tensor, and the signal \mathbf{X}_0 has a *low-rank structure*.

2.5.1 The spiked Wigner/spiked matrix model

We first introduce the matrix setting of this problem, for which we need to define a Gaussian distribution over symmetric matrices.

Definition 2.4 (*Gaussian Orthogonal Ensemble*)

Let $d \geq 1$. We say that $\mathbf{W} \in \mathbb{S}_d$ is drawn from the *Gaussian orthogonal ensemble* (or GOE(d)) if its elements are drawn independently (up to the symmetry $W_{ij} = W_{ji}$), with

$$\begin{cases} W_{ij} \sim \mathcal{N}(0, 1/d) & \text{for } i < j, \\ W_{ii} \sim \mathcal{N}(0, 2/d). \end{cases} \quad (35)$$

The normalization convention for diagonal and off-diagonal elements in Definition 2.4 implies the nice fact that the probability density of \mathbf{W} can be written (up to a constant) in the compact form:

$$\varphi(\mathbf{W}) \propto \exp \left\{ -\frac{d}{4} \text{Tr}[\mathbf{W}^2] \right\}.$$

We can now introduce the spiked Wigner (or spiked matrix) model, which is an instance of a Gaussian additive model where the signal is a rank-one matrix.

Definition 2.5 (Spiked Wigner/Spiked matrix model)

Let $d \geq 1$, $\lambda \geq 0$, and $\mathbf{x}_0 \in \mathbb{R}^d$ be drawn from a prior distribution P_0 over \mathbb{R}^d such that $\mathbb{E}[\|\mathbf{x}\|^2] = d$. We observe $\mathbf{Y} \in \mathbb{S}_d$, the symmetric matrix built as

$$\mathbf{Y} = \frac{\sqrt{\lambda}}{d} \mathbf{x}_0 \mathbf{x}_0^\top + \mathbf{W}, \quad (36)$$

where $\mathbf{W} \sim \text{GOE}(d)$.

Remark – The normalization $\mathbb{E}[\|\mathbf{x}_0\|^2] = d$ ensures that the two matrices in eq. (36) have comparable spectral norms as we will discuss in Section 3. Note that this just amounts to a rescaling of λ .

A remark on symmetry – Notice that if P_0 is symmetric around the origin, then the Bayes-optimal estimator of Theorem 2.1 is identically zero by symmetry, as the Gibbs (posterior) measure $\langle \cdot \rangle$ is invariant under reflections $A \rightarrow -A$. In particular $\mathbb{E}[\mathbf{x}|\mathbf{Y}] = 0$. Still, the posterior measure might have information about \mathbf{x}_0 , it just has a global symmetry and can be decomposed into two components.

$$\begin{aligned} & \text{Left circle: } -x_0, \quad \langle \cdot \rangle_- \\ & \text{Right circle: } x_0, \quad \langle \cdot \rangle_+ \\ & \langle \cdot \rangle = \frac{1}{2} [\langle \cdot \rangle_- + \langle \cdot \rangle_+] \\ & \langle g(x) \rangle_+ = \langle g(-x) \rangle_- \end{aligned}$$

In the following, we will mostly ignore this problem, and notice that it is usually solved in several ways:

1. Slightly break the symmetry of P_0 , e.g. by setting $\mathbb{E}[x_i] = \varepsilon \ll 1$. One takes then the limit $\varepsilon \downarrow 0$ after $d \rightarrow \infty$.
2. Another similar fix consists in adding a small side information to the model, e.g.

$$\mathbf{y}' = \sqrt{\varepsilon} \mathbf{x}_0 + \mathbf{z},$$

with $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}_d)$ Gaussian noise, and again $\varepsilon \rightarrow 0$ after $d \rightarrow \infty$. In both these cases, the assumption is that when taking $\varepsilon \downarrow 0$ after $d \rightarrow \infty$, the various expectations we will compute become expectations under $\langle \cdot \rangle_+$.

3. The arguably cleanest approach is simply to consider the estimation of the rank-one matrix $\mathbf{X}_0 = \mathbf{x}_0 \mathbf{x}_0^\top$, e.g. computing the MMSE for \mathbf{X}_0 instead of the one

of \mathbf{x}_0 . Notice that from $\hat{\mathbf{X}}_{\text{opt}}(\mathbf{Y}) = \mathbb{E}[\mathbf{X}|\mathbf{Y}] = \langle \mathbf{X} \rangle$, denoting $(\lambda_{\max}, \mathbf{v}_{\max})$ its top eigenvalue-eigenvector pair, one can build easily an estimator for \mathbf{x}_0 (up to a global sign) as

$$\hat{x}(\mathbf{Y}) := \sqrt{\lambda_{\max}[\hat{\mathbf{X}}(\mathbf{Y})]} \mathbf{v}_{\max}[\hat{\mathbf{X}}(\mathbf{Y})].$$

We refer to [MS24, Section 1.1.2] for more details on this point. The PhD thesis [Mio19] is also a great reference on spiked models.

Further motivations – Let us mention a few motivations behind the spiked Wigner model:

1. **Group synchronization** – In the group synchronization problem, one is given a finite graph $G = (V, E)$ (with $V = [n]$) and a group \mathcal{G} . We assign to each edge a group element $g_i \in \mathcal{G}$, and for each edge $(i, j) \in E$ we observe

$$Y_{ij} = g_i g_j^{-1} + \text{noise}.$$

The goal is to recover $\{g_i\}_{i \in [n]}$ from these noisy observations. This has applications in imaging for instance: consider the problem of reconstructing a 3D image from various 2D pictures taken by cameras in different positions. Determining the relative positions of the cameras is then a group synchronization problem with $\mathcal{G} = \text{SO}(3)$. We refer to [Abb+18] for more details. The arguably simplest setting of this problem is \mathbb{Z}_2 -synchronization, where $\mathcal{G} = \mathbb{Z}_2$, $G = K_n$ is the complete graph, and the noise is Gaussian. This corresponds exactly to the spiked Wigner model of eq. (36), with $\mathbf{x}_0 \in \{\pm 1\}^d$!

2. **Sparse PCA** – A model for sparse PCA (i.e. computing a sparse large-variance direction in the data) is the following. Let $\mathbf{x}_0 \in \mathbb{R}^d$ be k -sparse, i.e. $\|\mathbf{x}_0\|_0 = k$. We observe n samples from a Gaussian with a preferred sparse direction:

$$\mathbf{y}_1, \dots, \mathbf{y}_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \mathbf{I}_d + \frac{\sqrt{\lambda}}{k} \mathbf{x}_0 \mathbf{x}_0^\top\right).$$

The question is then to recover \mathbf{x}_0 from the *empirical covariance matrix*

$$\mathbf{Y} := \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i \mathbf{y}_i^\top \stackrel{d}{=} \left(\mathbf{I}_d + \frac{\sqrt{\lambda}}{k} \mathbf{x}_0 \mathbf{x}_0^\top \right)^{1/2} \frac{1}{n} \sum_{i=1}^n \mathbf{z}_i \mathbf{z}_i^\top \left(\mathbf{I}_d + \frac{\sqrt{\lambda}}{k} \mathbf{x}_0 \mathbf{x}_0^\top \right)^{1/2},$$

with $\mathbf{z}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \mathbf{I}_d)$. This is sometimes known as a *spiked Wishart* model. The spiked Wigner model corresponds to a simplification where the low-rank perturbation is additive, and the noise matrix is Wigner instead of Wishart. All the tools we will develop in this class for the spiked Wigner model can be generalized to spiked Wishart models.

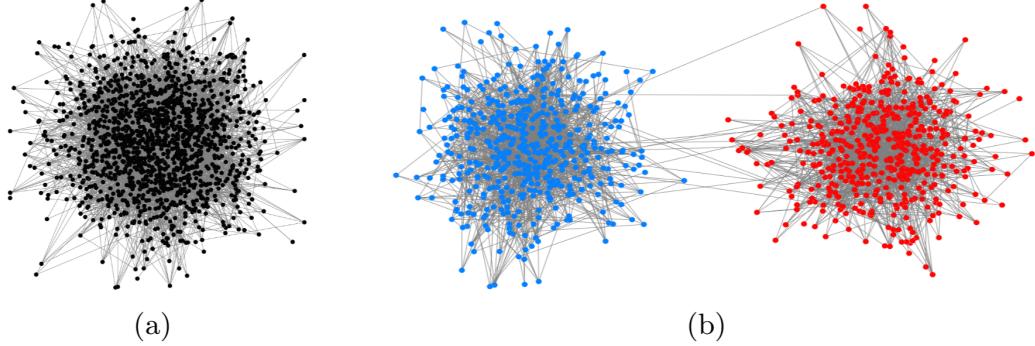
3. **Community detection** – This topic is discussed in detail in [MS23]. Consider a *stochastic block model* (SBM) with two communities: for some $\sigma \in \{\pm 1\}^n$ representing the two communities, one draws the adjacency matrix $A_{ij} \in \{0, 1\}$ for $i < j$ with independent elements, and

$$\mathbb{P}(A_{ij} = 1 | \sigma_i, \sigma_j) = \begin{cases} p_{\text{in}} & \text{if } \sigma_i = \sigma_j, \\ p_{\text{out}} & \text{if } \sigma_i \neq \sigma_j. \end{cases}$$

It is then easy to check that, up to global rank-one change

$$\bar{\mathbf{A}} := \mathbf{A} - \frac{p_{\text{in}} + p_{\text{out}}}{2} \mathbf{1} \mathbf{1}^\top = \Delta \boldsymbol{\sigma} \boldsymbol{\sigma}^\top + \mathbf{W},$$

with $\Delta := (p_{\text{in}} - p_{\text{out}})/2$, and $\mathbf{W} := \mathbf{A} - \mathbb{E}[\mathbf{A}]$ is a noise matrix, with independent elements. Replacing the distribution of these elements by i.i.d. centered Gaussians yields again a spiked Wigner model. Beyond [MS23], we refer to [DAM16] for a rigorous connection, and to [BSS23, Section 7.2] for a short introduction to the SBM.



A graph generated from a SBM (a), and the same graph with the communities colored (b). From [BSS23].

2.5.2 Tensor PCA and the spiked tensor model

The spiked Wigner model can be generalized to tensors, i.e. multi-dimensional arrays. It was introduced in [MR14], and we refer to this work for other motivations and its connection to so-called *tensor PCA*. To define the model formally, we first generalize Definition 2.4 to a notion of symmetric Gaussian tensors.

Definition 2.6 (*Symmetric Gaussian tensor*)

Let $d \geq 1$ and $k \geq 2$. Let $\mathbf{G} \in (\mathbb{R}^d)^{\otimes k}$ with $G_{i_1, \dots, i_k} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$. For a permutation $\pi \in \mathfrak{S}_k$, \mathbf{G}^π is the tensor with indices $G_{i_1, \dots, i_k}^\pi := G_{i_{\pi(1)}, \dots, i_{\pi(k)}}$. We say that $\mathbf{W} \in (\mathbb{R}^d)^{\otimes k}$ is drawn as a symmetric Gaussian tensor (denoted $\mathbf{W} \sim \text{ST}(k; d)$) if it is distributed as

$$\mathbf{W} = \frac{1}{\sqrt{k!d}} \sum_{\pi \in \mathfrak{S}_k} \mathbf{G}^\pi.$$

Remarks –

- (i) For $k = 2$ we recover the $\text{GOE}(d)$ distribution: $\text{ST}(2; d) = \text{GOE}(d)$.
- (ii) For all $i_1 < \dots < i_k$, we have $W_{i_1 \dots i_k} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/d)$.
- (iii) $\mathbf{W} \sim \text{ST}(k; d)$ is a symmetric tensor: for all $\pi \in \mathfrak{S}_k$, $\mathbf{W}^\pi = \mathbf{W}$.
- (iv) The distribution $\text{ST}(k; d)$ enjoys a rotation-invariance property. For $\mathbf{O} \in \mathcal{O}(d)$ and $\mathbf{T} \in (\mathbb{R}^d)^{\otimes k}$, we define $(\mathbf{T} \# \mathbf{O})_{i_1, \dots, i_k} := \sum_{j_1, \dots, j_k} T_{j_1, \dots, j_k} O_{i_1 j_1} \dots O_{i_k j_k}$ the rotation of \mathbf{T} by \mathbf{O} . If $\mathbf{W} \sim \text{ST}(k; d)$, then for any $\mathbf{O} \in \mathcal{O}(d)$, $\mathbf{W} \# \mathbf{O} \sim \text{ST}(k; d)$. In the case $k = 2$, for any $\mathbf{W} \sim \text{GOE}(d)$ we have $\mathbf{W} \# \mathbf{O} \sim \text{GOE}(d)$: in particular, the eigenvectors of \mathbf{W} form an orthogonal matrix drawn from the Haar measure on the orthogonal group $\mathcal{O}(d)$, and they are independent of the eigenvalues of \mathbf{W} .

We can now introduce the spiked tensor model, the counterpart to Definition 2.7 in the tensor world. Note that we use slightly different normalizations.

Definition 2.7 (*Spiked tensor model*)

Let $d \geq 1$, and $\mathbf{x}_0 \in \mathbb{R}^d$ be drawn from a prior distribution P_0 over \mathbb{R}^d . Let $k \geq 1$ and $\mathbf{W} \sim \text{ST}(k; d)$. We observe $\mathbf{Y} \in (\mathbb{R}^d)^{\otimes k}$, the symmetric tensor built as

$$\mathbf{Y} = \mathbf{W} + \sqrt{\lambda} \mathbf{x}_0^{\otimes k}.$$

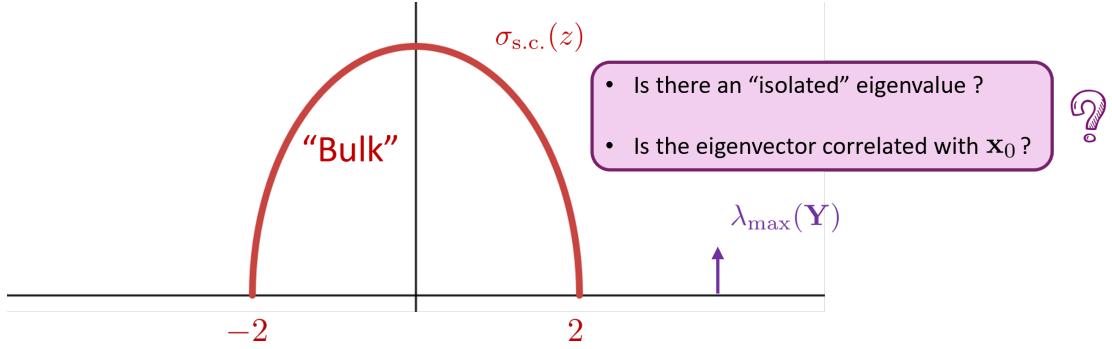


Figure 1: Schematic view of the question we want to answer regarding the model of eq. (37).

3 Spectral algorithms in the spiked matrix model

We consider the spiked Wigner model of Definition 2.5. The statistician is given an observation under the form of a symmetric matrix \mathbf{Y} , built as:

$$\mathbf{Y} = \mathbf{W} + \frac{\sqrt{\lambda}}{d} \mathbf{x}_0 \mathbf{x}_0^\top \in \mathbb{S}_d$$

In this section, we will assume that $\mathbf{x} = \mathbf{x}_0$ is fixed, and on the Euclidean sphere of radius \sqrt{d} . Notice that by rescaling it as $\mathbf{x} \rightarrow \mathbf{x}/\sqrt{d}$, it is equivalent to consider

$$\mathbf{Y} = \mathbf{W} + \sqrt{\lambda} \mathbf{x} \mathbf{x}^\top \in \mathbb{S}_d, \quad (37)$$

with $\|\mathbf{x}\| = 1$, i.e. $\mathbf{x} \in \mathcal{S}^{d-1}$. The normalization will be more convenient for this section.

The main goal in Section 3 is to answer the following question:

Does the top eigenvector $v_{\max}(\mathbf{Y})$ contain information about \mathbf{x} ?

Since $v_{\max}(\mathbf{Y})$ is efficient to compute, this estimator (the *PCA estimator*) already gives us a baseline for efficient recovery of \mathbf{x} in a general spiked Wigner model. Notice that what we will discuss can be generalized for \mathbf{W} beyond Gaussian matrices to other i.i.d. matrices, as well as a large class of matrix distributions that enjoy a rotation-invariance property: see [Mai24, Section 5] for more on this point.

3.1 The asymptotic spectrum of Wigner matrices: reminders

The seminal work of Wigner [Wig55], that can be seen as the start of random matrix theory, proves that the GOE(d) ensemble satisfies the following:

Theorem 3.1 (Asymptotic spectrum of Wigner matrices)

Let $\mathbf{W} \sim \text{GOE}(d)$, with eigenvalues $w_1 \geq \dots \geq w_d$. Then:

(i) The empirical spectral distribution of \mathbf{W} converges⁸:

$$\hat{\mu}_{\mathbf{W}} := \frac{1}{d} \sum_{i=1}^d \delta_{w_i} \xrightarrow[d \rightarrow \infty]{\text{weakly}} \sigma_{\text{s.c.}} \quad (\text{a.s.}),$$

where $\sigma_{\text{s.c.}}$ is called Wigner's *semicircle* law

$$\sigma_{\text{s.c.}}(dx) := \frac{\sqrt{4 - x^2}}{2\pi} \mathbf{1}\{|x| \leq 2\} dx. \quad (38)$$

(ii) The top eigenvalue of \mathbf{W} converges to the right edge of the support of $\sigma_{\text{s.c.}}$:

$$w_1 = \max_{i \in [d]} z_i \xrightarrow[d \rightarrow \infty]{} 2 \quad (\text{a.s.})$$

3.1.1 The bulk of Wigner matrices: sketch of proof

We sketch here a proof of Theorem 3.1-(i) using the *Stieltjes/Cauchy transform*, or *resolvent*, method. As this result is very classical, we only aim to present the main ideas, and we refer to [AGZ10; Kun25] for mathematical proofs. The resolvent method is very powerful and will play a crucial role in the spectral analysis of the spiked model.

Definition 3.1 (Resolvent and Cauchy transform)

For a matrix $\mathbf{M} \in \mathbb{S}_d$, we define its resolvent $\mathbf{R}_\mathbf{M}(z)$ and Cauchy transform $G_\mathbf{M}(z)$ as follows:

$$\begin{cases} \mathbf{R}_\mathbf{M}(z) := (z\mathbf{I}_d - \mathbf{M})^{-1}, \\ G_\mathbf{M}(z) := (1/d)\text{Tr}[\mathbf{R}(z)], \end{cases}$$

for any $z \in \mathbb{C} \setminus \text{Sp}(\mathbf{M})$. $z \mapsto -G_\mathbf{M}(z)$ is usually called the *Stieltjes* transform.

More generally, one can define the Cauchy transform of any real probability measure as

Definition 3.2 (Cauchy transform)

For any $\mu \in \mathcal{P}(\mathbb{R})$ and $z \in \mathbb{C} \setminus \text{supp}(\mu)$, we define the Cauchy transform as:

$$G_\mu(z) := \mathbb{E}_{X \sim \mu}[(z - X)^{-1}].$$

The Cauchy transform enjoys remarkable properties: in particular it fully characterizes the associated probability measure as this next theorem shows. We refer to [AGZ10, Section 2.4] for more properties, and their associated proofs.

Proposition 3.2 (Properties of the Cauchy transform)

If $(\mu_n)_{n \geq 1}$ and μ are real probability measures, then

$$\mu_n \xrightarrow[n \rightarrow \infty]{(\text{w.})} \mu \Leftrightarrow \lim_{n \rightarrow \infty} G_{\mu_n}(z) = G_\mu(z) \quad \forall z \in \mathbb{C} \setminus \mathbb{R}.$$

We will sketch here a proof that $G_\mathbf{W}(z) \rightarrow G_{\text{s.c.}}(z)$, for any $z \in \mathbb{C} \setminus \mathbb{R}$ and as $d \rightarrow \infty$, which will thus imply Theorem 3.1-(i). A complete proof is available in [AGZ10, Section 2.4]. We start with this simple property.

Lemma 3.3

The Stieltjes transform $G_{\text{s.c.}}$ of the semicircle law of eq. (38) satisfies, for all $t > 2$:

$$G_{\text{s.c.}}(t) = \frac{t - \sqrt{t^2 - 4}}{2}. \quad (39)$$

⁸Don't be confused by the mix of weak and almost sure convergence: the convergence happens almost surely, but the convergence itself is the weak convergence of measures.

Challenge 3.1. *Prove Lemma 3.3. (Hint: try to write it as an integral over the complex unit circle, and use the residue theorem)*

The crux of the proof is a leave-one-out argument (also called “cavity method” in statistical physics, we will revisit this later on!). Notice that

$$G_{\mathbf{W}}(z) = \frac{1}{d} \sum_{i=1}^d [z \mathbf{I}_d - \mathbf{W}]_{ii}^{-1}.$$

The matrix element of this inverse can be expressed using the Schur complement formula:

$$\begin{pmatrix} a & \mathbf{b}^\top \\ \mathbf{b} & \mathbf{C} \end{pmatrix}_{11}^{-1} = \frac{1}{a - \mathbf{b}^\top \mathbf{C}^{-1} \mathbf{b}}, \quad (40)$$

for any $a, \mathbf{b}, \mathbf{C}$ (symmetric) such that these quantities are well-defined. Using eq. (40):

$$G_{\mathbf{W}}(z) = \frac{1}{d} \sum_{i=1}^d \frac{1}{(z - W_{ii}) - \tilde{\mathbf{w}}_i \cdot (z \mathbf{I}_{d-1} - \mathbf{W}_{-i})^{-1} \tilde{\mathbf{w}}_i}. \quad (41)$$

Up to now, our derivation was exact. We now give the sketch of the rest of the proof at a very heuristic level: the rigorous derivation follows exactly the same lines, using precise concentration inequalities in several steps. Notice that $W_{ii} = \Theta(1/\sqrt{d})$, so we simplify eq. (41) to leading order as $d \rightarrow \infty$ as:

$$G_{\mathbf{W}}(z) = \frac{1}{d} \sum_{i=1}^d \frac{1}{z - \tilde{\mathbf{w}}_i \cdot (z \mathbf{I}_{d-1} - \mathbf{W}_{-i})^{-1} \tilde{\mathbf{w}}_i}. \quad (42)$$

Here \mathbf{W}_{-i} is the $(d-1) \times (d-1)$ matrix with i -th row and column removed, and $\tilde{\mathbf{w}}_i \in \mathbb{R}^{d-1}$ is the i -th row of \mathbf{W} with the i -th element removed. The crucial remark is that $\tilde{\mathbf{w}}_i$ is independent of \mathbf{W}_{-i} ! Therefore by concentration of measure (see Appendix A.4 e.g.,) we have

$$\tilde{\mathbf{w}}_i \cdot (z \mathbf{I}_{d-1} - \mathbf{W}_{-i})^{-1} \tilde{\mathbf{w}}_i \simeq \mathbb{E} \tilde{\mathbf{w}}_i \cdot (z \mathbf{I}_{d-1} - \mathbf{W}_{-i})^{-1} \tilde{\mathbf{w}}_i = \frac{1}{d} \text{Tr}[(z \mathbf{I}_{d-1} - \mathbf{W}_{-i})^{-1}].$$

Plugging it back in eq. (42), since all elements of the sum have the same law, and using again concentration of measure, we expect:

$$\begin{aligned} G_{\mathbf{W}}(z) &\simeq \mathbb{E}_{\mathbf{W}} G_{\mathbf{W}}(z), \\ &\simeq \frac{1}{z - \frac{1}{d} \mathbb{E} \text{Tr}[(z \mathbf{I}_{d-1} - \mathbf{W}_{-1})^{-1}]}, \\ &\simeq \frac{1}{z - \mathbb{E} G_{\mathbf{W}^{(d-1)}}(\mathbf{z})}. \end{aligned}$$

This heuristic derivations suggests that $G_{\mathbf{W}}(z) \rightarrow G(z)$ for $G(z)$ a solution to

$$G(z) = \frac{1}{z - G(z)}. \quad (43)$$

One checks then easily from Lemma 3.3 that $G_{\text{s.c.}}(z)$ is the only solution to eq. (43) such that $G(z) \rightarrow 0$ as $|z| \rightarrow \infty$. \square

3.1.2 The top eigenvalue of Wigner matrices

We give here a proof of point (ii) of Theorem 3.1. First notice that

$$\{w_1 < 2 - \varepsilon\} \Rightarrow \hat{\mu}_{\mathbf{W}}([2 - \varepsilon, 2]) = 0.$$

Using point (i) of Theorem 3.1, we reach that, almost surely:

$$\liminf_{d \rightarrow \infty} w_1 \geq 2. \quad (44)$$

The upper bound can be obtained in several steps. The first is to use Sudakov-Fernique's inequality, see Lemma A.5, to control $\mathbb{E}[w_1]$. Indeed, notice that

$$w_1 = \max_{\|\mathbf{x}\|=1} \mathbf{x}^\top \mathbf{W} \mathbf{x}.$$

Let $X(\mathbf{x}) := (\sqrt{d/2}) \mathbf{x}^\top \mathbf{W} \mathbf{x}$. Then X is a Gaussian process (indexed by the unit sphere \mathcal{S}^{d-1}). Define $Y(\mathbf{x}) := \sqrt{2}(\mathbf{x} \cdot \mathbf{g})$. for $\mathbf{g} \sim \mathcal{N}(0, \mathbf{I}_d)$. Then we have, for any $\mathbf{x}, \mathbf{x}' \in \mathcal{S}^{d-1}$:

$$\begin{cases} \mathbb{E}[X(\mathbf{x})] &= \mathbb{E}[Y(\mathbf{x})] = 0, \\ \mathbb{E}[(X(\mathbf{x}) - X(\mathbf{x}'))^2] &= 2[1 - (\mathbf{x} \cdot \mathbf{x}')^2], \\ \mathbb{E}[(Y(\mathbf{x}) - Y(\mathbf{x}'))^2] &= 4[1 - (\mathbf{x} \cdot \mathbf{x}')]. \end{cases}$$

Since $1 - q^2 \leq 2(1 - q)$ for all $q \in [-1, 1]$, applying Lemma A.5, we get:

$$\begin{aligned} \sqrt{\frac{d}{2}} \mathbb{E}[w_1] &= \mathbb{E} \left[\max_{\mathbf{x} \in \mathcal{S}^{d-1}} X(\mathbf{x}) \right], \\ &\leq \mathbb{E} \left[\max_{\mathbf{x} \in \mathcal{S}^{d-1}} Y(\mathbf{x}) \right], \\ &= \sqrt{2} \mathbb{E}[\|\mathbf{g}\|], \\ &\leq \sqrt{2 \mathbb{E}[\|\mathbf{g}\|^2]}, \\ &= \sqrt{2d}. \end{aligned}$$

We showed $\mathbb{E}[w_1] \leq 2$.

Next, denote Z_{ij} for $i \leq j$ be the i.i.d. $\mathcal{N}(0, 1)$ random variables such that $W_{ij} = W_{ji} = Z_{ij}/\sqrt{d}$, and $W_{ii} = (\sqrt{2/d}) Z_{ii}$. For any \mathbf{W}, \mathbf{W}' (and associated \mathbf{Z}, \mathbf{Z}'), we have

$$\|\lambda_{\max}(\mathbf{W} - \mathbf{W}')\|^2 \leq \|\mathbf{W} - \mathbf{W}'\|_F^2 = \frac{2}{d} \sum_{i \leq j} (Z_{ij} - Z'_{ij})^2.$$

Stated differently, $\mathbf{Z} \mapsto \max_{\|\mathbf{x}\|=1} \mathbf{x}^\top \mathbf{W} \mathbf{x}$ is $(\sqrt{2/d})$ -Lipschitz. We can thus leverage Gaussian concentration (Theorem A.8), which gives for any $t \geq 0$:

$$\mathbb{P}(|w_1 - \mathbb{E}[w_1]| \geq t) \leq 2 \exp \left\{ -\frac{dt^2}{4} \right\}.$$

Combining it with the bound $\mathbb{E}[w_1] \leq 2$, we reach

$$\mathbb{P}(w_1 \geq 2 + t) \leq 2 \exp \left\{ -\frac{dt^2}{4} \right\}.$$

By the Borel-Cantelli lemma (Lemma A.1), almost surely:

$$\limsup_{d \rightarrow \infty} w_1 \leq 2. \quad (45)$$

Combining eqs. (44) and (45) ends the proof. \square

3.2 Emergence of a single outlier

The following proposition shows that the eigenvalues of \mathbf{W} and \mathbf{Y} are interlaced.

Proposition 3.4 (Interlacing)

Let $\lambda \geq 0$, and $\mathbf{W} \in \mathbb{S}_d$, $\mathbf{x} \in \mathcal{S}^{d-1}$. Let $\mathbf{Y} = \mathbf{W} + \sqrt{\lambda} \mathbf{x} \mathbf{x}^\top$. Denote $y_1 \geq \dots y_d$ and $w_1 \geq \dots w_d$ the eigenvalues of \mathbf{Y} and \mathbf{W} . Then

- (i) $w_1 \leq y_1$.
- (ii) $w_i \leq y_i \leq w_{i-1}$ for all $i \in \{2, \dots, d\}$.

Proof of Proposition 3.4 – The lower bound on y_i (for $i \in [d]$) is trivial, since $\sqrt{\lambda} \mathbf{x} \mathbf{x}^\top \succeq 0$. Let us denote $\mathbf{u}_1, \dots, \mathbf{u}_d$ the eigenvectors of \mathbf{W} . The lower bound on y_i for $i \geq 2$ follows from the Courant-Fischer characterization of eigenvalues:

$$y_i = \max_{\dim(V)=i} \min_{\substack{\mathbf{v} \in V \\ \|\mathbf{v}\|=1}} \mathbf{v}^\top \mathbf{Y} \mathbf{v}.$$

Since $i \geq 2$, any subspace $V \subseteq \mathbb{R}^d$ with dimension i must contain a non-zero vector \mathbf{v} orthogonal to $\text{Span}(\mathbf{x}, \{\mathbf{u}_j\}_{j \leq i-2})$. Thus

$$\mathbf{v}^\top \mathbf{Y} \mathbf{v} = \mathbf{v}^\top \mathbf{W} \mathbf{v} \stackrel{(a)}{\leq} w_{i-1},$$

where (a) comes from \mathbf{v} being orthogonal to $\{\mathbf{u}_j\}_{j \leq i-2}$. \square

Proposition 3.4 is a special case of Weyl's interlacing inequality. It implies that the "bulk" of eigenvalues of \mathbf{Y} and \mathbf{W} behave similarly as $d \rightarrow \infty$.

Corollary 3.5

For \mathbf{Y} as in Proposition 3.4, the empirical distribution of \mathbf{Y} converges:

$$\hat{\mu}_{\mathbf{Y}} := \frac{1}{d} \sum_{i=1}^d \delta_{y_i} \xrightarrow[d \rightarrow \infty]{\text{weakly}} \sigma_{\text{s.c.}} \quad (\text{a.s.}),$$

More specifically, all $y_2 \geq \dots y_d$ will (with high probability) lie in the interval $[-2 - o(1), 2 + o(1)]$. Thus it is *only* $y_1 = \lambda_{\max}(\mathbf{Y})$ that might be an outlier, see Fig. 1.

A simple bound – Notice that $y_1 = \max_{\|\mathbf{v}\|=1} \mathbf{v}^\top \mathbf{Y} \mathbf{v} \geq \mathbf{x}^\top \mathbf{Y} \mathbf{x} = \mathbf{x}^\top \mathbf{W} \mathbf{x} + \sqrt{\lambda}$. Furthermore, it is easy to see that, for any $\mathbf{x} \in \mathcal{S}^{d-1}$, $z := \mathbf{x}^\top \mathbf{W} \mathbf{x} \sim \mathcal{N}(0, 2/d)$. In particular $\mathbb{P}(z \geq t) \leq \exp\{-dt^2/4\}$ for any $t \geq 0$. This can be easily shown to imply (via the Borel-Cantelli lemma) that

$$\liminf_{d \rightarrow \infty} y_1 \geq \sqrt{\lambda}. \quad (\text{a.s.}) \tag{46}$$

In particular, if $\lambda > 4$, then $\liminf y_1 > 2$ (a.s.): we see an outlier in the spectrum of \mathbf{Y} ! Further, if \mathbf{v}_1 is the top eigenvector of \mathbf{Y} , we have

$$y_1 = \mathbf{v}_1^\top \mathbf{Y} \mathbf{v}_1 \leq w_1 + \sqrt{\lambda} (\mathbf{v}_1 \cdot \mathbf{x})^2.$$

Using Theorem 3.1 and eq. (46), we have for $\lambda > 2$:

$$\liminf_{d \rightarrow \infty} (\mathbf{v}_1 \cdot \mathbf{x})^2 \geq 1 - \frac{2}{\sqrt{\lambda}}. \quad (\text{a.s.}) \tag{47}$$

So the outlier is associated to an eigenvector which correlates positively with \mathbf{x} ! Further, this correlation goes to 1 as $\lambda \rightarrow \infty$. But are eqs. (46), (47) sharp? We saw that $\lambda > 4$ is sufficient for an outlier to appear in the spectrum, with an eigenvector positively correlated with \mathbf{x} : is this also *necessary*?

3.3 The BBP transition

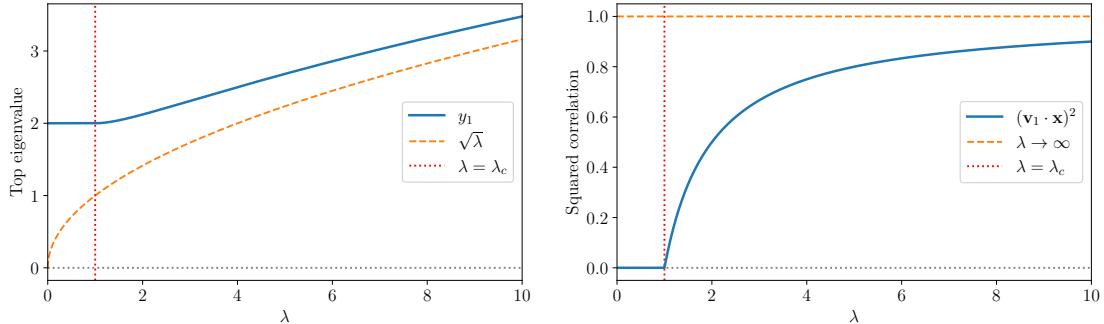
The following theorem is the main result of this section. It is usually referred to as the *Baik-Ben Arous-Péché* (BBP) transition, from the authors of [BBP05], and it provides a sharp answer to the question above. While the authors of [BBP05] analyzed a spiked version of covariance matrices (see the discussion on spiked Wishart models in Section 2.5), the statement for the spiked Wigner model can be found in [FP07]⁹, and a much generalized version in [BN11].

Theorem 3.6 (The BBP transition in the spiked Wigner model)

Let $d \geq 1$ and $\lambda > 0$. Let $\mathbf{x} \in \mathcal{S}^{d-1}$ an arbitrary unit-norm vector. We draw $\mathbf{Y} = \mathbf{W} + \sqrt{\lambda} \mathbf{x} \mathbf{x}^\top$ with $\mathbf{W} \sim \text{GOE}(d)$. Denote $y_1 \geq \dots \geq y_d$ the eigenvalues of \mathbf{Y} , and $\mathbf{v}_1, \dots, \mathbf{v}_d$ a set of corresponding eigenvectors (unit-normed). Then:

- (i) If $\lambda \leq 1$, then $y_1 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 2$, and $(\mathbf{v}_1 \cdot \mathbf{x})^2 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 0$.
- (ii) If $\lambda > 1$, then $y_1 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} \lambda^{1/2} + \lambda^{-1/2}$, and $(\mathbf{v}_1 \cdot \mathbf{x})^2 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 1 - \lambda^{-1}$.

Moreover, for any $\lambda > 0$, $y_2 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 2$.



3.3.1 Discussion

Theorem 3.6 shows several key features:

1. There is sharp *phase transition* at $\lambda_c = 1$: the model behaves very differently for $\lambda < \lambda_c$ and $\lambda > \lambda_c$!
2. The sufficient condition $\lambda > 4$ to have an outlier that we derived in Section 3.2 is not sharp. What happens is that for $\lambda = 1 + \varepsilon$, the top eigenvector is very slightly correlated with \mathbf{x} , but not enough to make $\mathbf{x}^\top \mathbf{Y} \mathbf{x}$ be dominated by the rank-one perturbation.
3. Notice that (y_1, \mathbf{v}_1) are *inconsistent* estimators of $(\sqrt{\lambda}, \pm \mathbf{x})$ even if $\lambda > 1$. Indeed, for any such λ , $y_1 \rightarrow \sqrt{\lambda} + 1/\sqrt{\lambda} > \sqrt{\lambda}$, and $\max_{\varepsilon \in \{\pm 1\}} \|\mathbf{v}_1 - \varepsilon \mathbf{x}\|_2 \not\rightarrow 0$. Instead, the distance $\max_{\varepsilon \in \{\pm 1\}} \|\mathbf{v}_1 - \varepsilon \mathbf{x}\|_2 \rightarrow 2[1 - \sqrt{1 - \lambda^{-1}}] \sim \lambda^{-1}$ is finite, and goes to 0 only as $\lambda \rightarrow \infty$.

⁹The authors of [BBP05; FP07] analyzed much more detailed properties of the fluctuations of the top eigenvalue, not just the value of its limit as stated here.

3.3.2 Proof of Theorem 3.6: eigenvalue transition

We prove here the statements of Theorem 3.6 related to the eigenvalues y_i , by simplifying the proof of [BN11]. Notice first that the statement on y_2 is a direct consequence of our analysis in Section 3.2, so we focus on the statement concerning y_1 .

Like the proof of Theorem 3.1 that we discussed in Section 3.1.1, a possible proof is based on the analysis of the Cauchy, or Stieltjes, transform of probability measures, see Definition 3.1.

Denote $w_1 \geq \dots \geq w_d$ the eigenvalues of \mathbf{W}_d , with a set of corresponding eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_d$. By the remark below Definition 2.6, $(\mathbf{u}_1, \dots, \mathbf{u}_d)$ is an orthogonal matrix uniformly drawn from the Haar measure on $\mathcal{O}(d)$, and is independent of (w_1, \dots, w_d) .

Recall that y_1 is the largest eigenvalue of \mathbf{Y} . In the following we sometimes denote it $y_1^{(d)}$ to clarify its dependency on the dimension. We now use the fact that eigenvalues are roots of the characteristic polynomial, so $y_1^{(d)}$ is a solution to:

$$\det[y\mathbf{I}_d - (\mathbf{W} + \sqrt{\lambda}\mathbf{x}\mathbf{x}^\top)] = 0.$$

Furthermore, $y_1 \geq \mathbf{u}_1^\top \mathbf{W} \mathbf{u}_1 = w_1 + \sqrt{\lambda}(\mathbf{u}_1 \cdot \mathbf{x})^2$, so $y_1 > w_1$ with probability 1 since $\mathbf{u}_1 \sim \text{Unif}(\mathcal{S}^{d-1})$. In particular, $(y_1\mathbf{I}_d - \mathbf{W})$ is almost surely invertible, and we reach:

$$\det[\mathbf{I}_d - \sqrt{\lambda}\mathbf{x}\mathbf{x}^\top(y\mathbf{I}_d - \mathbf{W})^{-1}] = 0,$$

i.e. 1 is an eigenvalue of $\sqrt{\lambda}\mathbf{x}\mathbf{x}^\top(y\mathbf{I}_d - \mathbf{W})^{-1}$. This is a rank-one matrix, so it has a single non-zero eigenvalue, which is also equal to its trace. Combining this fact with Proposition 3.4, this yields that $y = y_1^{(d)}$ is the only solution in (w_1, ∞) to the equation

$$\frac{1}{\sqrt{\lambda}} = \mathbf{x}^\top(y\mathbf{I}_d - \mathbf{W})^{-1}\mathbf{x}. \quad (48)$$

We can decompose $\mathbf{x} = \sum_{i=1}^d \alpha_i \mathbf{u}_i$ along the eigenbasis of \mathbf{x} . Because $\|\mathbf{x}\|_2 = 1$ and \mathbf{x} is independent of \mathbf{W} , $\boldsymbol{\alpha} := (\alpha_1, \dots, \alpha_d)$ is uniformly sampled from the unit sphere \mathcal{S}^{d-1} and . independent of (w_1, \dots, w_d) . Eq. (48) reads:

$$\frac{1}{\sqrt{\lambda}} = \sum_{i=1}^d \frac{\alpha_i^2}{y - w_i}. \quad (49)$$

Let us denote

$$\nu_d := \sum_{i=1}^d \alpha_i^2 \delta_{w_i} \in \mathcal{P}(\mathbb{R}). \quad (50)$$

Eq. (49) can be reframed by saying that $y_1^{(d)}$ is the unique zero in (w_1, ∞) of the function

$$M_d(y) := 1 - \sqrt{\lambda}G_{\nu_d}(y), \quad (51)$$

with G_{ν_d} the Cauchy transform of ν_d .

Notice that $\mathbb{E}[\nu_d] = \mathbb{E}[\mu_{\mathbf{W}}] \rightarrow \sigma_{\text{s.c.}}$ as $d \rightarrow \infty$ by Theorem 3.1. The next lemma crucially shows that, by concentration of measure, one can essentially replace ν_d by $\sigma_{\text{s.c.}}$ as $d \rightarrow \infty$.

Lemma 3.7 (Convergence of ν_d)

(i) $\nu_d \xrightarrow[d \rightarrow \infty]{(\text{a.s.})} \sigma_{\text{s.c.}}$, for the weak convergence of probability measures.

(ii) For all $\eta > 0$, $G_{\nu_d}(z) \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} G_{\text{s.c.}}(z)$, uniformly on $K_\eta := \{z \in \mathbb{C} : d(z, [-2, 2]) \geq \eta\}$.

The following properties of $G_{\text{s.c.}}(z)$ are elementary consequences of Lemma 3.3 and left to show as an exercise:

Proposition 3.8

Let $\lambda \geq 0$, and $M_\lambda(z) := 1 - \sqrt{\lambda}G_{\text{s.c.}}(z)$ for $z \in \mathbb{C} \setminus [-2, 2]$. Then, $y \mapsto M_\lambda(y)$ is strictly increasing on $(2, \infty)$, with $M_\lambda(\infty) = 1$, and $M_\lambda(2^+) = 1 - \sqrt{\lambda}$. For $\lambda > 1$, we denote $y_*(\lambda)$ the unique zero of $M_\lambda(y)$ on $(2, \infty)$. Then:

- (i) $y_*(\lambda) = \lambda^{1/2} + \lambda^{-1/2}$.
- (ii) $y_*(\lambda)$ is a simple root of $M_\lambda(z)$.

Finally, the next lemma (borrowed from [BN11] and tailored for our setting), follows from considerations in complex analysis.

Lemma 3.9

Let $(a_d, b_d)_{d \geq 1}$ such that $\lim_{d \rightarrow \infty} a_d = -2$, $\lim_{d \rightarrow \infty} b_d = 2$, and $N_d(z)$ be an analytic function of z defined on $\mathbb{C} \setminus [a_d, b_d]$, and such that:

- (i) For all $d \geq 1$ and $z \in \mathbb{C} \setminus \mathbb{R}$, $N_d(z) \neq 0$.
- (ii) For all $\eta > 0$, $N_d(z) \rightarrow M_\lambda(z)$, uniformly on $K_\eta := \{z \in \mathbb{C} : d(z, [-2, 2]) \geq \eta\}$.

Then, if $\lambda > 1$, there exists a real sequence $(\gamma_d)_{d \geq 1}$ such that $\gamma_d > b_d$, and:

- (a) $\gamma_d \rightarrow y_*(\lambda)$ as $d \rightarrow \infty$.
- (b) γ_d is a simple root of N_d .
- (c) For all $\varepsilon > 0$ small enough and $d \geq 1$ large enough,

$$\forall y \in (2 + \varepsilon, \infty), \quad N_d(y) = 0 \Leftrightarrow y = \gamma_d.$$

Further, if $\lambda \leq 1$, then any $(\gamma_d)_{d \geq 1}$ such that $\gamma_d > b_d$ and $N_d(\gamma_d) = 0$ must satisfy $\gamma_d \rightarrow 2$ as $d \rightarrow \infty$.

We defer the proofs of Lemma 3.7 and 3.9 to Section 3.3.4.

We know that $y_1^{(d)}$ is the unique zero of $M_d(y)$ on (w_1, ∞) and that $w_1 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 2$. Lemma 3.7-(ii) shows then that one can apply Lemma 3.9 to $N_d = M_d$ given by eq. (51), and we reach that

- If $\lambda \leq 1$, $y_1^{(d)} \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 2$.
- If $\lambda > 1$, $y_1^{(d)} \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} y_*(\lambda) > 2$. \square

3.3.3 Proof of Theorem 3.6: eigenvector correlation

We now consider the correlation of the top eigenvector \mathbf{v}_1 (associated with the eigenvalue y_1) with the signal \mathbf{x} . By definition:

$$(y_1 \mathbf{I}_d - \mathbf{W}) \mathbf{v}_1 = \sqrt{\lambda} (\mathbf{v}_1 \cdot \mathbf{x}) \mathbf{x}.$$

As we argued above, $(y_1 \mathbf{I}_d - \mathbf{W})$ is almost surely invertible, which yields:

$$\mathbf{v}_1 = \sqrt{\lambda}(\mathbf{v}_1 \cdot \mathbf{x})(y_1 \mathbf{I}_d - \mathbf{W})^{-1} \mathbf{x}.$$

While this equation still involves \mathbf{v}_1 on both sides, since $\|\mathbf{v}_1\| = 1$ we have:

$$\mathbf{v}_1 = \pm \frac{(y_1 \mathbf{I}_d - \mathbf{W})^{-1} \mathbf{x}}{\sqrt{\mathbf{x}^\top (y_1 \mathbf{I}_d - \mathbf{W})^{-2} \mathbf{x}}}.$$

And in particular:

$$(\mathbf{v}_1 \cdot \mathbf{x})^2 = \frac{(\mathbf{x}^\top (y_1 \mathbf{I}_d - \mathbf{W})^{-1} \mathbf{x})^2}{\mathbf{x}^\top (y_1 \mathbf{I}_d - \mathbf{W})^{-2} \mathbf{x}}.$$

By eq. (48), we can further simplify it into:

$$(\mathbf{v}_1 \cdot \mathbf{x})^2 = \left(\lambda \mathbf{x}^\top (y_1 \mathbf{I}_d - \mathbf{W})^{-2} \mathbf{x} \right)^{-1}. \quad (52)$$

We now analyze the limit as $d \rightarrow \infty$ of eq. (52) in a very similar way to what we did to analyze the limit of $\mathbf{x}^\top (y_1 \mathbf{I}_d - \mathbf{W})^{-1} \mathbf{x}$ above. We separate the cases $\lambda \leq 1$ and $\lambda > 1$.

$\lambda > 1$ – Using the same notations as in eqs. (49) and (50):

$$\mathbf{x}^\top (y_1 \mathbf{I}_d - \mathbf{W})^{-2} \mathbf{x} = \sum_{i=1}^d \frac{\alpha_i^2}{(y_1 - w_i)^2} = \int \frac{\nu_d(dw)}{(y_1 - w)^2}.$$

Since $y_1 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} y_\star(\lambda) > 2$, and $\nu_d \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} \sigma_{\text{s.c.}}$ by Lemma 3.7-(i), we immediately obtain

$$(\mathbf{v}_1 \cdot \mathbf{x})^{-2} = \lambda \int \frac{\nu_d(dw)}{(y_1 - w)^2} \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} \lambda \int \frac{\rho_{\text{s.c.}}(dw)}{(y_\star(\lambda) - w)^2} = -\lambda G'_{\text{s.c.}}[y_\star(\lambda)].$$

Since $y_\star(\lambda) = \lambda^{1/2} + \lambda^{-1/2}$, and by Lemma 3.3, we get $\lambda G'_{\text{s.c.}}[y_\star(\lambda)] = -(1 - \lambda^{-1})^{-1}$.

$\lambda \leq 1$ – Notice that $G'_{\text{s.c.}}(2^+) = -\infty$, i.e.

$$\int \frac{\rho_{\text{s.c.}}(dw)}{(2 - w)^2} = +\infty.$$

Since $y_1 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 2$ and $\nu_d \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} \sigma_{\text{s.c.}}$ by Lemma 3.7-(i):

$$\tilde{\nu}_d := \sum_{i=1}^d \alpha_i^2 \delta_{w_i+2-y_1} \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} \sigma_{\text{s.c.}}.$$

Again, convergence is meant in the sense of weak convergence of probability measures. Thus, almost surely:

$$\liminf_{d \rightarrow \infty} (\mathbf{v}_1 \cdot \mathbf{x})^{-2} = \liminf_{d \rightarrow \infty} \lambda \int \frac{\tilde{\nu}_d(dw)}{(2 - w)^2} \stackrel{\text{(a)}}{\geq} \lambda \int \frac{\rho_{\text{s.c.}}(dw)}{(2 - w)^2} = +\infty,$$

using Fatou's lemma in (a). \square

3.3.4 Proof of Theorem 3.6: auxiliary results

We prove here the technical Lemmas 3.7 and 3.9.

Proof of Lemma 3.7 – We start with (i). Let f be a continuous bounded function on \mathbb{R} . By concentration of measure (Theorem A.9), for any $\mathbf{x} \in \mathbb{R}^d$ and any $t > 0$:

$$\mathbb{P}_{\boldsymbol{\alpha}} \left[\left| \sum_{i=1}^d \alpha_i^2 x_i - \frac{1}{d} \sum_{i=1}^d x_i \right| \geq t \right] \leq 2 \exp \left\{ - \frac{cdt^2}{\|\mathbf{x}\|_{\infty}^2} \right\},$$

for some universal constant $c > 0$. Indeed, if $g(\boldsymbol{\alpha}) := \sum_i \alpha_i^2 x_i$, then $\|\nabla g(\boldsymbol{\alpha})\|_2 \leq 2\|\mathbf{x}\|_{\infty}$ for any $\boldsymbol{\alpha} \in \mathcal{S}^{d-1}$. Using the Borel-Cantelli lemma, and combining it with Theorem 3.1 which implies $(1/d) \sum_{i=1}^d f(w_i) \rightarrow \int \sigma_{\text{s.c.}}(dw) f(w)$ almost surely as $d \rightarrow \infty$, we obtain

$$\int f(w) \nu_d(dw) = \sum_{i=1}^d \alpha_i^2 f(w_i) \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} \int \rho_{\text{s.c.}}(dw) f(w),$$

which proves point (i).

We turn to point (ii). Let $\eta > 0$. Since $w_1 \xrightarrow{\text{a.s.}} 2$ and $w_d \xrightarrow{\text{a.s.}} -2$ as $d \rightarrow \infty$,

$$G_{\nu_d}(z) = \sum_{i=1}^d \frac{\alpha_i^2}{z - w_i}$$

are a.s. uniformly bounded and Lipschitz on K_{η} . By the Arzelà-Ascoli theorem, any subsequence of (G_{ν_d}) must admit a subsequence that is uniformly convergent on K_{η} . Moreover, for any $z \in K_{\eta}$, $G_{\nu_d}(z) \rightarrow G(z)$ (a.s.) by point (i). This implies the almost-sure convergence of $G_{\nu_d}(z)$ to $G(z)$ holds uniformly over $z \in K_{\eta}$. \square

Proof of Lemma 3.9 – Notice that $G_{\text{s.c.}}(z) \rightarrow 0$ as $|z| \rightarrow \infty$. By (ii), this implies that for some $R > 0$, and $d \geq 1$ large enough, $N_d(z) = 0 \Rightarrow |z| \leq R$. By (i), we even have that for all $z \in \mathbb{C}$, $N_d(z) = 0 \Rightarrow z \in [-R, R]$. We will show

(H) Let¹⁰ $(a, b) \in (2, \infty) \setminus \{y_{\star}(\lambda)\}$ such that $a < b$. Let $\Gamma_d(a, b)$ be the number of zeroes of $N_d(z)$ located inside the real interval (a, b) , counted with multiplicity. Then

$$\Gamma_d(a, b) \xrightarrow[d \rightarrow \infty]{} \Gamma(a, b) := \mathbb{1}\{y_{\star}(\lambda) \in (a, b)\}.$$

Indeed, assume (H) holds, and $\lambda > 1$. Then for all $\varepsilon > 0$ small enough, and $d \geq 1$ large enough, there is exactly one zero¹¹ $\gamma_d \in (2 + \varepsilon, R]$ of $\gamma \mapsto N_d(\gamma)$, and it is a simple root. By the point above, it is the only zero in $(2 + \varepsilon, \infty)$. Further, since $\Gamma_d(y_{\star} - \eta, y_{\star} + \eta) \rightarrow 1$ for any $\eta > 0$, we get $\gamma_d \rightarrow y_{\star}(\lambda)$ as $d \rightarrow \infty$. Similarly, if $\lambda \leq 1$, then for any $\varepsilon > 0$ there is no zero of $\gamma \mapsto N_d(\gamma)$ in $(2 + \varepsilon, \infty)$, so any $\gamma_d > b_d$ with $N_d(\gamma_d) = 0$ must satisfy $\gamma_d \rightarrow 2$ as $d \rightarrow \infty$.

It remains to prove (H). Let \mathcal{C} be the circle in the complex plane with diameter $[a, b]$. Since $a, b \neq y_{\star}(\lambda)$, by (ii), $N_d(z)$ does not vanish on \mathcal{C} . Thus, by the argument principle and the remark above on the zeroes of N_d :

$$\Gamma_d(a, b) = \frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{N'_d(z)}{N_d(z)} dz.$$

¹⁰If $\lambda \leq 1$, set $y_{\star}(\lambda) = 2$ by convention.

¹¹Notice that γ_d does not depend on the choice of ε .

By the Cauchy integral formula, if $N_d \rightarrow M_\lambda$ uniformly on K_η , then $N'_d \rightarrow M'_\lambda$ uniformly on K_η . Therefore, we get

$$\lim_{d \rightarrow \infty} \Gamma_d(a, b) = \frac{1}{2i\pi} \oint_{\mathcal{C}} \frac{M'_\lambda(z)}{M_\lambda(z)} dz = \mathbb{1}\{y_\star(\lambda) \in (a, b)\},$$

which ends the proof. \square

3.4 (Some) generalizations

The careful reader will have noticed that the proof of Theorem 3.6 is very generic, and one can generalize it in several ways. Let us mention a few of them.

- **Beyond rotational invariance** – We used critically that the eigenvectors of \mathbf{W} are *completely delocalized*, since the distribution of \mathbf{W} is rotationally invariant. This can be relaxed to approximate delocalization, allowing in particular matrices with i.i.d. non-Gaussian elements. Moreover, one can even completely drop randomness assumptions on the eigenvectors of \mathbf{W} , by assuming instead that the signal \mathbf{x} is randomly sampled (independently of \mathbf{W}).
- **Beyond the semicircular law** – Our proof can be straightforwardly applied to any noise matrix \mathbf{W} that satisfies the delocalization property just mentioned, and a convergence of its spectrum and extreme eigenvalues to some density ν , similar to Theorem 3.1. In this case the BBP threshold λ_c and the asymptotic values of y_1 and $(\mathbf{v}_1 \cdot \mathbf{x})^2$ depend on the Cauchy transform of ν : see [Mai24, Chapter 5] for more details.
- **Multiple spikes** – The argument can also be generalized to the case of “multi-spike” models, i.e. we consider instead

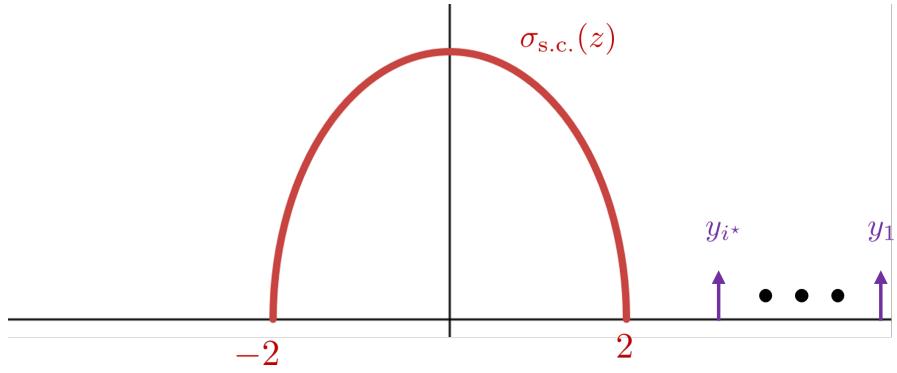
$$\mathbf{Y} = \mathbf{W} + \sum_{i=1}^r \sqrt{\lambda_i} \mathbf{x}_i \mathbf{x}_i^\top, \quad (53)$$

for some $r \geq 1$ (fixed as $d \rightarrow \infty$). We can assume without loss of generality that the \mathbf{x}_i ’s are orthonormal vectors, and we assume that $\lambda_1 > \dots > \lambda_r$. We get the following generalization of Theorem 3.6.

Theorem 3.10 (“Multi-spike” BBP transition)

Let \mathbf{Y} be generated from eq. (53), denote its eigenvalues $y_1 \geq \dots \geq y_d$, and corresponding eigenvectors $(\mathbf{v}_1, \dots, \mathbf{v}_d)$. Let $i^* \in \{0, \dots, r\}$ such that $\lambda_{i^*} > 1 \geq \lambda_{i^*+1}$. Then:

- For all $i \in \{1, \dots, i^*\}$, $y_i \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} \lambda_i^{1/2} + \lambda_i^{-1/2}$, and $(\mathbf{v}_i \cdot \mathbf{x})^2 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 1 - \lambda_i^{-1}$.
- For all $i \in \{i^*, \dots, r\}$, $y_i \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 2$, and $(\mathbf{v}_i \cdot \mathbf{x})^2 \xrightarrow[d \rightarrow \infty]{\text{(a.s.)}} 0$.



Everything happens as if the different spikes in eq. (53) each had its own independent BBP transition! The case where there is degeneracy in the spiked matrix, i.e. if $\lambda_i = \lambda_j$ is slightly more subtle, and we refer to [BN11] for more on this setting.

4 Optimal estimation: approaches from statistical physics

We come back to the spiked Wigner model of Definition 2.5:

$$\mathbf{Y} = \mathbf{W} + \frac{\sqrt{\lambda}}{d} \mathbf{x}_0 \mathbf{x}_0^\top, \quad (54)$$

where $\mathbf{W} \sim \text{GOE}(d)$, and the “signal” vector \mathbf{x}_0 is drawn from a prior $P_0^{(d)}$ with $\mathbb{E}_{P_0}[\|\mathbf{x}\|^2] = d$. In this part, we will assume that $P_0^{(d)} = P_0^{\otimes d}$ is i.i.d. and (with a slight abuse of notations) that $x_i \stackrel{\text{i.i.d.}}{\sim} P_0$, and that

- (i) $P_0 \in \mathcal{P}(\mathbb{R})$ has a bounded support.
- (ii) $\mathbb{E}_{P_0}[X] = 0$ and $\mathbb{E}_{P_0}[X^2] = 1$. Notice that this ensures $\mathbb{E}[\|\mathbf{x}_0\|^2] = d$.

The bounded support assumption can be relaxed e.g. to sub-Gaussianity (and we will apply our results to unbounded priors), but we keep it for the proofs for simplicity.

Objectives – Our first goal in Section 4 is to fully characterize the information-theoretic limits of estimation (i.e. compute the limiting value of the free entropy, and from there the one of the MMSE, as we did in Section 2.4 for the Gaussian mean location problem). We will tackle this question with techniques that originated in *statistical physics*: as we will then see, such techniques also allow to characterize the optimal performance reachable by a large class of algorithms. Altogether, we will obtain a very sharp understanding of the statistical and computational limits of the spiked Wigner model, and highlights the possible gaps between the two.

References – This section is largely based on the lecture notes [El 21]. The interested reader should also look at [KZ24] for more applications of statistical physics methods to high-dimensional statistics and learning.

4.1 The replica-symmetric formula for the free entropy

4.1.1 Notations, and a simplification

Furthermore, it will be simpler to consider the estimation problem where the diagonal elements Y_{ii} are not revealed, i.e. we only observe

$$Y_{ij} = \frac{\sqrt{\lambda}}{d} (x_0)_i (x_0)_j + W_{ij}, \quad (i < j)$$

Recall the definition of the free entropy, partition function, and Hamiltonian in Definition 2.2. With our choices of normalization, they read here:

$$\begin{cases} F_d(\lambda) &:= \mathbb{E}_{\mathbf{Y}} \log \mathcal{Z}_d(\lambda, \mathbf{Y}), \\ \mathcal{Z}_d(\lambda, \mathbf{Y}) &:= \int P_0^{\otimes d}(\mathrm{d}\mathbf{x}) e^{H_d(\lambda, \mathbf{Y}; \mathbf{x})} \\ H_d(\lambda, \mathbf{Y}; \mathbf{x}) &:= \sum_{1 \leq i < j \leq d} \left[\sqrt{\lambda} x_i x_j Y_{ij} - \frac{\lambda}{2d} x_i^2 x_j^2 \right]. \end{cases} \quad (55)$$

We will often just write $H_d(\mathbf{x})$ for $H_d(\lambda, \mathbf{Y}; \mathbf{x})$ to lighten notations. As we show in Appendix C.1.1, since the diagonal elements form a vanishingly small fractions of the observations, whether one observes them or not does not affect the free entropy as $d \rightarrow \infty$. Finally, recall that we often denote $\langle g(\mathbf{x}) \rangle$ the average over the posterior distribution $\mathbb{P}(\mathbf{x}|\mathbf{Y})$.

4.1.2 The main theorem

The main theorem we prove in Section 4.1 is the limit of the free entropy (or mutual information). As we saw in Section 2, such a formula will allow to characterize exactly the MMSE of the estimation problem!

Theorem 4.1 (*Replica-symmetric formula*)

Under the above assumptions, for all $\lambda \geq 0$:

$$\lim_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) = \sup_{q \geq 0} \left[\psi(\lambda q) - \frac{\lambda q^2}{4} \right].$$

We defined for any $r \geq 0$, and with two random variables $x_0 \sim P_0$ and $z \sim \mathcal{N}(0, 1)$:

$$\psi(r) := \mathbb{E} \log \int P_0(dx) e^{-\frac{r}{2}x^2 + \sqrt{r}zx + rx_0}. \quad (56)$$

Recall that $\psi(r)$ in eq. (56) is actually the free entropy of a *scalar* Gaussian additive model:

$$y = \sqrt{r}x_0 + z, \quad (57)$$

where $x_0 \sim P_0$ and $z \sim \mathcal{N}(0, 1)$, see eq. (20). We also define the so-called *replica-symmetric potential* and *replica-symmetric free entropy*:

$$\begin{cases} f_{\text{RS}}(\lambda, q) &:= \psi(\lambda q) - \frac{\lambda q^2}{4}, \\ f_{\text{RS}}(\lambda) &:= \sup_{q \geq 0} f_{\text{RS}}(\lambda, q). \end{cases} \quad (58)$$

Theorem 4.1 was first conjectured using non-rigorous methods from statistical physics in [LKZ15], before being proven in a series of works [DAM16; LM19; EK18]. Here we will mainly follow a short and simple proof laid out in [EK18]. We postpone to Section 4.4.1 a discussion of the consequences of Theorem 4.1 on the value of the MMSE and asymptotic overlap.

4.2 Heuristic derivation of the replica-symmetric formula: the cavity method

We start with a heuristic derivation of Theorem 4.1. It is very instructive for several reasons: (1) it is historically how this formula was first derived in statistical physics, (2) it will give us insight on a proof approach, as well as an interpretation of the variational parameter q appearing in Theorem 4.1, and (3) it will also motivate an explicit algorithm that we will study in Section 4.5.

The method we use here is called the **cavity method**: it originated in the physics of spin glasses [MPV86; MM09], and is akin to a leave-one-out method. In Appendix C.2, we provide an alternative derivation of Theorem 4.1 (still heuristic) using the **replica method** of statistical physics. While these two methods are essentially equivalent, the cavity method has the advantage of relying on clearer assumptions, as well as having consequences for algorithms, as we will see in Section 4.5.

Let

$$f_d(\lambda) := \frac{1}{d} F_d(\lambda) = \frac{1}{d} \mathbb{E} \log \mathcal{Z}_d(\lambda, \mathbf{Y}). \quad (59)$$

the so-called *intensive* free entropy. In this section, we rename \mathbf{x}_0 , the signal vector, as \mathbf{x}^* , for reasons that will become clear in a while.

The cavity method arises from the simple observation that¹²:

$$f_d(\lambda) = \frac{1}{d} \mathbb{E} \log \mathcal{Z}_d(\lambda, \mathbf{Y}) = \frac{1}{d} \sum_{i=0}^{d-1} (\mathbb{E} \log \mathcal{Z}_{i+1} - \mathbb{E} \log \mathcal{Z}_i) = \frac{1}{d} \sum_{i=0}^{d-1} \mathbb{E} \log \frac{\mathcal{Z}_{i+1}(\lambda, \mathbf{Y}_{d+1})}{\mathcal{Z}_i(\lambda, \mathbf{Y}_d)}.$$

Letting

$$A_d := \mathbb{E} \log \frac{\mathcal{Z}_{d+1}(\lambda, \mathbf{Y}_{d+1})}{\mathcal{Z}_d(\lambda, \mathbf{Y}_d)}, \quad (60)$$

the study of Césaro averages shows that if $A_d \rightarrow f$ as $d \rightarrow \infty$, then $f_d(\lambda) \rightarrow f$ as well. In the physics language, A_d represents the change in the free entropy when a single “spin” is added to a model of d spins, or equivalently when a single spin is removed from a model of $(d+1)$ spins. This image of “removing” a spin and creating a “cavity” in the model gave its name to the method. We are going to characterize A_d in terms of averages under the Gibbs measure with d spins, under a set of important assumptions *on the structure of the Gibbs measure*.

Let us consider the system with $(d+1)$ variables, that we denote¹³ (x_0, x_1, \dots, x_d) , and separate the contribution of the variable x_0 in the Gibbs average. We sometimes denote $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$. Recall that

$$\mathbf{Y}_d(\lambda) = \mathbf{W}_d + \frac{\sqrt{\lambda}}{d} \mathbf{x}^*(\mathbf{x}^*)^\top,$$

with $\mathbf{W}_d \sim \text{GOE}(d)$. Notice that if $\tilde{\mathbf{Y}}_d$ is the $d \times d$ submatrix of \mathbf{Y}_{d+1} , we have

$$\tilde{\mathbf{Y}}_d \stackrel{d}{=} \sqrt{\frac{d}{d+1}} \mathbf{W}_d + \frac{\sqrt{\lambda}}{d+1} \mathbf{x}^*(\mathbf{x}^*)^\top \stackrel{d}{=} \sqrt{\frac{d}{d+1}} \mathbf{Y}_d \left(\sqrt{\frac{d}{d+1}} \lambda \right). \quad (61)$$

We have (we keep the notation \mathbf{Y} for the matrix of size $(d+1) \times (d+1)$, and $\tilde{\mathbf{Y}}$ for its $d \times d$ submatrix):

$$\begin{aligned} & H_{d+1}(\lambda, \mathbf{Y}; \{x_0, \mathbf{x}\}) \\ &= \sqrt{\lambda} \sum_{0 \leq i < j \leq d} Y_{ij} x_i x_j - \frac{\lambda}{2(d+1)} \sum_{0 \leq i < j \leq d} x_i^2 x_j^2, \\ &= \sqrt{\lambda} \sum_{1 \leq i < j \leq d} \tilde{Y}_{ij} x_i x_j - \frac{\lambda}{2(d+1)} \sum_{1 \leq i < j \leq d} x_i^2 x_j^2 + \sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} \sum_{i=1}^d x_i^2, \\ &= \sqrt{\frac{\lambda d}{d+1}} \sum_{1 \leq i < j \leq d} (Y_d)_{ij} x_i x_j - \frac{\lambda}{2(d+1)} \sum_{1 \leq i < j \leq d} x_i^2 x_j^2 + \sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} \sum_{i=1}^d x_i^2, \\ &= H_d \left(\frac{\lambda d}{d+1}, \mathbf{Y}_d; \{x_i\}_{i=1}^d \right) + \sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} \sum_{i=1}^d x_i^2. \end{aligned} \quad (62)$$

This motivates us to decompose eq. (60) as:

$$A_d = \underbrace{\mathbb{E} \log \frac{\mathcal{Z}_{d+1}(\lambda, \mathbf{Y}_{d+1})}{\mathcal{Z}_d \left(\frac{\lambda d}{d+1}, \mathbf{Y}_d \right)}}_{=: I_d} + \underbrace{\mathbb{E} \log \frac{\mathcal{Z}_d \left(\frac{\lambda d}{d+1}, \mathbf{Y}_d \right)}{\mathcal{Z}_d(\lambda, \mathbf{Y}_d)}}_{=: J_d}. \quad (63)$$

¹²Notice \mathbf{Y}_{i+1} is now a $(i+1) \times (i+1)$ matrix, we make its dimension explicit.

¹³Not to be confused with the notation \mathbf{x}_0 that we sometimes use to denote the ground-truth, or signal, vector. This is why we switched its notation to \mathbf{x}^* .

4.2.1 Assumption 1: Replica symmetry

We first tackle the term J_d in eq. (63). Notice that

$$J_d = F_d\left(\frac{\lambda d}{d+1}\right) - F_d(\lambda).$$

At a heuristic level, this suggests that (recall $f_d(\lambda) = (1/d)F_d(\lambda)$):

$$J_d = -\lambda f'_d(\lambda) + o_d(1). \quad (64)$$

with an error term can be related to the second derivative of $F_d(\lambda)$. We will come back to justify this later on. Using Proposition 4.7, we obtain

$$J_d = -\frac{\lambda}{4} \mathbb{E} \left\langle \left(\frac{\mathbf{x}^* \cdot \mathbf{x}}{d} \right)^2 \right\rangle + o_d(1) = -\frac{\lambda}{4} \mathbb{E} \langle R_{01}^2 \rangle + o_d(1). \quad (65)$$

We now make a first assumption, a critical ingredient of the cavity method

Hypothesis 4.1 (*Replica symmetry*)

Under the law of $\mathbb{E} \langle \cdot \rangle$, Denote $R_{01} := (\mathbf{x} \cdot \mathbf{x}^*)/d$, then under the law of $\mathbb{E} \langle \cdot \rangle$:

$$R_{01} - \mathbb{E} \langle R_{01} \rangle \xrightarrow[d \rightarrow \infty]{\text{(p.)}} 0.$$

We denote $m_d = \mathbb{E} \langle R_{01} \rangle$, called the *magnetization*. We further assume that m_d has a well-defined limit as $d \rightarrow \infty$, which we denote m .

Recall that because of Proposition 2.2, $R_{01} \stackrel{d}{=} R_{12}$, where $R_{12} = (\mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)})/d$ is the *overlap* between two independent samples under the posterior measure. A consequence is that under Hypothesis 4.1,

$$\begin{cases} R_{12} - \mathbb{E} \langle R_{12} \rangle & \xrightarrow[d \rightarrow \infty]{\text{(p.)}} 0, \\ q_d := \mathbb{E} \langle R_{12} \rangle & \xrightarrow[d \rightarrow \infty]{} q = m. \end{cases} \quad (66)$$

Eq. (66) is what is usually known in the physics literature as *replica-symmetry*. The name is quite self-explanatory: the *replicas* are the different independent samples $\mathbf{x}^{(a)}$ under the posterior. Replica symmetry essentially postulates that the distance (or the scalar product) between these samples concentrate on a deterministic value as $d \rightarrow \infty$.

Remark – Remember the discussion in Section 2.5: here we implicitly assume that we have access to an infinitesimal amount of side information to break the symmetry of the Gibbs measure (otherwise we would have trivially $\langle \mathbf{x} \rangle = 0$). If you are not convinced by this argument, one can also rephrase all the statements we make in terms of functions of $\mathbf{x}\mathbf{x}^\top$ (e.g. replace R_{01} by R_{01}^2 in Hypothesis 4.1).

Validity of replica symmetry – Replica symmetry is a deep statement about the structure of the Gibbs (posterior) measure. It can e.g. be shown to imply the vanishing of global correlations, as shown in Section ???. For general disordered systems replica symmetry does not always hold, a phenomenon known as *replica symmetry breaking* (RSB): studying RSB in spin glass models is a field of research in its own right, and we will not tackle it here.

Under Hypothesis 4.1, we get from eq. (65):

$$\lim_{d \rightarrow \infty} J_d = -\frac{\lambda}{4} q^2. \quad (67)$$

Back to eq. (65) – Under the replica-symmetric assumption, and using Corollary 2.6, try to show that eq. (64) indeed holds. Indeed, the second derivative $f_d''(\lambda)$ is related to the *variance* of the squared overlap $(\mathbf{x} \cdot \mathbf{x}_\star)/d$, under $\mathbb{E}\langle \cdot \rangle$, which vanishes as $d \rightarrow \infty$ under our assumptions on P_0 and the replica-symmetry hypothesis.

4.2.2 Assumption 2: The distribution of cavity fields

It remains to tackle I_d in eq. (63):

$$I_d := \mathbb{E} \log \frac{\mathcal{Z}_{d+1}(\lambda, \mathbf{Y}_{d+1})}{\mathcal{Z}_d\left(\frac{\lambda d}{d+1}, \mathbf{Y}_d\right)}. \quad (68)$$

Let us consider the system with $(d+1)$ variables that we denote $(x_i)_{i=0}^d$, and look at how the d last variables interact with the first variable x_0 , that is we try to characterize the marginal distribution of x_0 .

The cavity marginals – We denote $d\nu_{[d] \rightarrow 0}(\mathbf{x})$ the distribution of \mathbf{x} in a system of size $(d+1)$ where x_0 has been removed (this is known as the *cavity marginal* of \mathbf{x}). The Hamiltonian of this system is precisely the first term of eq. (62), and we have:

$$d\nu_{[d] \rightarrow 0}(\mathbf{x}) = \frac{dP_0^{\otimes d}(\mathbf{dx}) \exp \left\{ \sqrt{\lambda} \sum_{1 \leq i < j \leq d} Y_{ij} x_i x_j - \frac{\lambda}{2(d+1)} \sum_{1 \leq i < j \leq d} x_i^2 x_j^2 \right\}}{\mathcal{Z}_d\left(\frac{\lambda d}{d+1}, \mathbf{Y}_d\right)}. \quad (69)$$

Here \mathbf{Y} is again the $(d+1) \times (d+1)$ coupling matrix, and \mathbf{Y}_d is obtained from it through eq. (61). Importantly, using eq. (62) we can write I_d as an average over the cavity marginal of eq. (69):

$$I_d = \mathbb{E} \log \int \left\langle e^{\sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} \sum_{i=1}^d x_i^2} \right\rangle_{[d] \rightarrow 0} P_0(dx_0). \quad (70)$$

Notice the bracket notation for the averages with an index indicating the corresponding distribution. Finally, we denote $\mu_0(x_0)$ the marginal distribution of x_0 in the complete system of size $(d+1)$:

$$d\mu_0(x_0) = \frac{dP_0(x_0)}{\mathcal{Z}_0} \left\langle \exp \left\{ \sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} \sum_{i=1}^d x_i^2 \right\} \right\rangle_{[d] \rightarrow 0}, \quad (71)$$

where \mathcal{Z}_0 is an unspecified normalization constant. Notice that $I_d = \mathbb{E} \log \mathcal{Z}_0$, i.e. it is the free entropy associated to the marginal μ_0 .

The weak dependency assumption – We now introduce the second main assumption of the cavity method. Notice that in eq. (69), the variables (or “spins”) x_i only weakly interact, via interaction terms of order $\mathcal{O}(1/\sqrt{d})$. In the cavity method, one leverages this observation to make the following assumption, that we state loosely.

Hypothesis 4.2 (Weak coupling)

We assume that when computing one-spin marginals (i.e. eq. (71)), a negligible error is made by assuming that the cavity marginal $\nu_{[d] \rightarrow 0}(\mathbf{x})$ is factorized, i.e. we replace

$$d\nu_{[d] \rightarrow 0}(\mathbf{x}) \text{ by } \prod_{i=1}^d d\nu_{i \rightarrow 0}(x_i),$$

where we introduced the notation $\nu_{i \rightarrow 0}$ for the marginals of x_i under $\nu_{[d] \rightarrow 0}$.

Essentially, we assumed that in the marginal $\mu_0(x_0)$, the interaction of x_0 with the other terms decouples (the internal interactions of \mathbf{x} are neglected at leading order). This is related to the absence of global correlations, that we briefly discuss in Section ?? in relation to replica symmetry. This assumption can alternatively be understood in terms of factor graphs when writing the belief-propagation equations, see Section ?? and [MM09].

Recall eq. (70). Using Hypothesis 4.2, we obtain that, up to a negligible error (i.e. at leading order):

$$I_d = \mathbb{E} \log \int \prod_{i=1}^d \left\langle e^{\sqrt{\lambda}x_0 Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} x_i^2} \right\rangle_{i \rightarrow 0} dP_0(x_0).$$

Notice that the arguments of the exponentials are asymptotically small, since $Y_{0i} \propto 1/\sqrt{d}$. Heuristically, we have

$$\begin{aligned} & \log \prod_{i=1}^d \left\langle e^{\sqrt{\lambda}x_0 Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} x_i^2} \right\rangle_{i \rightarrow 0} \\ &= \sum_{i=1}^d \log \left\langle e^{\sqrt{\lambda}x_0 Y_{0i} x_i - \frac{\lambda x_0^2}{2(d+1)} x_i^2} \right\rangle_{i \rightarrow 0}, \\ &= \sum_{i=1}^d \log \left[1 + \sqrt{\lambda}x_0 Y_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2(d+1)} \langle x_i^2 \rangle_{i \rightarrow 0} + \frac{\lambda x_0^2}{2} Y_{0i}^2 \langle x_i^2 \rangle_{i \rightarrow 0} + o_d(1/d) \right], \\ &= \sum_{i=1}^d \left[\sqrt{\lambda}x_0 Y_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2(d+1)} \langle x_i^2 \rangle_{i \rightarrow 0} + \frac{\lambda x_0^2}{2} Y_{0i}^2 \langle x_i^2 \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2} Y_{0i}^2 \langle x_i \rangle_{i \rightarrow 0}^2 + o_d(1/d) \right], \\ &= \sqrt{\lambda}x_0 \sum_{i=1}^d Y_{0i} \langle x_i \rangle_{i \rightarrow 0} + \frac{\lambda x_0^2}{2} \sum_{i=1}^d \left[\left(Y_{0i}^2 - \frac{1}{d+1} \right) \langle x_i^2 \rangle_{i \rightarrow 0} - Y_{0i}^2 \langle x_i \rangle_{i \rightarrow 0}^2 \right] + o_d(1). \end{aligned} \quad (72)$$

A crucial feature of eq. (72) is that, conditionally on \mathbf{x}^* , the variables

$$Y_{0i} = \frac{\sqrt{\lambda}}{d+1} x_0^* x_i^* + W_{0i} \quad (73)$$

are *independent* of $\langle x_i \rangle_{i \rightarrow 0}$, and also pairwise independent, with

$$\mathbb{E}[Y_{0i}^2] = 1/(d+1) + \mathcal{O}(1/d^2).$$

We can thus use concentration of measure to argue that

$$\begin{aligned} \sum_{i=1}^d \left(Y_{0i}^2 - \frac{1}{d+1} \right) \langle x_i^2 \rangle_{i \rightarrow 0} &= o_d(1), \\ \sum_{i=1}^d Y_{0i}^2 \langle x_i^2 \rangle_{i \rightarrow 0} &= \frac{1}{d} \sum_{i=1}^d \langle x_i^2 \rangle_{i \rightarrow 0} + o_d(1). \end{aligned}$$

Going back to eq. (72), we obtain that, at leading order

$$I_d = \mathbb{E} \log \int e^{\sqrt{\lambda}x_0 \sum_{i=1}^d Y_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2} dP_0(x_0). \quad (74)$$

The same computation and reasoning shows that the marginal $d\mu_0(x_0)$ can also be written, to leading order, as:

$$d\mu_0(x_0) \simeq \frac{1}{\mathcal{Z}_0} dP_0(x_0) \exp \left\{ \sqrt{\lambda}x_0 \sum_{i=1}^d Y_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2 \right\}, \quad (75)$$

where again $I_d = \mathbb{E} \log \mathcal{Z}_0$ per eq. (74).

4.2.3 The asymptotic free entropy as a function of the overlap

The first term in the exponential of eq. (75) is often called a *cavity field*: a crucial property that we can already see from eq. (73) is that (conditionally on \mathbf{x}^* and on W_{ij} for $1 \leq i, j \leq d$) the distribution of these cavity fields will be Gaussian¹⁴, thanks to the independence of Y_{0i} and $\langle x_i \rangle_{i \rightarrow 0}$. In detail, we can write in eq. (74):

$$\begin{aligned} I_d &= \mathbb{E}_{\mathbf{x}^*, \mathbf{W}} \log \int e^{\frac{\lambda}{d} x_0 x_0^* \sum_{i=1}^d x_i^* \langle x_i \rangle_{i \rightarrow 0} + \sqrt{\lambda} x_0 \sum_{i=1}^d W_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2} dP_0(x_0), \\ &= \mathbb{E}_{\substack{\mathbf{x}^*, \mathbf{W} \\ z \sim \mathcal{N}(0, 1)}} \log \int e^{\frac{\lambda}{d} x_0 x_0^* \sum_{i=1}^d x_i^* \langle x_i \rangle_{i \rightarrow 0} + \sqrt{\frac{\lambda}{d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2} x_0 z - \frac{\lambda x_0^2}{2d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2} dP_0(x_0). \end{aligned}$$

Importantly, considering the system with or without the presence of the single variable x_0 should not have a large impact to leading order as $d \rightarrow \infty$. Thus, we can reasonably assume that:

$$\begin{cases} \frac{1}{d} \sum_{i=1}^d x_i^* \langle x_i \rangle_{i \rightarrow 0} &= \frac{1}{d} \sum_{i=1}^d x_i^* \langle x_i \rangle + o_d(1), \\ \frac{1}{d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2 &= \frac{1}{d} \sum_{i=1}^d \langle x_i \rangle^2 + o_d(1). \end{cases}$$

Recall that $\langle \cdot \rangle$ is the Gibbs average with respect to the full measure $\mathbb{P}(\cdot | \mathbf{Y})$ with $(d+1)$ “spins”. Combining this with replica-symmetry (Hypothesis 4.1) we obtain finally:

$$\lim_{d \rightarrow \infty} I_d = \mathbb{E} \log \int e^{\lambda m x_0 x_0^* + \sqrt{\lambda} x_0 z - \frac{\lambda q}{2} x_0^2} dP_0(x_0),$$

where the expectation is over $z \sim \mathcal{N}(0, 1)$ and $x_0^* \sim P_0$. Recall finally that $m = q$ by eq. (66) as a consequence of the Nishimori identity, and the definition of ψ in eq. (56):

$$\lim_{d \rightarrow \infty} I_d = \psi(\lambda q). \quad (76)$$

Combining eqs. (67) and (76), we get:

$$\lim_{d \rightarrow \infty} f_d(\lambda) = \psi(\lambda q) - \frac{\lambda q^2}{4} = f_{\text{RS}}(\lambda, q), \quad (77)$$

We have almost derived Theorem 4.1: we also have understood an important fact about the parameter q appearing in this theorem: it is such that

$$\frac{\mathbf{x} \cdot \mathbf{x}^*}{d} \xrightarrow[d \rightarrow \infty]{(\text{p.})} q,$$

for $\mathbf{x}^* \sim P_0$ and $\mathbf{x} \sim \mathbb{P}(\cdot | \mathbf{Y})$ with $\mathbf{Y} = \sqrt{\lambda} \mathbf{x}^* (\mathbf{x}^*)^\top / d + \mathbf{W}$.

4.2.4 Self-consistent equation on the overlap, and conclusion

The missing part is to show that this value of q is a global maximizer of the function $r \rightarrow f_{\text{RS}}(\lambda, r)$. While the cavity method will not be able to completely predict this (as we discuss below), we can still use it to show that q is a *critical point* of $f_{\text{RS}}(\lambda, q)$, as we now detail.

¹⁴This conclusion would remain true in the $d \rightarrow \infty$ even for non-Gaussian i.i.d. noise W_{ij} , by the central limit theorem.

Our starting point is again eq. (75). By symmetry among the variables $\{x_i\}_{i=0}^d$, and by the Nishimori identity:

$$q_{d+1} = m_{d+1} = \mathbb{E}[\langle x_0 \rangle^2] = \mathbb{E}[\langle x_0 \rangle x_0^*]. \quad (78)$$

In particular, from eq. (75) we have:

$$m_{d+1} = \mathbb{E} \frac{\int P_0(dx_0) x_0 x_0^* \exp \left\{ \sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2 \right\}}{\int P_0(dx_0) \exp \left\{ \sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2 \right\}} + o_d(1).$$

Using the same arguments as above (the independence of Y_{0i} and $\langle x_i \rangle_{i \rightarrow 0}$ and the concentration of the overlap), we reach (recall $m := \lim_{d \rightarrow \infty} m_d$ and that $m = q := \lim_{d \rightarrow \infty} q_d$):

$$m = q = \mathbb{E}_{\substack{x_0^* \sim P_0 \\ z \sim \mathcal{N}(0,1)}} \frac{\int P_0(dx_0) x_0 x_0^* e^{-\frac{\lambda q}{2} x_0^2 + \lambda q x_0 x_0^* + \sqrt{\lambda q} x_0 z}}{\int P_0(dx_0) e^{-\frac{\lambda q}{2} x_0^2 + \lambda q x_0 x_0^* + \sqrt{\lambda q} x_0 z}}. \quad (79)$$

We leave as an exercise to the reader (use again the Nishimori identity for the Gaussian additive model of eq. (57), and Gaussian integration by parts) to show that one can rewrite eq. (79) as:

$$q = 2\psi'(\lambda q), \quad (80)$$

i.e. that $\partial_q f_{\text{RS}}(\lambda, q) = 0$. We recovered that $q = q^*$, *the asymptotic overlap* of the system, is a saddle-point of the replica-symmetric free entropy potential $f_{\text{RS}}(\lambda, q)$!

From a critical point to a supremum – In order to finish the derivation of Theorem 4.1, there remains to show that the overlap q^* is not only a critical point, but a global maximum of $q \mapsto f_{\text{RS}}(\lambda, q)$. This is a known limitation of the cavity approach, in the presence of several local maxima of the RS potential $f_{\text{RS}}(\lambda, q)$. As we will see in Section 4.5, the presence of several local maxima can often be associated to *phase transitions* in the posterior measure, and to the onset of *algorithmic hardness*.

Coming back to the issue of showing that q^* is a global maximum of $f_{\text{RS}}(\lambda, q)$, several tools, in physics and in mathematics, have been developed to argue that this is the case.

In physics –

- In the physics literature, another analytic method, called the *replica method*, has been developed in parallel to the cavity method, and shown to yield equivalent predictions. The replica method relies on very ill-defined steps mathematically, such as poorly justified analytical continuations and inversion of limits. On the other hand, the asymptotic overlap also naturally comes out in this method, and it predicts that q^* is indeed the supremum of $f_{\text{RS}}(\lambda, q)$. While not rigorous, it is easier to write the main assumptions behind the cavity method than the replica method, which is why we choose to describe the cavity method in these notes (furthermore, the cavity method also has important consequences for algorithms, see Section 4.5). For the sake of completeness, we provide in Appendix C.2 a derivation of Theorem 4.1 using the replica method.
- The cavity method is intimately linked to message-passing algorithms, and in particular to the *Belief Propagation* (BP) algorithm. We will see more on this in Section 4.5, and we refer as well to [MM09; MS24]. The function $f_{\text{RS}}(\lambda, q)$ can be related to the asymptotic *Bethe free entropy* of fixed points of the BP algorithm: it is then known that, in the presence of multiple such fixed points, it is the one with highest Bethe free entropy that described the thermodynamic state of the system. We refer to the lecture of L. Massoulié for more on the Bethe free entropy and the BP algorithm [MS23].

In mathematics – As we discussed, the cavity method is not rigorous mathematically, as we relied on several unproven assumptions.

- Still, one can prove the lower bound $\lim_{d \rightarrow \infty} f_d(\lambda) \geq \sup_{q \geq 0} f_{\text{RS}}(\lambda, q)$ without too much difficulty. We carry out the proof of this lower bound in Section 4.3.1. The proof is inspired by the derivation above: in the computation of I_d , we related the free entropy of the two inference problems

$$\begin{cases} (1) & Y_{ij} = \sqrt{\lambda} x_i^* x_j^* + W_{ij}, \\ (2) & y_i = \sqrt{\lambda q} x_i^* + z_i, \end{cases}$$

where $\mathbf{W} \sim \text{GOE}(d)$, $x_i^* \stackrel{\text{i.i.d.}}{\sim} P_0$, and $\mathbf{z} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$. The proof will use a smooth interpolation between the two problems above.

- The proof of the converse upper bound is on the other hand much more involved. A good account of the different strategies is given in [EK18, Section 2]. We will discuss this point again in Section 4.3.2, and detail in Section 4.3.3 the proof laid out in [EK18].

4.3 Proof of the replica-symmetric formula

4.3.1 Lower bound: Guerra's interpolation method

We now prove rigorously that the replica-symmetric free entropy is a lower bound.

Proposition 4.2 (*Lower bound*)

In the setting of Theorem 4.1, and recalling eq. (58):

$$\liminf_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \geq f_{\text{RS}}(\lambda) = \sup_{q \geq 0} f_{\text{RS}}(\lambda, q).$$

Proof of Proposition 4.2 – Inspired by the cavity derivation above, we use an interpolation idea, that can be dated back to the works of Guerra on mean-field spin glasses [Gue03] (see also the great book of Talagrand [Tal10] on mean-field spin glasses). For any $t \in [0, 1]$ and any $q \geq 0$, we define the joint observation model:

$$\begin{cases} Y_{ij} &= \frac{\sqrt{t\lambda}}{d} (x_0)_i (x_0)_j + W_{ij}, & (1 \leq i < j \leq d) \\ \tilde{y}_i &= \sqrt{(1-t)\lambda q} (x_0)_i + z_i. & (1 \leq i \leq d) \end{cases} \quad (81)$$

Here, $z_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$, and recall that $W_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/d)$. This defines a joint posterior measure and a corresponding free entropy and Hamiltonian:

$$F_d(t; \lambda) := \mathbb{E} \log \int P_0^{\otimes d}(\mathbf{dx}) e^{H_t(\mathbf{x})}, \quad (82)$$

$$H_t(\mathbf{x}) := \sum_{i < j} \left[\sqrt{\lambda t} x_i x_j Y_{ij} - \frac{\lambda t}{2d} x_i^2 x_j^2 \right] + \sum_i \left[\sqrt{(1-t)\lambda q} x_i \tilde{y}_i - \frac{(1-t)\lambda q}{2} x_i^2 \right]. \quad (83)$$

Notice that $F_d(1; \lambda) = F_d(\lambda)$, and that

$$\frac{1}{d} F_d(0; \lambda) = \frac{1}{d} \sum_{i=1}^d \mathbb{E} \log \int P_0(\mathbf{dx}) e^{-\frac{\lambda q}{2} x^2 + \sqrt{\lambda q} x \tilde{y}_i},$$

$$\begin{aligned}
&= \mathbb{E} \log \int P_0(dx) e^{-\frac{\lambda q}{2} x^2 + \sqrt{\lambda q} x (z + \sqrt{\lambda q} x_0)}, \\
&= \psi(\lambda q).
\end{aligned}$$

Thus, by the fundamental theorem of analysis:

$$\frac{1}{d} F_d(\lambda) = \psi(\lambda q) + \frac{1}{d} \int_0^1 \frac{\partial F_d(t; \lambda)}{\partial t} dt. \quad (84)$$

We turn to the computation of the time derivative in eq. (84). It is in essence quite similar to the proof of Proposition 2.5. We denote the time-dependent posterior distribution with the Gibbs measure notation:

$$\langle \cdot \rangle_t := \frac{\int P_0^{\otimes d}(\mathbf{x}) e^{H_t(\mathbf{x})}(\cdot)}{\int P_0^{\otimes d}(\mathbf{x}) e^{H_t(\mathbf{x})}}. \quad (85)$$

Notice that this is a random measure, dependent on $(\mathbf{Y}, \tilde{\mathbf{y}})$. It will be useful to keep in mind that we can write $F_d(t; \lambda)$ in the form

$$F_d(t; \lambda) = \mathbb{E}_{\mathbf{x}_0, \mathbf{W}, \mathbf{z}} \log \int P_0^{\otimes d}(d\mathbf{x}) \exp [H_t(\mathbf{Y}(t, \mathbf{W}, \mathbf{x}_0), \tilde{\mathbf{y}}(t, \mathbf{z}, \mathbf{x}_0); \mathbf{x})],$$

with all the dependencies on t , \mathbf{W} , \mathbf{z} , \mathbf{x}_0 made explicit. A similar form holds for the Gibbs measure $\langle \cdot \rangle_t$. We split the time derivative of the free entropy in two terms $\partial_t F_d(t, \lambda) = I_1 + I_2$. For any $t \in (0, 1)$:

$$\begin{cases} I_1 &= \frac{\lambda q}{2} \sum_{i=1}^d (\mathbb{E} \langle x_i^2 \rangle_t - 2\mathbb{E}[(x_0)_i \langle x_i \rangle_t]) - \frac{1}{2} \sqrt{\frac{\lambda q}{1-t}} \sum_{i=1}^d \mathbb{E}[z_i \langle x_i \rangle_t], \\ I_2 &= -\frac{\lambda}{2d} \sum_{i < j} (\mathbb{E} \langle x_i^2 x_j^2 \rangle_t - 2\mathbb{E}[(x_0)_i (x_0)_j \langle x_i x_j \rangle_t]) + \frac{1}{2} \sqrt{\frac{\lambda}{t}} \sum_{i < j} \mathbb{E}[W_{ij} \langle x_i x_j \rangle_t]. \end{cases} \quad (86)$$

Crucially, by the Nishimori identity (Proposition 2.2) and for $i < j$:

$$\begin{cases} \mathbb{E} \langle x_i^2 \rangle_t &= \mathbb{E}[\mathbb{E}[x_i^2 | Y]] = \mathbb{E}[(x_0)_i^2] = 1, \\ \mathbb{E} \langle x_i^2 x_j^2 \rangle_t &= \mathbb{E}[(x_0)_i^2] \mathbb{E}[(x_0)_j^2] = 1, \end{cases} \quad (87)$$

using our assumption of unit-variance for P_0 . Similarly:

$$\begin{cases} \mathbb{E}[(x_0)_i \langle x_i \rangle_t] &= \mathbb{E} \langle x_i^{(1)} x_i^{(2)} \rangle_t = \mathbb{E}[\langle x_i \rangle_t^2], \\ \mathbb{E}[(x_0)_i (x_0)_j \langle x_i x_j \rangle_t] &= \mathbb{E} \langle x_i^{(1)} x_j^{(1)} x_i^{(2)} x_j^{(2)} \rangle_t = \mathbb{E}[\langle x_i x_j \rangle_t^2]. \end{cases} \quad (88)$$

We denoted $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$ two i.i.d. copies drawn under $\langle \cdot \rangle_t$ (that we usually call ‘‘replicas’’). Finally, using Gaussian integration by parts (Lemma A.3) as well as Proposition 2.2, we get

$$\begin{cases} \sqrt{\frac{\lambda q}{1-t}} \mathbb{E}[z_i \langle x_i \rangle_t] &= \lambda q \mathbb{E}[\langle x_i^2 \rangle_t - \langle x_i \rangle_t^2], \\ \sqrt{\frac{\lambda}{t}} \mathbb{E}[W_{ij} \langle x_i x_j \rangle_t] &= \frac{\lambda}{d} \mathbb{E}[\langle x_i^2 x_j^2 \rangle_t - \langle x_i x_j \rangle_t^2]. \end{cases} \quad (89)$$

Combining eqs. (87) and (89) in eq. (86), we get:

$$\frac{I_1}{d} = -\frac{\lambda q}{2} \mathbb{E} \langle R_{12} \rangle_t, \quad (90)$$

Where we again used the *overlap*

$$R_{12} := \frac{\mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)}}{d} = \frac{1}{d} \sum_{i=1}^d x_i^{(1)} x_i^{(2)}.$$

Similarly,

$$\frac{I_2}{d} = \frac{\lambda}{2d^2} \sum_{i < j} \mathbb{E}[\langle x_i x_j \rangle_t^2] = \frac{\lambda}{4d^2} \sum_{i,j} \mathbb{E}[\langle x_i x_j \rangle_t^2] + \mathcal{O}(1/d) = \frac{\lambda}{4} \mathbb{E}\langle R_{12}^2 \rangle_t + \mathcal{O}(1/d), \quad (91)$$

where we used in (a) that P_0 has bounded support, and $\mathcal{O}(1/d)$ is uniform in $t \in (0, 1)$ and $q \geq 0$. Combining eqs. (90) and (91), we get:

$$\frac{1}{d} \frac{\partial F_d(t; \lambda)}{\partial t} = -\frac{\lambda q^2}{4} + \frac{\lambda}{4} \mathbb{E}\langle (R_{12} - q)^2 \rangle_t + \mathcal{O}(1/d). \quad (92)$$

In particular

$$\frac{1}{d} \int_0^1 \frac{\partial F_d(t; \lambda)}{\partial t} dt \geq -\frac{\lambda q^2}{4} + \mathcal{O}(1/d).$$

Plugging this back in eq. (84) yields

$$\liminf_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \geq f_{\text{RS}}(\lambda, q).$$

Taking the supremum over $q \geq 0$ yields

$$\liminf_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \geq \sup_{q \geq 0} f_{\text{RS}}(\lambda, q) = f_{\text{RS}}(\lambda),$$

which ends the proof. \square

4.3.2 Strategies for the upper bound

We now turn to the upper bound, completing the proof of Theorem 4.1.

Proposition 4.3 (Upper bound)

In the setting of Theorem 4.1, and recalling eq. (58):

$$\limsup_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \leq f_{\text{RS}}(\lambda) = \sup_{q \geq 0} f_{\text{RS}}(\lambda, q).$$

Several strategies have been developed in the literature to prove this upper bound.

- Given the proof of the lower bound that we developed, and in particular eq. (92), the concentration of R_{12} is a critical step in establishing the upper bound. A strategy, called *adaptive interpolation* (see [BM19] for a tutorial), has been to take $q_t = \mathbb{E}\langle R_{12} \rangle_t$ dependent on the interpolation path (hence the name “adaptive”), and prove the concentration $\mathbb{E}\langle (R_{12} - q_t)^2 \rangle_t \rightarrow 0$ to then obtain the upper bound on the free entropy. This last step is technical, and requires perturbing slightly the system by adding an infinitesimal amount of side information about the signal \mathbf{x}_0 .
- Another approach has been to directly try to prove overlap concentration (again under a small perturbation) and a mathematical formalisation of the cavity method (called the Aizenman-Sims-Starr scheme) to prove the upper bound [LM19].

- The authors of [Dia+16; DAM16] use the analysis of a message-passing algorithm, that we will discuss in Section 4.5, in order to obtain the upper bound of Proposition 4.3 in a large regime of λ . However, this bound might fail when $f_{\text{RS}}(\lambda, q)$ has several local maxima, as there the message-passing algorithm might not reach the optimal error (we will discuss this in Section 4.6)¹⁵.
- Finally, in the context of the spiked matrix model, a last approach has been developed in [EK18]: consider a constrained version of the free entropy, where we fix the constraint $\mathbf{x} \cdot \mathbf{x}_0 = m$, and analyze this constrained free entropy again via an interpolation argument. While this approach is harder to generalize, it provides the simplest proof. This is the one we carry out in Section 4.3.3.

4.3.3 Upper bound: constrained free entropy

We follow here the proof approach of [EK18], as laid out in [El 21].

Let us consider the free entropy for a *fixed* value of the overlap $R_{01} = \mathbf{x} \cdot \mathbf{x}_0 = m$. The idea of considering these quantities dates back to Franz and Parisi in the physics literature [FP95; FP98].

For simplicity we assume here that $\text{supp } P_0 = \{-1, 1\}$, we refer to [EK18] for the more general case. This assumption has the nice property that it makes the possible overlap values discrete: for any $\mathbf{x}, \mathbf{x}_0 \in \{\pm 1\}^d$, we have

$$\frac{\mathbf{x} \cdot \mathbf{x}_0}{d} \in T_d := \left\{ \frac{k}{d}, -d \leq k \leq d \right\} \subseteq [-1, 1].$$

Let us define $R(\mathbf{x}, \mathbf{x}') := (\mathbf{x} \cdot \mathbf{x}')/d$, and

$$\begin{cases} \mathcal{Z}_d(m, \mathbf{x}_0; \mathbf{W}) &:= \int P_0^{\otimes d}(\mathbf{d}\mathbf{x}) e^{H_d(\lambda, \mathbf{Y}; \mathbf{x})} \mathbf{1}\{R(\mathbf{x}, \mathbf{x}_0) = m\}, \\ \varphi_d(m, \mathbf{x}_0) &:= \frac{1}{d} \mathbb{E}_{\mathbf{W}} \log \mathcal{Z}_d(m, \mathbf{x}_0; \mathbf{W}). \end{cases} \quad (93)$$

Since $|T_d| = 2d + 1$, we have:

$$\begin{aligned} \frac{1}{d} F_d(\lambda) &= \frac{1}{d} \mathbb{E}_{\mathbf{x}_0, \mathbf{W}} \log \sum_{m \in T_d} \int P_0^{\otimes d}(\mathbf{d}\mathbf{x}) e^{H_d(\lambda, \mathbf{Y}; \mathbf{x})} \mathbf{1}\{R(\mathbf{x}, \mathbf{x}_0) = m\}, \\ &\leq \frac{\log(2d + 1)}{d} + \frac{1}{d} \mathbb{E}_{\mathbf{x}_0, \mathbf{W}} \max_{m \in T_d} \log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W}). \end{aligned} \quad (94)$$

The following lemma is then crucial.

Lemma 4.4 (Concentration of the overlap-constrained free entropy)

There is a universal constant $K > 0$ such that for any $\mathbf{x}_0 \in \{\pm 1\}^d$, $\lambda > 0$, and $\gamma \in \mathbb{R}$:

$$\mathbb{E}_{\mathbf{W}} \left[\exp \left\{ \frac{\gamma}{d} (\log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W}) - \mathbb{E}_{\mathbf{W}} \log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W})) \right\} \right] \leq \exp \left\{ \frac{K\lambda\gamma^2}{d} \right\}.$$

Let us postpone slightly its proof. We get from it

Corollary 4.5

For any $\mathbf{x}_0 \in \{\pm 1\}^d$, and any $\lambda > 0$

$$\frac{1}{d} \mathbb{E}_{\mathbf{W}} \max_{m \in T_d} \log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W}) \leq \frac{1}{d} \max_{m \in T_d} \mathbb{E}_{\mathbf{W}} \log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W}) + \lambda \cdot o_d(1),$$

¹⁵This issue is solved in [Dia+16] by using another technique known as spatial coupling.

where the $o_d(1)$ is uniform in \mathbf{x}_0 and λ .

Proof of Corollary 4.5 – Let $X(m, \mathbf{W}) := (1/d) \log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W})$, omitting the dependency on other parameters for clarity, and writing \mathbb{E} for $\mathbb{E}_{\mathbf{W}}$. We have, for any $\gamma > 0$:

$$\begin{aligned}
& \mathbb{E} \max_{m \in T_d} X(m, \mathbf{W}) - \max_{m \in T_d} \mathbb{E} X(m, \mathbf{W}) \\
& \leq \mathbb{E} \max_{m \in T_d} [X(m, \mathbf{W}) - \mathbb{E} X(m, \mathbf{W})], \\
& = \frac{1}{\gamma} \mathbb{E} \log e^{\gamma \max_{m \in T_d} [X(m, \mathbf{W}) - \mathbb{E} X(m, \mathbf{W})]}, \\
& \stackrel{(a)}{\leq} \frac{1}{\gamma} \log \mathbb{E} \max_{m \in T_d} e^{\gamma [X(m, \mathbf{W}) - \mathbb{E} X(m, \mathbf{W})]}, \\
& \leq \frac{1}{\gamma} \log \sum_{m \in T_d} \mathbb{E} e^{\gamma [X(m, \mathbf{W}) - \mathbb{E} X(m, \mathbf{W})]}, \\
& \leq \frac{1}{\gamma} \log \left[(2d+1) \max_{m \in T_d} \mathbb{E} e^{\gamma [X(m, \mathbf{W}) - \mathbb{E} X(m, \mathbf{W})]} \right], \\
& \stackrel{(b)}{\leq} \frac{1}{\gamma} \log \left[(2d+1) e^{\frac{K\lambda\gamma^2}{\sqrt{d}}} \right].
\end{aligned}$$

We used Jensen's inequality in (a), Lemma 4.4 in (b). Taking $\gamma = \sqrt{d}$ ends the proof. \square

We come back to Lemma 4.4.

Proof of Lemma 4.4 – We use Gaussian concentration, Theorem A.8, in the form of the moment generating function, i.e. eq. (134). Using again the notation $X(m, \mathbf{W}) := (1/d) \log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W})$, it is enough to show that $\|\mathbf{W} \mapsto X(m, \mathbf{W})\|_L \leq C\sqrt{\lambda}$, for some universal constant $C > 0$ (recall that $W_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/d)$ for $i < j$). Let us denote $\langle \cdot \rangle_m$ the Gibbs measure associated to $\mathcal{Z}(m, \mathbf{x}_0; \mathbf{W})$. Recall the definition of H_d in eq. (55), and of \mathbf{Y} in eq. (54). We compute

$$\frac{\partial X(m, \mathbf{W})}{\partial W_{ij}} = \frac{\sqrt{\lambda}}{d} \langle x_i x_j \rangle_m.$$

Therefore

$$\|\nabla_{\mathbf{W}} X(m, \mathbf{W})\|_2^2 = \frac{\lambda}{d^2} \sum_{i < j} \langle x_i x_j \rangle_m^2 \leq \frac{\lambda}{2},$$

since $|x_i| \leq 1$. \square

We apply Corollary 4.5 to eq. (94). For the (fixed) value of λ we consider, it yields:

$$\frac{1}{d} F_d(\lambda) \leq \frac{1}{d} \mathbb{E}_{\mathbf{x}_0} \max_{m \in T_d} \mathbb{E}_{\mathbf{W}} \log \mathcal{Z}(m, \mathbf{x}_0; \mathbf{W}) + o_d(1) = \mathbb{E}_{\mathbf{x}_0} \max_{m \in T_d} \varphi_d(m, \mathbf{x}_0) + o_d(1). \quad (95)$$

We must now control $\varphi_d(m, \mathbf{x}_0)$. We use a similar interpolation to Section 4.3.1. For any $t \in [0, 1]$ and any $q \in [0, 1]$, we define the interpolated model:

$$\begin{cases} \varphi(t) & := \frac{1}{d} \mathbb{E}_{\mathbf{W}} \log \int P_0^{\otimes d}(\mathbf{d}\mathbf{x}) e^{H_t(\mathbf{x})} \mathbf{1}\{R(\mathbf{x}, \mathbf{x}_0) = m\}, \\ H_t(\mathbf{x}) & := \sum_{i < j} \left[\sqrt{\lambda t} x_i x_j \left(W_{ij} + \frac{\sqrt{\lambda t}}{d} (x_0)_i (x_0)_j \right) - \frac{\lambda t}{2d} x_i^2 x_j^2 \right] \\ & + \sum_i \left[\sqrt{(1-t)\lambda q} x_i z_i + (1-t)\lambda m x_i (x_0)_i - \frac{(1-t)\lambda q}{2} x_i^2 \right]. \end{cases} \quad (96)$$

We dropped all other dependencies of φ to simplify the notations, and we want to compute $\varphi(1)$. Notice the slight difference with the problem of eq. (81), which corresponds to the case $m = q$ ¹⁶. Using again Gaussian integration by parts (but not the Nishimori identity this time!), we get

$$\begin{aligned}\varphi'(t) &= -\frac{\lambda m}{d} \sum_{i=1}^d (x_0)_i \mathbb{E}[\langle x_i \rangle_{t,m}] + \frac{\lambda q}{2d} \sum_{i=1}^d \mathbb{E}[\langle x_i \rangle_{t,m}^2] \\ &\quad + \frac{1}{d} \sum_{i < j} \left[-\frac{\lambda}{2d} \mathbb{E}[\langle x_i x_j \rangle_{t,m}^2] + \frac{\lambda}{d} \mathbb{E}[\langle x_i x_j \rangle_{t,m}] (x_0)_i (x_0)_j \right].\end{aligned}$$

Since the overlap with \mathbf{x}_0 is fixed, and using the same manipulations as in Section 4.3.1, this yields

$$\varphi'(t) = -\frac{\lambda m^2}{2} + \frac{\lambda}{4} q^2 - \frac{\lambda}{4} \mathbb{E}[\langle (R_{12} - q)^2 \rangle_{t,m}] + o_d(1),$$

where the $o_d(1)$ is uniform in $t \in [0, 1]$ and $R_{12} = (\mathbf{x} \cdot \mathbf{x}')$ for $\mathbf{x}, \mathbf{x}' \sim \langle \cdot \rangle_{t,m}$. We thus get that

$$\varphi_d(m, \mathbf{x}_0) = \varphi(1) \leq \varphi(0) - \frac{\lambda m^2}{2} + \frac{\lambda}{4} q^2 + o_d(1).$$

There remains to compute $\varphi(0)$. Dropping the overlap constraint, we have as a consequence of the inequality above

$$\varphi_d(m, \mathbf{x}_0) \leq \frac{1}{d} \sum_{i=1}^d \mathbb{E} \log \int P_0(dx) e^{\sqrt{\lambda q} x z + \lambda m x (x_0)_i - \frac{\lambda q}{2} x^2} + \frac{\lambda(q^2 - 2m^2)}{4} + o_d(1), \quad (97)$$

where \mathbb{E} is over $z \sim \mathcal{N}(0, 1)$, and the $o_d(1)$ is uniform in (q, m, \mathbf{x}_0) . Notice the similarity with $\psi(\lambda q)$ defined in eq. (56). Combining eqs. (95) and (97), we have up to a term $o_d(1)$:

$$\frac{1}{d} F_d(\lambda) \leq \mathbb{E}_{\mathbf{x}_0} \max_{m \in T_d} \left[\underbrace{\frac{1}{d} \sum_{i=1}^d \mathbb{E} \log \int P_0(dx) e^{\sqrt{\lambda q} x z + \lambda m x (x_0)_i - \frac{\lambda q}{2} x^2}}_{=: \Phi_d(\lambda q, \lambda m, \mathbf{x}_0)} \right] + \frac{\lambda(q^2 - 2m^2)}{4}. \quad (98)$$

We can decompose naturally $\Phi_d(r, s, \mathbf{x}_0) = (1/d) \sum_{i=1}^d \phi(r, s(x_0)_i)$, with

$$\phi(r, s) := \mathbb{E}_{z \sim \mathcal{N}(0, 1)} \log \int P_0(dx) e^{\sqrt{r} x z + s x - \frac{r}{2} x^2}, \quad (99)$$

for $r \geq 0$ and $s \in \mathbb{R}$. Notice the similarity with $\psi(r)$ in the RS formula (eq. (56)). We will exchange $\mathbb{E}_{\mathbf{x}_0}$ and $\max_{m \in T_d}$ in eq. (98). Similarly to what we did above, we will rely on a concentration argument. Similarly to Corollary 4.5, it is based on a concentration result:

Lemma 4.6 (Concentration of Φ_d)

There exists a constant $C = C(\lambda) > 0$ such that for any $t \geq 0$, any $q \in [0, 1]$ and $m \in [-1, 1]$:

$$\mathbb{P}_{\mathbf{x}_0} (|\Phi_d(\lambda q, \lambda m, \mathbf{x}_0) - \mathbb{E}_{\mathbf{x}_0} \phi(\lambda q, \lambda m x_0)| \geq t) \leq 2 \exp \left\{ -\frac{C(\lambda) dt^2}{2} \right\}.$$

¹⁶In particular, this new problem does not correspond to an auxiliary observation channel, and the interpolated measure does not satisfy the Nishimori identity (Proposition 2.2)!

Proof of Lemma 4.6 – Since $\text{supp}(P_0) = \{\pm 1\} \subseteq [-1, 1]$, one shows easily that $|\partial_r \phi| \leq 1$ and $|\partial_s \phi| \leq 1/2$ for any (r, s) . We thus obtain $|\phi(r, s)| \leq (r + |s|)$. Recall that $\Phi_d(r, s, \mathbf{x}_0)$ is a sum of bounded i.i.d. random variables. Lemma 4.6 is then a direct application of Hoeffding’s inequality (Theorem A.7). \square

We now come back to eq. (98). With a similar argument as in the proof of Corollary 4.5:

$$\begin{aligned}
& \mathbb{E}_{\mathbf{x}_0} \max_{m \in T_d} \Phi_d(\lambda q, \lambda m, \mathbf{x}_0) - \max_{m \in T_d} \mathbb{E}_{x_0} \phi(\lambda q, \lambda m x_0) \\
& \leq \mathbb{E}_{\mathbf{x}_0} \max_{m \in T_d} [\Phi_d(\lambda q, \lambda m, \mathbf{x}_0) - \mathbb{E}_{x_0} \phi(\lambda q, \lambda m x_0)] \\
& = \frac{1}{\gamma} \mathbb{E}_{\mathbf{x}_0} \log e^{\gamma \max_{m \in T_d} [\Phi_d(\lambda q, \lambda m, \mathbf{x}_0) - \mathbb{E}_{x_0} \phi(\lambda q, \lambda m x_0)]}, \\
& \leq \frac{1}{\gamma} \log \mathbb{E}_{\mathbf{x}_0} \max_{m \in T_d} e^{\gamma [\Phi_d(\lambda q, \lambda m, \mathbf{x}_0) - \mathbb{E}_{x_0} \phi(\lambda q, \lambda m x_0)]}, \\
& \leq \frac{1}{\gamma} \log \sum_{m \in T_d} \mathbb{E}_{\mathbf{x}_0} e^{\gamma [\Phi_d(\lambda q, \lambda m, \mathbf{x}_0) - \mathbb{E}_{x_0} \phi(\lambda q, \lambda m x_0)]}, \\
& \stackrel{(a)}{\leq} \frac{1}{\gamma} \log \sum_{m \in T_d} e^{\frac{C(\lambda) \gamma^2}{d}}, \\
& \leq \frac{\log(2d+1)}{\gamma} + \frac{C(\lambda) \gamma}{d} \stackrel{(b)}{=} \mathcal{O}\left(\frac{\log d}{\sqrt{d}}\right).
\end{aligned}$$

We used Lemma 4.6 (recall the equivalence of a sub-Gaussian tail bound and a bound on the Moment Generating function, cf. Definition A.1), and picked $\gamma = \sqrt{d}$ in (b). What we have shown is that for all $m \in T_d$, and all $q \in [0, 1]$:

$$\limsup_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \leq \underbrace{\mathbb{E}_{x_0} \phi(\lambda q, \lambda m x_0)}_{=:\bar{\phi}(\lambda q, \lambda m)} + \frac{\lambda(q^2 - 2m^2)}{4}.$$

In particular we have:

$$\limsup_{d \rightarrow \infty} \frac{1}{d} F_d(\lambda) \leq \sup_{m \in [-1, 1]} \inf_{q \in [0, 1]} \left(\bar{\phi}(\lambda q, \lambda m) + \frac{\lambda(q^2 - 2m^2)}{4} \right). \quad (100)$$

The final step is to show that the RHS of eq. (100) is upper-bounded by the replica-symmetric prediction of eq. (58):

$$\sup_{m \in [-1, 1]} \inf_{q \in [0, 1]} \left(\bar{\phi}(\lambda q, \lambda m) + \frac{\lambda(q^2 - 2m^2)}{4} \right) \leq \sup_{q \geq 0} f_{\text{RS}}(\lambda, q). \quad (101)$$

Setting $q = |m|$ we obtain

$$\sup_{m \in [-1, 1]} \inf_{q \in [0, 1]} \left(\bar{\phi}(\lambda q, \lambda m) + \frac{\lambda(q^2 - 2m^2)}{4} \right) \leq \sup_{m \in [-1, 1]} \left(\bar{\phi}(\lambda|m|, \lambda m) - \frac{\lambda m^2}{4} \right). \quad (102)$$

We use the following property, proven in [EK18, Lemma 6]: for any $r \geq 0$,

$$\bar{\phi}(r, -r) \leq \bar{\phi}(r, r).$$

So the supremum in eq. (102) can be reduced to $m \in [0, 1]$. This ends the proof, as recall that in our notations

$$f_{\text{RS}}(\lambda, q) = \bar{\phi}(\lambda q, \lambda q) - \frac{\lambda q^2}{4}. \quad \square$$

4.4 Statistically optimal estimation

4.4.1 From the free entropy to the MMSE

We have now proven Theorem 4.1. Let us now investigate its consequences on the asymptotic MMSE. Recall the I-MMSE formula (Proposition 2.5), which we rewrite in the present context

Proposition 4.7 (I-MMSE formula)

Under our assumptions on P_0 , and for any $\lambda \geq 0$:

$$\frac{1}{d} \frac{\partial F_d(\lambda)}{\partial \lambda} = \frac{1}{4} \mathbb{E} \left\langle \left(\frac{1}{d} \sum_{i=1}^d x_i(x_0)_i \right)^2 \right\rangle + o_d(1).$$

Notice the first term of the RHS is proportional to $\mathbb{E}\langle R_{01}^2 \rangle = \mathbb{E}\langle R_{12}^2 \rangle$.

In terms of mutual information, notice that (see Proposition 2.4)

$$\begin{aligned} \frac{1}{d} I(\mathbf{x}_0 \mathbf{x}_0^\top; \mathbf{Y}) &= \frac{\lambda}{2d^2} \sum_{i < j} \mathbb{E}[x_i^2 x_j^2] - \frac{1}{d} F_d(\lambda), \\ &= \frac{\lambda d(d-1)}{4d^2} - \frac{1}{d} F_d(\lambda). \end{aligned}$$

In particular, Theorem 4.1 also gives the asymptotic value of the mutual information $I(\mathbf{x}_0 \mathbf{x}_0^\top; \mathbf{Y})/d$. And the I-MMSE formula in terms of the MMSE on the matrix $\mathbf{x}\mathbf{x}^\top$ reads:

$$\begin{aligned} \frac{1}{d} \frac{\partial I(\mathbf{x}_0 \mathbf{x}_0^\top; \mathbf{Y})}{\partial \lambda} &= \frac{1}{4} - \frac{1}{d} \frac{\partial F_d(\lambda)}{\partial \lambda} + o_d(1) \\ &= \frac{1}{4} \left[1 - \mathbb{E}\langle R_{01}^2 \rangle \right] + o_d(1) \\ &= \frac{1}{4d^2} \mathbb{E} \left\| \mathbf{x}_0 \mathbf{x}_0^\top - \langle \mathbf{x} \mathbf{x}^\top \rangle \right\|^2 + o_d(1). \end{aligned} \tag{103}$$

Proof of Proposition 4.7 – By Proposition 2.5 (recall we do not consider the diagonal observations, and notice that there is a difference in scaling as the noise has variance $1/d$), one gets:

$$\begin{aligned} \frac{1}{d} \frac{\partial F_d(\lambda)}{\partial \lambda} &= \frac{1}{2d^2} \mathbb{E} \left[\left\| \langle (x_i x_j)_{i < j} \rangle \right\|^2 \right], \\ &= \frac{1}{2d^2} \sum_{i < j} \mathbb{E} \left[\langle x_i x_j \rangle^2 \right], \\ &= \frac{1}{4d^2} \sum_{i,j} \mathbb{E} \left[\langle x_i x_j \rangle^2 \right] - \frac{1}{4d^2} \sum_{i=1}^d \mathbb{E}[\langle x_i^2 \rangle^2], \\ &\stackrel{(a)}{=} \frac{1}{4} \mathbb{E} \left\langle \left(\frac{1}{d} \sum_{i=1}^d x_i x_i' \right)^2 \right\rangle - \frac{1}{4d^2} \sum_{i=1}^d \mathbb{E}[\langle x_i^2 \rangle^2], \\ &\stackrel{(b)}{=} \frac{1}{4} \mathbb{E} \left\langle \left(\frac{1}{d} \sum_{i=1}^d x_i(x_0)_i \right)^2 \right\rangle + o_d(1). \end{aligned}$$

(a) follows from Proposition 2.2, and we denoted x, x' as two independent samples from the posterior (or Gibbs) distribution. (b) is a consequence of $\mathbb{E}[\langle x_i^2 \rangle^2] \leq \mathbb{E}[\langle x_i^4 \rangle] = \mathbb{E}_{P_0}[x^4]$ and our assumption on P_0 . \square

The issue we face is that, while we proved a limiting formula for $f_d(\lambda) := F_d(\lambda)/d$, we did not prove that $f'_d(\lambda)$ converges to the derivative of this limit. The next lemma shows that this issue can be easily solved.

Lemma 4.8

The function $\lambda \geq 0 \mapsto f_{\text{RS}}(\lambda)$ is convex. Further, there exists a *countable* set $C \subseteq [0, \infty)$, such that for all $\lambda \in D := \mathbb{R} \setminus C$:

- (i) $f_{\text{RS}}(\lambda)$ is differentiable in λ .
- (ii) $f'_d(\lambda) \rightarrow f'_{\text{RS}}(\lambda)$ as $d \rightarrow \infty$.

Proof of Lemma 4.8 – We make the following observations: $f_d(\lambda)$ is differentiable and convex (see Corollary 2.6), and $f_d(\lambda) \rightarrow f_{\text{RS}}(\lambda)$ for all $\lambda \geq 0$ by Theorem 4.1. This shows that $f_{\text{RS}}(\lambda)$ is convex, from which point (i) follows. Point (ii) is a classical result of convex analysis as well, see Lemma 2.10. \square

Importantly, the set D in Lemma 4.8 is *exactly* the set of points where $f_{\text{RS}}(\lambda)$ is non-differentiable. Recall that

$$f_{\text{RS}}(\lambda) = \sup_{q \geq 0} \left[\psi(\lambda q) - \frac{\lambda q^2}{4} \right] = \sup_{r \geq 0} \left[\psi(r) - \frac{r^2}{4\lambda} \right]. \quad (104)$$

By the envelope theorem, we get easily that

$$f'_{\text{RS}}(\lambda) = \frac{r_*(\lambda)^2}{4\lambda^2} = \frac{q_*(\lambda)^2}{4},$$

where $q^*(\lambda)$ is any maximizer of eq. (104). In particular, at any $\lambda \in D$ such a $q_*(\lambda)$ is unique! As a direct consequence of Lemma 2.10, we obtain that for any $\lambda \in D$:

Corollary 4.9 (Limiting MMSE)

For any $\lambda \in D$:

$$\begin{cases} \lim_{d \rightarrow \infty} \text{MMSE}_d &= \lim_{d \rightarrow \infty} \frac{1}{d^2} \mathbb{E} \left\| \mathbf{x}_0 \mathbf{x}_0^\top - \langle \mathbf{x} \mathbf{x}^\top \rangle \right\|^2 = 1 - q_*(\lambda)^2, \\ \lim_{d \rightarrow \infty} \mathbb{E} \left\langle \left(\frac{\mathbf{x}_0 \cdot \mathbf{x}}{d} \right)^2 \right\rangle &= q_*(\lambda)^2. \end{cases} \quad (105)$$

Moreover, $\lambda \in D \mapsto q_*(\lambda)$ is non-decreasing.

Finally, notice that $q_*(\lambda)$ satisfy the following equation, for all $\lambda \in D$:

$$q_*(\lambda) = 2\psi'[\lambda q_*(\lambda)]. \quad (106)$$

Phase transitions – The set of points C where $f_{\text{RS}}(\lambda)$ is not differentiable precisely correspond to the location of *phase transitions*, of which we saw an example in 1-sparse denoising in Section 2.4. At these points, the maximum $q_*(\lambda)$ might not be unique: this non-uniqueness of maximizers of $f_{\text{RS}}(\lambda, q)$ will also be a driver behind the phenomenon of statistical-to-computational gaps as we will discuss in Section 4.6.

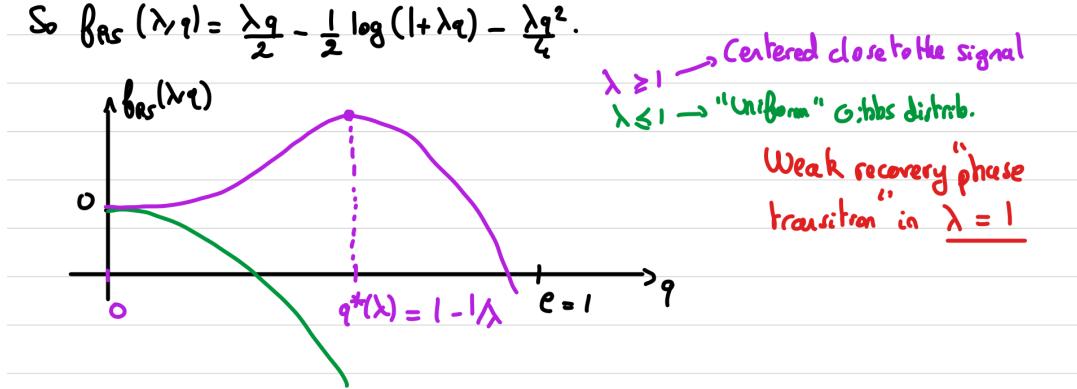
4.4.2 A first application: the Gaussian prior

Let us illustrate our results in the simple case of a Gaussian prior¹⁷ $P_0 = \mathcal{N}(0, 1)$. We have computed $\psi(r)$ in this case in Section 2.3.1:

$$\psi(r) = \frac{r}{2} - \frac{1}{2} \log(1 + r).$$

So:

$$f_{\text{RS}}(\lambda, q) = \frac{\lambda q}{2} - \frac{1}{2} \log(1 + \lambda q) - \frac{\lambda q^2}{4},$$



And by eq. (106):

$$q_*(\lambda) = \frac{\lambda q_*(\lambda)}{1 + \lambda q_*(\lambda)}.$$

From there we obtain

$$q_*(\lambda) = \begin{cases} 0 & \text{if } \lambda \leq 1, \\ 1 - \frac{1}{\lambda} & \text{if } \lambda \geq 1. \end{cases} \quad (107)$$

And:

$$\lim_{d \rightarrow \infty} \text{MMSE}_d = 1 - q_*(\lambda)^2 = \begin{cases} 1 & \text{if } \lambda \leq 1, \\ \frac{2\lambda - 1}{\lambda^2} & \text{if } \lambda \geq 1. \end{cases} \quad (108)$$

A phase transition occurs at the reconstruction threshold $\lambda_c = 1$. For $\lambda < \lambda_c$, non-trivial estimation of \mathbf{x}_0 is *information-theoretically impossible*: the Bayes-optimal estimator, the posterior (Gibbs) average, contains no information about \mathbf{x}_0 . However, for $\lambda > \lambda_c$, estimation of \mathbf{x}_0 is possible. Notice that

$$f_{\text{RS}}(\lambda) = f_{\text{RS}}(\lambda, q_*(\lambda)) = \begin{cases} 0 & \text{if } \lambda \leq 1, \\ \frac{1}{4} \left(\lambda - \frac{1}{\lambda} \right) - \frac{1}{2} \log \lambda & \text{if } \lambda > 1. \end{cases}$$

has a unique non-differentiability point at $\lambda = \lambda_c = 1$, corresponding to the phase transition.

Which estimator is optimal ? – Eq. (107) might ring a bell to the attentive reader: it looks suspiciously close to the squared correlation achieved by the top eigenvector

¹⁷Strictly speaking since $\mathcal{N}(0, 1)$ does not have bounded support, but this assumption can easily be relaxed to e.g. sub-Gaussianity as we mentioned.

that we derived in Theorem 3.6. If $\mathbf{v}_{\max}(\mathbf{Y})$ is a top eigenvector with norm \sqrt{d} , we showed that for $\lambda \geq 1$:

$$\left(\frac{\mathbf{v}_{\max} \cdot \mathbf{x}_0}{d} \right)^2 \rightarrow 1 - \lambda^{-1}. \quad (109)$$

This can be understood mathematically. Being careful about the symmetry of the problem, we can define a “PCA” estimator for $\mathbf{M}_0 := \mathbf{x}_0 \mathbf{x}_0^\top$ as

$$\hat{\mathbf{M}}_{\text{PCA}}(\mathbf{Y}) := \mathbf{v}_{\max}(\mathbf{Y}) \mathbf{v}_{\max}(\mathbf{Y})^\top.$$

It is easy to check from eq. (109) that

$$\text{MSE}(\hat{\mathbf{M}}_{\text{PCA}}) = \frac{1}{d^2} \mathbb{E} \left\| \mathbf{M}_0 - \hat{\mathbf{M}}_{\text{PCA}}(\mathbf{Y}) \right\|^2 = \frac{2}{\lambda} + o_d(1).$$

This looks smaller than the MMSE of eq. (108), but this is only a normalization artifact. Indeed, recall that if $\hat{\mathbf{M}}_{\text{opt}} = \langle \mathbf{x} \mathbf{x}^\top \rangle$, we have by the Nishimori identity and Corollary 4.9:

$$\frac{1}{d^2} \mathbb{E}[\|\hat{\mathbf{M}}_{\text{opt}}\|^2] = \mathbb{E}[\langle \mathbf{x} \mathbf{x}^\top \rangle \cdot \mathbf{x}_0 \mathbf{x}_0^\top] = q_*(\lambda) + o(1).$$

Therefore one should consider instead a renormalized PCA estimator:

$$\hat{\mathbf{M}}'_{\text{PCA}}(\mathbf{Y}) := q_*(\lambda) \mathbf{v}_{\max}(\mathbf{Y}) \mathbf{v}_{\max}(\mathbf{Y})^\top.$$

Now one checks directly

$$\text{MSE}(\hat{\mathbf{M}}'_{\text{PCA}}) = \frac{1}{d^2} \mathbb{E} \left\| \mathbf{M}_0 - \hat{\mathbf{M}}'_{\text{PCA}}(\mathbf{Y}) \right\|^2 = 1 - q_*(\lambda)^2 + o_d(1) = \text{MMSE}_d + o_d(1).$$

It is thus possible to reach the MMSE with a very simple polynomial-time algorithm: just taking the largest eigenvector of \mathbf{Y} (PCA). This motivates the important question:

Is PCA optimal for any prior P_0 ? If not, can we probe the best algorithms?

We tackle this challenge in the next section, before summarizing our statistical and algorithmic findings in Section 4.6 and applying them to different priors.

4.5 Algorithms: approximate message-passing (AMP)

4.5.1 Heuristic derivation from the cavity method

As we have seen in Section 2, the estimator that minimizes the Mean-Squared Error is simply the posterior mean, in our notations:

$$\hat{\mathbf{x}}_{\text{opt}}(\mathbf{Y}) = \mathbb{E}[\mathbf{x}|\mathbf{Y}] = \langle \mathbf{x} \rangle. \quad (110)$$

Simply writing eq. (110) does not solve the problem of course, since in general computing such large high-dimensional integrals is computationally intractable. In this section, we will see that the cavity method that we used to derive the asymptotic free entropy of the problem can also be used to gain insight into the development of efficient (i.e. polynomial-time) algorithms to approximate the estimator of eq. (110).

As in Section 4.2, we denote \mathbf{x}^* rather than \mathbf{x}_0 the signal, to distinguish it from the “cavity” in the system with $(d+1)$ variables.

Let us come back to eq. (75), which we recall reads at leading order:

$$d\mu_0(x_0) = \frac{1}{Z_0} dP_0(x_0) \exp \left\{ \sqrt{\lambda} x_0 \sum_{i=1}^d Y_{0i} \langle x_i \rangle_{i \rightarrow 0} - \frac{\lambda x_0^2}{2d} \sum_{i=1}^d \langle x_i \rangle_{i \rightarrow 0}^2 \right\}.$$

Here μ_0 is the marginal of the variable x_0 under the posterior distribution $\langle \cdot \rangle$. The choice of the spin 0 to be the “cavity” was arbitrary, and we could have done the same computation with any spin. In particular, the Gibbs average of x_i can be written as (to leading order as $d \rightarrow \infty$):

$$\begin{cases} h_i := \sum_{\substack{j=0 \\ j \neq i}}^d Y_{ij} \langle x_j \rangle_{j \rightarrow i} = \frac{\sqrt{\lambda} x_i^*}{d} \sum_{\substack{j=0 \\ j \neq i}}^d x_j^* \langle x_j \rangle_{j \rightarrow i} + \sum_{\substack{j=0 \\ j \neq i}}^d W_{ij} \langle x_j \rangle_{j \rightarrow i}, & (111a) \\ \langle x_i \rangle = \eta \left(\frac{\lambda}{d} \sum_{\substack{j=0 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow i}^2, \sqrt{\lambda} h_i \right), & (111b) \end{cases}$$

where the distribution $\nu_{j \rightarrow i}$ is the cavity distribution of x_j in the absence of the spin x_i , and we introduced the *denoiser* associated to P_0 :

$$\eta(A, B) := \frac{\int P_0(dx) x e^{-\frac{Ax^2}{2} + Bx}}{\int P_0(dx) e^{-\frac{Ax^2}{2} + Bx}} = \partial_B \log \int P_0(dx) e^{-\frac{Ax^2}{2} + Bx}. \quad (112)$$

Notice its similarity to the function $\phi(r, s)$ of eq. (93) and to the function $\psi(r)$ of eq. (56). h_i is sometimes referred to as the *cavity field*.

A naive iteration – Replacing $\langle x_j \rangle_{j \rightarrow i}$ by $\langle x_j \rangle$, it is very tempting to try to write an iterative solver to solve eq. (111), that would read:

$$\hat{\mathbf{x}}^{t+1} = \eta \left(\frac{\lambda}{d} \|\hat{\mathbf{x}}^t\|^2, \sqrt{\lambda} \underbrace{\mathbf{Y} \hat{\mathbf{x}}^t}_{=: \mathbf{h}^t} \right). \quad (113)$$

This is sometimes-called a *naive mean-field* iteration. It turns out that iterating eq. (113) does not allow to approximate $\mathbb{E}[\mathbf{x}|\mathbf{Y}]$ in general. The main reason is that in eq. (111), what appears in the expression of h_i is the *cavity mean* $\langle x_j \rangle_{j \rightarrow i}$, and as we saw this cavity mean is *independent* of Y_{ij} (conditionally on \mathbf{x}^*). In particular, this had the very important consequence that (conditionally on \mathbf{x}^* and Y_{ab} for $a, b \neq i$), h_i has a Gaussian distribution: we expect from eq. (111a) that, as $d \rightarrow \infty$ and conditionally on \mathbf{x}^* and Y_{ab} for $a, b \neq i$:

$$h_i \stackrel{d}{=} \mathcal{N} \left(\frac{\sqrt{\lambda} x_i^*}{d} \sum_{\substack{j=0 \\ j \neq i}}^d x_j^* \langle x_j \rangle_{j \rightarrow i}, \frac{1}{d} \sum_{\substack{j=0 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow i}^2 \right). \quad (114)$$

Further, by concentration, we expect actually the distribution of h_i (conditionally on \mathbf{x}^* only) to be approximately Gaussian as $d \rightarrow \infty$. On the other hand, $\langle x_j \rangle$ is **not independent of Y_{ij}** , and this creates additional correlations that make the conditional distribution of h_i in eq. (113) non-Gaussian.

Correction: the TAP equations – In the physics literature, this issue was understood and corrected by Thouless, Anderson and Palmer in the context of the Sherrington-Kirkpatrick model [TAP77]. Our goal is to express h_i in eq. (111a) as a function of $\{\langle x_j \rangle\}$, rather than the cavity means $\{\langle x_j \rangle_{j \rightarrow i}\}$. To achieve this, we come back to eq. (111). We apply the cavity method *two times*.

(i) We remove x_i and consider the cavity distribution $\langle \cdot \rangle_{[d+1] \setminus \{i\} \rightarrow i}$. This yields eq. (111), which we can rewrite as:

$$\langle x_i \rangle = \eta \left(\frac{\lambda}{d} \sum_{\substack{j=0 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow i}^2, \sqrt{\lambda} \sum_{\substack{j=0 \\ j \neq i}}^d Y_{ij} \langle x_j \rangle_{j \rightarrow i} \right). \quad (115)$$

(ii) We consider the cavity distribution $\langle \cdot \rangle_{[d] \rightarrow 0}$. We then create a cavity *in this distribution* by removing the variable x_i . This creates a distribution $\langle \cdot \rangle_{[d] \setminus \{i\} \rightarrow \{i,0\}}$ with two cavities, and associated marginals $\langle \cdot \rangle_{j \rightarrow \{i,0\}}$. The cavity equations for this distribution read:

$$\langle x_i \rangle_{i \rightarrow 0} = \eta \left(\frac{\lambda}{d} \sum_{\substack{j=1 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow \{i,0\}}^2, \sqrt{\lambda} \sum_{\substack{j=1 \\ j \neq i}}^d Y_{ij} \langle x_j \rangle_{j \rightarrow \{i,0\}} \right). \quad (116)$$

In eq. (115) we can separate the contribution of the variable x_0 and do a Taylor expansion (recall $Y_{i0} = \mathcal{O}(1/\sqrt{d})$). We reach:

$$\langle x_i \rangle = \eta \left(\frac{\lambda}{d} \sum_{\substack{j=1 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow i}^2, \sqrt{\lambda} \sum_{\substack{j=1 \\ j \neq i}}^d Y_{ij} \langle x_j \rangle_{j \rightarrow i} \right) + \partial_B \eta \cdot \sqrt{\lambda} Y_{i0} \langle x_0 \rangle_{0 \rightarrow i} + \mathcal{O}(1/d). \quad (117)$$

In eq. (117), the parameters of $\partial_B \eta$ are the same as the ones of η . This gives:

$$\begin{aligned} \sum_{i=1}^d Y_{i0} \langle x_i \rangle &= \sum_{i=1}^d Y_{i0} \eta \left(\frac{\lambda}{d} \sum_{\substack{j=1 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow i}^2, \sqrt{\lambda} \sum_{\substack{j=1 \\ j \neq i}}^d Y_{ij} \langle x_j \rangle_{j \rightarrow i} \right) \\ &\quad + \sqrt{\lambda} \sum_{i=1}^d Y_{i0}^2 \cdot \partial_B \eta \left(\frac{\lambda}{d} \sum_{\substack{j=1 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow i}^2, \sqrt{\lambda} \sum_{\substack{j=1 \\ j \neq i}}^d Y_{ij} \langle x_j \rangle_{j \rightarrow i} \right) \cdot \langle x_0 \rangle_{0 \rightarrow i} + o(1). \end{aligned} \quad (118)$$

We recognize in the first term of eq. (118) almost the right-hand-side of eq. (116)! We expect that $\langle x_j \rangle_{j \rightarrow i}$ and $\langle x_j \rangle_{j \rightarrow \{i,0\}}$ are close, and moreover (conditionally on \mathbf{x}^*), they are both uncorrelated to Y_{i0} and Y_{ij} . Thus we posit that we make a negligible error by replacing $\langle x_j \rangle_{j \rightarrow i}$ by $\langle x_j \rangle_{j \rightarrow \{i,0\}}$ in the first term of eq. (118). Using then eq. (116) we reach:

$$\begin{aligned} \sum_{i=1}^d Y_{i0} \langle x_i \rangle &= \sum_{i=1}^d Y_{i0} \langle x_i \rangle_{i \rightarrow 0} \\ &\quad + \sqrt{\lambda} \sum_{i=1}^d Y_{i0}^2 \cdot \partial_B \eta \left(\frac{\lambda}{d} \sum_{\substack{j=0 \\ j \neq i}}^d \langle x_j \rangle_{j \rightarrow i}^2, \sqrt{\lambda} \sum_{\substack{j=0 \\ j \neq i}}^d Y_{ij} \langle x_j \rangle_{j \rightarrow i} \right) \cdot \langle x_0 \rangle_{0 \rightarrow i} + o(1). \end{aligned} \quad (119)$$

Notice that we added back the term $j = 0$ in the parameters of $\partial_B \eta$, as this only leads to a subleading contribution. This allows to recognize in the second parameter of $\partial_B \eta$ the cavity field h_i , see eq. (111)! Combining it all and using concentration of measure, we see that eq. (111) with $i = 0$ can be written to leading order as:

$$\begin{cases} h_0 = \sum_{i=1}^n Y_{i0} \langle x_i \rangle - \frac{\sqrt{\lambda}}{d} \sum_{i=1}^d \partial_B \eta \left(\frac{\lambda}{d} \sum_{i=1}^d \langle x_i \rangle^2, h_i \right) \cdot \langle x_0 \rangle, \end{cases} \quad (120a)$$

$$\begin{cases} \langle x_0 \rangle = \eta \left(\frac{\lambda}{d} \sum_{i=1}^d \langle x_i \rangle^2, \sqrt{\lambda} h_0 \right), \end{cases} \quad (120b)$$

Generalizing it to all $i \in [d]$, we get the self-consistent equations (recall that we have no diagonal observations, so we set $Y_{ii} = 0$ by convention)

$$\left\{ \begin{array}{l} h_i = \sum_{j=1}^d Y_{ij} \langle x_j \rangle - \frac{\sqrt{\lambda}}{d} \sum_{k=1}^d \partial_B \eta \left(\frac{\lambda}{d} \sum_{j=1}^d \langle x_j \rangle^2, \sqrt{\lambda} h_k \right) \cdot \langle x_i \rangle, \end{array} \right. \quad (121a)$$

$$\left\{ \begin{array}{l} \langle x_i \rangle = \eta \left(\frac{\lambda}{d} \sum_{j=1}^d \langle x_j \rangle^2, \sqrt{\lambda} h_i \right). \end{array} \right. \quad (121b)$$

We have achieved our goal of expressing h_i (to leading order) as a function of the posterior averages $\langle x_j \rangle$! Eq. (121) are called the *TAP equations* of the problem: compare them with the naive mean-field equations of eq. (113)! The second term in eq. (121a) is the new part: it is usually referred to as the *Onsager reaction term*: essentially, it ensures that the distribution of the cavity fields h_i remains Gaussian, despite the correlation between $\langle x_j \rangle$ and Y_{ij} in the first term of eq. (121a).

Not-so-naive iterations: the AMP algorithm – We can now use eq. (121) to design a corrected iteration scheme! If one transforms the cavity equations (115) and (116) into iteration schemes by naturally setting a time index $t + 1$ on the left-hand side and t on the right-hand side of both these equations, and tracks back our derivation, we arrive at the following set of equations:

$$\left\{ \begin{array}{l} \mathbf{h}^t = \mathbf{Y} \hat{\mathbf{x}}^t - \sqrt{\lambda} \left(\frac{1}{d} \sum_{i=1}^d \partial_B \eta \left[\frac{\lambda}{d} \|\hat{\mathbf{x}}^{t-1}\|^2, \sqrt{\lambda} \mathbf{h}^{t-1} \right] \right) \hat{\mathbf{x}}^{t-1}, \end{array} \right. \quad (122a)$$

$$\left\{ \begin{array}{l} \hat{\mathbf{x}}^{t+1} = \eta \left(\frac{\lambda}{d} \|\hat{\mathbf{x}}^t\|^2, \sqrt{\lambda} \mathbf{h}^t \right), \end{array} \right. \quad (122b)$$

where the function η (defined in eq. (112)) and its derivative $\partial_B \eta$ are applied element-wise to their second parameter. Equivalently, we can write it as:

$$\left\{ \begin{array}{l} \mathbf{h}^t = \mathbf{Y} \hat{\mathbf{x}}^t - \sqrt{\lambda} \left(\frac{1}{d} \sum_{i=1}^d \partial_B \eta \left[\lambda q_d^{t-1}, \sqrt{\lambda} \mathbf{h}^{t-1} \right] \right) \hat{\mathbf{x}}^{t-1}, \end{array} \right. \quad (123a)$$

$$\left\{ \begin{array}{l} q_d^t = \frac{1}{d} \|\hat{\mathbf{x}}^t\|^2, \end{array} \right. \quad (123b)$$

$$\left\{ \begin{array}{l} \hat{\mathbf{x}}^{t+1} = \eta \left(\lambda q_d^t, \sqrt{\lambda} \mathbf{h}^t \right), \end{array} \right. \quad (123c)$$

This algorithm, which we derived as an iteration scheme of the TAP equations, is known as *Approximate Message-Passing* (AMP). Each iteration has a naive cost $\mathcal{O}(d^2)$ (because of the matrix multiplication term), and for a given denoiser function η (given by the prior P_0), it is very easy to implement. While its derivation involved heuristics, the algorithm is now well-defined, and in what follows we will see how one can mathematically characterize its performance as $d \rightarrow \infty$.

AMP and belief propagation – AMP can be also derived as an approximation of *belief propagation* (BP) (or *sum-product* algorithm) [MM09]. We detail this derivation in Section ???. This is where AMP gets its name of “approximate” message-passing: as we detail, this approximation is essentially exact in the high-dimensional limit.

Initialization of AMP – We have not discussed how to initialize AMP. The simplest way is randomly: $\hat{x}_i^0 \stackrel{\text{i.i.d.}}{\sim} P_0$, which has almost zero correlation with the signal $|\hat{\mathbf{x}}^0 \cdot \mathbf{x}^*| \propto 1/\sqrt{d}$. One can also design more sophisticated methods to try to initialize AMP in a “warm start” that already has a positive correlation with \mathbf{x}^* :

- **Spectral** – An example would be to take the first eigenvector of \mathbf{Y} as a first estimate: $\hat{\mathbf{x}}_0 \propto \mathbf{v}_{\max}(\mathbf{Y})$ (an example of a so-called *spectral method*). As we have seen, this will work exactly when $\lambda > 1$.
- **Side information** – Sometimes, one also has access to a small amount of side information via an observation $\mathbf{y} = \varepsilon \mathbf{x}^* + \mathbf{g}$ for $\varepsilon \ll 1$ and $\mathbf{g} \sim \mathcal{N}(0, \mathbf{I}_d)$. From there one can build a estimator $\hat{x}_i^0 = \mathbb{E}[x_i | y_i]$, which achieves positive correlation to \mathbf{x}^* as we saw in Section 2.3.1.

4.5.2 The state evolution of AMP: heuristics

As we have seen in the cavity derivation, the key property brought by the presence of the Onsager reaction term was that (conditionally on \mathbf{x}^*), the distribution of \mathbf{h}^t should remain close to a Gaussian vector. Motivated by this observation, we make here the following two important assumptions

- **Concentration of measure** – Assume that $q_d^t = \|\hat{\mathbf{x}}^t\|^2/d \rightarrow q^t$ as $d \rightarrow \infty$ (in probability), and that $m_d^t := (\hat{\mathbf{x}}^t \cdot \mathbf{x}^*)/d \rightarrow m^t$ as $d \rightarrow \infty$.
- **Fresh noise** – As we saw, the role of the memory (Onsager) term, with respect to the naive iterations of eq. (113), was to ensure that all the iterates \mathbf{h}^t remain close to a Gaussian vector (conditionally on \mathbf{x}^*). Motivated by this remark, assume that the distribution of \mathbf{h}^t in eq. (123a) is close (as $d \rightarrow \infty$) to the one of

$$\tilde{\mathbf{h}}^t := \tilde{\mathbf{Y}}_t \hat{\mathbf{x}}^t,$$

where $\tilde{\mathbf{Y}}_t = (\sqrt{\lambda}/d) \mathbf{x}^* (\mathbf{x}^*)^\top + \tilde{\mathbf{W}}_t$, and $\tilde{\mathbf{W}}_1, \dots, \tilde{\mathbf{W}}_t \stackrel{\text{i.i.d.}}{\sim} \text{GOE}(d)$, i.e. where we re-sample a fresh noise at each iteration.

Under the two assumptions above, the distribution of the iterates of eq. (123) are close to the ones of

$$\begin{cases} \tilde{\mathbf{h}}^t &= \sqrt{\lambda} m^t \mathbf{x}^* + \sqrt{q^t} \mathbf{z}_t, \\ \hat{\mathbf{x}}^{t+1} &= \eta(\lambda q^t, \sqrt{\lambda} \tilde{\mathbf{h}}^t). \end{cases} \quad (124)$$

Here $\mathbf{z}_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \mathbf{I}_d)$ for all times $t \geq 0$. In particular we have

$$\begin{aligned} m^{t+1} &= \frac{1}{d} \sum_{i=1}^d x_i^* \eta(\lambda q^t, \sqrt{\lambda} \tilde{h}_i^t) + o(1), \\ &\stackrel{(a)}{=} \mathbb{E}_{\substack{x^* \sim P_0 \\ z \sim \mathcal{N}(0,1)}} \left[x^* \eta \left(\lambda q^t, \lambda m^t x^* + \sqrt{\lambda q^t} z \right) \right]. \end{aligned} \quad (125)$$

using the concentration assumption in (a). In the same way, we obtain

$$q^{t+1} = \mathbb{E}_{\substack{x^* \sim P_0 \\ z \sim \mathcal{N}(0,1)}} \left[\eta \left(\lambda q^t, \lambda m^t x^* + \sqrt{\lambda q^t} z \right)^2 \right]. \quad (126)$$

Eqs. (125) and (126) form the *state evolution* of the AMP algorithm. They are a *deterministic* recursion, which allows at each time step to characterize the performance of the iterate $\hat{\mathbf{x}}^t$ (i.e. its mean-squared error) in the asymptotic limit!

A single recursion – In the present setting, the recursion can even be simplified further. Indeed, assume that we initialize the algorithm in a state $\hat{\mathbf{x}}^0$ such that $m^0 = q^0$ (in Section 4.5.3 we will see that one can slightly reformulate the algorithm to avoid this condition). Notice that, for any $q \geq 0$, if we consider the scalar estimation problem

$$y = \sqrt{\lambda} q x^* + \sqrt{q} z,$$

with $x^* \sim P_0$ and $z \sim \mathcal{N}(0, 1)$, then η , as defined in eq. (112), satisfies

$$\eta(\lambda q, \lambda q x^* + \sqrt{\lambda q} z) = \mathbb{E}[x^*|y].$$

In particular, if $m^t = q^t$, then by the Nishimori identity (Proposition 2.2) applied in eq. (125):

$$m^{t+1} = \mathbb{E}[x^* \cdot \mathbb{E}[x^*|y]] = \mathbb{E}[(\mathbb{E}[x^*|y])^2] = q^{t+1}.$$

Finally, recall that we say in eqs. (79) and (80) that for any $q \geq 0$:

$$\mathbb{E}[x^* \eta(\lambda q, \lambda q x^* + \sqrt{\lambda q} z)] = \mathbb{E}[\eta(\lambda q, \lambda q x^* + \sqrt{\lambda q} z)^2] = 2\psi'(\lambda q).$$

In the end we reach (adding a suffix to emphasize that these characterize the iterates of AMP), for all $t \geq 0$:

$$\begin{cases} m_{\text{AMP}}^t &= q_{\text{AMP}}^t, \\ q_{\text{AMP}}^{t+1} &= 2\psi'(\lambda q_{\text{AMP}}^t). \end{cases} \quad (127)$$

The major takeaway – An important consequence is that the simple scalar function $f_{\text{RS}}(\lambda, q) = \psi(\lambda q) - \lambda q^2/4$ characterizes *both*:

- The information-theoretically optimal overlap with the signal, which is achieved at $q^* := \arg \max_{q \geq 0} f_{\text{RS}}(\lambda, q)$ per Theorem 4.1 and Corollary 4.9.
- The asymptotic performance of the AMP algorithm: starting from $q_{\text{AMP}}^{t=0}$, eq. (126) describes iterations which seek to find a fixed point of $q \mapsto 2\psi'(\lambda q)$, i.e. a zero of $\partial_q f_{\text{RS}}(\lambda, q)$. Informally, these iterations perform a sort of “gradient ascent” on $f_{\text{RS}}(\lambda, q)$.

In particular, this finding will allow to investigate the following crucial question **only by looking at the one-dimensional landscape of $q \mapsto f_{\text{RS}}(\lambda, q)$** :

As $d \rightarrow \infty$, and for a large number of steps $t \gg 1$, does the output of AMP converge to the Bayes-optimal estimator $\hat{\mathbf{x}}_{\text{opt}}(\mathbf{Y}) = \mathbb{E}[\mathbf{x}|\mathbf{Y}]$?

We will come back to this with concrete examples in Section 4.6: for the moment, let us see how to prove the heuristics we derived, and generalize as well the class of AMP algorithms.

4.5.3 General AMP algorithms and state evolution

The AMP algorithm we derived above belongs to an even more general class of procedures. Somehow confusingly, they are also referred to as “AMP algorithms”. To make it clear, we will rebrand the algorithm of eq. (122) as **Bayes-AMP**. The general class of AMP algorithms for the spiked matrix model is given in Algorithm 1. By convention, we set $b_0 = 0$: the first iteration does not have the Onsager reaction term. The non-linearities f_t and g_t are applied componentwise to the vectors.

Bayes-AMP – One checks easily that the Bayes-AMP algorithm corresponds to

$$f_t(z) = g_t(z) = \eta(\lambda q^t, \sqrt{\lambda} z),$$

where q^t is given by the recursion of eq. (127).

State evolution – The remarkable property of AMP algorithms is that they all satisfy a state evolution recursion similar to the one we derived for Bayes-AMP. In the present problem (and in more general form) this was proven in [BM11].

Algorithm 1: General AMP algorithm for the spiked matrix problem

Result: An estimator $\hat{\mathbf{x}}^T$
Input: Observations \mathbf{Y} , number of iterations T , non-linearities $(f_t, g_t)_{0 \leq t \leq T}$;
Initialize $\mathbf{z}^{-1} = 0$, $\mathbf{z}^0 \in \mathbb{R}^d$;
for $t = 0, \dots, T-1$ **do**

$$\left| \begin{array}{l} b_t = \frac{1}{d} \sum_{i=1}^d f'_t(z_i^t); \\ \mathbf{z}^{t+1} = \mathbf{Y} f_t(\mathbf{z}^t) - b_t f_{t-1}(\mathbf{z}^{t-1}); \end{array} \right.$$
end
Return: A sequence of estimators $\hat{\mathbf{x}}^t = g_t(\mathbf{z}^t)$ for $1 \leq t \leq T$.

Theorem 4.10 (State evolution [BM11])

Assume that:

- (i) $\psi : \mathbb{R}^2 \rightarrow \mathbb{R}$ is locally Lipschitz and has at most polynomial growth $|\psi(\mathbf{u})| \leq C(1 + \|\mathbf{u}\|_2)^k$ for some $C > 0$ and $k \geq 0$.
- (ii) The empirical distribution of $(\mathbf{x}^*, \mathbf{z}^0)$, i.e. $(1/d) \sum_{i=1}^d \delta_{(x_i^*, z_i^0)}$ converges weakly and in k moments to the law of (X^*, Z^0) . Recall that $X^* \sim P_0$.
- (iii) The functions (f_t) are Lipschitz, with Lipschitz derivatives f'_t .

Define the sequences

$$\begin{cases} m_{t+1} &= \mathbb{E} \left[X^* f_t \left(\sqrt{\lambda} m_t X^* + \sqrt{q_t} G \right) \right], \\ q_{t+1} &= \mathbb{E} \left[f_t \left(\sqrt{\lambda} m_t X^* + \sqrt{q_t} G \right)^2 \right], \end{cases} \quad (128)$$

with $m_0 = \mathbb{E}[X^* f_0(Z^0)]$, $q_0 = \mathbb{E}[f_0(Z^0)^2]$, and $(X^*, G) \sim P_0 \otimes \mathcal{N}(0, 1)$. Then, for all $t \geq 1$, and almost surely:

$$\lim_{d \rightarrow \infty} \frac{1}{d} \sum_{i=1}^d \psi(x_i^*, z_i^t) = \mathbb{E} \psi \left(X^*, \sqrt{\lambda} m_t X^* + \sqrt{q_t} G \right). \quad (129)$$

Remarks –

- Notice that Theorem 4.10 does not involve g_t , since the results are stated only in terms of \mathbf{z}^t .
- Point (ii) in Theorem 4.10 allows to handle any initialization \mathbf{z}^0 that is independent of the noise matrix \mathbf{W} : while this covers random initializations, or an initialization via side information, it does not cover spectral initialization. Theorem 4.10 was generalized to such initializations in [MV21].
- Beyond the asymptotic empirical distribution of $(\mathbf{x}^*, \mathbf{z}^t)$, Theorem 4.10 can be generalized to the empirical distribution of any finite number of iterates $(\mathbf{x}^*, \mathbf{z}^1, \dots, \mathbf{z}^t)$.

Idea for the proof of Theorem 4.10 – We introduce here simply the idea behind the proof: for simplicity we consider the case $\lambda = 0$ and $\mathbf{z}^0 = 0$. In particular in this case one has $m_t = 0$ for all $t \geq 0$ since $\mathbb{E}[X^*] = 0$, and $\mathbf{Y} = \mathbf{W}$. Moreover, $q_0 = f_0(0)^2$. Our goal is to show eq. (129), which in this case amounts to show that the distribution of \mathbf{z}^t is close to $\mathcal{N}(0, q_t \mathbf{I}_d)$ as $d \rightarrow \infty$, with $q_{t+1} = \mathbb{E}[f_t(\sqrt{q_t} G)^2]$.

We have that $\mathbf{z}^1 = \mathbf{W}f_0(0)$ is an i.i.d. centered Gaussian vector, elements having variance $q_0 = f_0(0)^2$. However, we run into trouble already for \mathbf{z}^2 :

$$\mathbf{z}^2 = \mathbf{W}f_1(\mathbf{z}^1) - (f'_1(0))f_0(0).$$

Indeed, the vector $\mathbf{W}f_1(\mathbf{z}^1)$ is not Gaussian, since \mathbf{z}^1 is not independent of \mathbf{W} ! For this reason, there is no hope of an exact characterization of the law of \mathbf{z}^t for any $t \geq 2$.

The idea of the proof is usually attributed to [Bol14], and many subsequent works have applied it and generalized it, starting with [BM11]. It starts from the observation that, on the other hand, the law of \mathbf{W} conditioned on the iterates $\mathbf{z}^1, \dots, \mathbf{z}^t$, is tractable! Indeed, let

$$\mathcal{F}_t := \sigma(\mathbf{z}^1, \dots, \mathbf{z}^t).$$

Conditional on \mathcal{F}_t , the random variables b_1, \dots, b_t are known, and conditioning \mathbf{W} on \mathcal{F}_t is equivalent to conditioning it on

$$\{\mathbf{W}f_0(0) = \mathbf{z}^1, \dots, \mathbf{W}f_t(\mathbf{z}^{t-1}) = \mathbf{z}^t + b_{t-1}f_{t-2}(\mathbf{z}^{t-2})\}$$

Therefore, this reduces to a *linear conditioning* on \mathbf{W} ! It is then an elementary property of the Gaussian distribution that

$$\mathbf{W}|\mathcal{F}_t \stackrel{d}{=} \mathbb{E}[\mathbf{W}|\mathcal{F}_t] + \mathcal{P}_t(\widetilde{\mathbf{W}}), \quad (130)$$

where $\widetilde{\mathbf{W}} \sim \text{GOE}(d)$ is independent of \mathbf{W} , and \mathcal{P}_t is the orthogonal projection on the subspace

$$\mathcal{E}_t := \{\mathbf{A} \in \mathcal{S}_d : \mathbf{A}f_k(\mathbf{z}^k) = 0 \ \forall k \in \{0, \dots, t-1\}\}.$$

This makes our idea of a “fresh Gaussian noise” in Section 4.5.2 more formal. We can write this projection as a function of P_t , the orthogonal projector (in \mathbb{R}^d) onto $\text{Span}(f_0(\mathbf{z}^0), \dots, f_{t-1}(\mathbf{z}^{t-1}))^\perp$:

$$\mathbf{W}|\mathcal{F}_t \stackrel{d}{=} \mathbb{E}[\mathbf{W}|\mathcal{F}_t] + P_t \widetilde{\mathbf{W}} P_t.$$

Let us come back to the AMP iterations. We have

$$\begin{aligned} \mathbf{z}^{t+1}|\mathcal{F}_t &= (\mathbf{W}|\mathcal{F}_t)f_t(\mathbf{z}^t) - b_t f_{t-1}(\mathbf{z}^{t-1}), \\ &\stackrel{d}{=} \mathbb{E}[\mathbf{W}|\mathcal{F}_t]f_t(\mathbf{z}^t) - b_t f_{t-1}(\mathbf{z}^{t-1}) + P_t \widetilde{\mathbf{W}} P_t f_t(\mathbf{z}^t), \\ &= \mathbb{E}[\mathbf{W}|\mathcal{F}_t]f_t(\mathbf{z}^t) - b_t f_{t-1}(\mathbf{z}^{t-1}) + \widetilde{\mathbf{W}} P_t f_t(\mathbf{z}^t) - \underbrace{[\widetilde{\mathbf{W}} - P_t \widetilde{\mathbf{W}}]P_t f_t(\mathbf{z}^t)}_{P_t^\perp \widetilde{\mathbf{W}}}. \end{aligned}$$

Let us now sketch how to end the proof from there. We proceed by induction, and assume to have proven for all times $k \leq t$ that (\mathbf{z}^k) is approximately Gaussian. Notice that $P_t^\perp \widetilde{\mathbf{W}} P_t f_t(\mathbf{z}^t)$ is the low-dimensional projection of a high-dimensional Gaussian, and therefore we expect it to be small.

The conditional expectation – We now turn to the conditional expectation

$$\mathbb{E}[\mathbf{W}|\mathcal{F}_t]f_t(\mathbf{z}^t).$$

By an induction argument and using Gaussian conditioning (Theorem 2.7), one can show that this term will nearly cancel the Onsager reaction term $-b_t f_{t-1}(\mathbf{z}^{t-1})$, with an additional term which is in the span of $(\mathbf{z}^1, \dots, \mathbf{z}^t)$, and thus Gaussian by induction. This

term will also have covariance $\|P_t^\perp f_t(\mathbf{z}^t)\|^2/d$ asymptotically. This involves relatively heavy algebra, and we do not detail it here, rather we refer to [BM11] for a complete proof. Let us simply check that this holds for the first two time steps, without diving into the mathematical details. For $t = 0$ this is trivial, since $\mathbb{E}[\mathbf{W}|\mathcal{F}_0] = \mathbb{E}[\mathbf{W}] = 0$. For time $t = 1$ on the other hand we have

$$\mathbb{E}[\mathbf{W}|\mathcal{F}_1] = \mathbb{E}[\mathbf{W}|\mathbf{W}f_0(0) = \mathbf{z}^1].$$

By simple Gaussian conditioning, one finds that for any vectors \mathbf{u}, \mathbf{v}

$$\mathbb{E}[\mathbf{W}|\mathbf{W}\mathbf{u} = \mathbf{v}] = \frac{1}{\|\mathbf{u}\|^2}[\mathbf{u}\mathbf{v}^\top + \mathbf{v}\mathbf{u}^\top] - \frac{(\mathbf{u} \cdot \mathbf{v})}{\|\mathbf{u}\|^4}\mathbf{u}\mathbf{u}^\top.$$

And thus:

$$\mathbb{E}[\mathbf{W}|\mathbf{W}\mathbf{u} = \mathbf{v}]\mathbf{w} = \underbrace{\frac{(\mathbf{v} \cdot \mathbf{w})\mathbf{u}}{\|\mathbf{u}\|^2}}_{I_1} + \underbrace{\frac{(\mathbf{u} \cdot \mathbf{w})\mathbf{v}}{\|\mathbf{u}\|^2}}_{I_2} - \underbrace{\frac{(\mathbf{u} \cdot \mathbf{v})(\mathbf{u} \cdot \mathbf{w})}{\|\mathbf{u}\|^4}\mathbf{u}}_{I_3}.$$

Denote $\mathbf{m}^t = f_t(\mathbf{z}^t)$. We apply this formula to $\mathbf{u} = f_0(0) = \mathbf{m}^0$, $\mathbf{v} = \mathbf{z}^1 = \mathbf{W}\mathbf{m}^0$ and $\mathbf{w} = f_1(\mathbf{z}^1) = \mathbf{m}^1$.

$$I_3 = \frac{\mathbf{m}^0 \cdot \mathbf{W}\mathbf{m}^0}{\|\mathbf{m}^0\|^2} \times \frac{\mathbf{m}^0 \cdot \mathbf{m}^1}{\|\mathbf{m}^0\|^2}.$$

The first term is very small since \mathbf{W} is independent of \mathbf{m}^0 , and thus I_3 will be negligible. On the other hand,

$$I_1 = \frac{\mathbf{m}^0 \cdot \mathbf{W}\mathbf{m}^1}{\|\mathbf{m}^0\|^2} \mathbf{m}^0 = \frac{\mathbf{m}^0 \cdot \mathbf{W}f_1(\mathbf{W}\mathbf{m}^0)}{\|\mathbf{m}^0\|^2} \mathbf{m}^0.$$

By concentration of measure (recall that $\mathbf{m}^0 = f_0(0)$ is independent of \mathbf{W})

$$\begin{aligned} I_1 &\simeq \mathbb{E} \left[\frac{\mathbf{m}^0 \cdot \mathbf{W}f_1(\mathbf{W}\mathbf{m}^0)}{\|\mathbf{m}^0\|^2} \right] \mathbf{m}^0, \\ &= \frac{1}{\|\mathbf{m}^0\|^2} \sum_{1 \leq i, j \leq d} m_i^0 \mathbb{E}[W_{ij} f_1([\mathbf{W}\mathbf{m}^0]_j)] \mathbf{m}^0, \\ &\stackrel{(a)}{=} \frac{1}{d\|\mathbf{m}^0\|^2} \sum_{1 \leq i, j \leq d} (m_i^0)^2 \mathbb{E}[f'_1([\mathbf{W}\mathbf{m}^0]_j)] \mathbf{m}^0, \\ &= \frac{1}{d} \sum_{j=1}^d \mathbb{E}[f'_1([\mathbf{W}\mathbf{m}^0]_j)] \mathbf{m}^0, \\ &\simeq \left(\frac{1}{d} \sum_{j=1}^d f'_1(z_j^1) \right) \mathbf{m}^0, \\ &= b_1 f_0(\mathbf{z}^0), \end{aligned}$$

where we used Stein's lemma in (a). We found back the Onsager reaction term! Finally,

$$I_2 = \frac{\mathbf{m}^0 \cdot \mathbf{m}^1}{\|\mathbf{m}^0\|^2} \mathbf{z}^1.$$

is Gaussian (since $\mathbf{z}^1 = \mathbf{W}\mathbf{m}^0$ is Gaussian, and the inner products concentrate). Combining the results above, we find that for $t = 1$:

$$\mathbf{z}^2|\mathcal{F}_1 \simeq \frac{f_0(\mathbf{z}^0) \cdot f_1(\mathbf{z}^1)}{\|f_0(\mathbf{z}^0)\|^2} \mathbf{z}^1 + \widetilde{\mathbf{W}} P_1 f_1(\mathbf{z}^1),$$

and recall that P_1 is the orthogonal projection on $\{f_0(\mathbf{z}^0)\}^\perp$. Since $\mathbf{z}_1 = \mathbf{W}f_0(\mathbf{z}^0)$ is Gaussian and independent of $\widetilde{\mathbf{W}}$ (recall that we decomposed \mathbf{W} as its projection along $\mathbf{z}_1, \dots, \mathbf{z}_t$ and an orthogonal independent component), we reach that asymptotically $\mathbf{z}^2|\mathcal{F}_1$ is a Gaussian centered vector, with total covariance

$$\frac{1}{d}\|P_{\{f_0(\mathbf{z}^0)\}^\perp}f_1(\mathbf{z}^1)\|_2^2 \mathbf{I}_d + \frac{1}{d}\|P_{\{f_0(\mathbf{z}^0)\}}f_1(\mathbf{z}^1)\|_2^2 \mathbf{I}_d = \frac{1}{d}\|f_1(\mathbf{z}^1)\|_2^2 \mathbf{I}_d.$$

More generally, for any time $t \geq 1$, one finds by an induction argument (and heavy algebra) that $\mathbf{z}^{t+1}|\mathcal{F}_t$ is approximately a Gaussian centered vector, with total covariance

$$\frac{1}{d}\|f_t(\mathbf{z}^t)\|_2^2 \mathbf{I}_d.$$

Recall that \mathbf{z}^t is approximately centered Gaussian with covariance $q_t \mathbf{I}_d$ by the induction hypothesis, so that

$$\frac{1}{d}\|f_t(\mathbf{z}^t)\|_2^2 \simeq \mathbb{E}[f_t(\sqrt{q_t}G)^2] = q_{t+1}.$$

□

4.5.4 Optimality of Bayes-AMP

Interestingly, we can use Theorem 4.10 to compute the optimal choice of functions (f_t, g_t) in order to minimize the mean squared error of the estimator at a given iteration time t . This corresponds to choosing $\psi(x^*, z) = (x^* - g_t(z))^2$. We reach then

$$\lim_{d \rightarrow \infty} \frac{1}{d}\|\mathbf{x}^* - \hat{\mathbf{x}}^t\|^2 = \mathbb{E}\left[\left(X^* - g_t\left(\sqrt{\lambda}m_t X^* + \sqrt{q_t}G\right)\right)^2\right]. \quad (131)$$

Notice that the iterations of (m_t, q_t) in eq. (128) only depend on f_t . Of course, the choice of the function g_t that minimizes the right-hand side of eq. (131) is the posterior mean of X^* given $y = \sqrt{\lambda}m_t X^* + \sqrt{q_t}G$:

$$g_t(y) = \mathbb{E}\left[X^* \middle| \sqrt{\lambda}m_t X^* + \sqrt{q_t}G = y\right] \stackrel{(a)}{=} \eta\left(\frac{\lambda m_t^2}{q_t}, \frac{\sqrt{\lambda}m_t}{q_t}y\right), \quad (132)$$

where (a) can be easily checked. We now turn to computing the optimal choice of f_t . For the choice of g_t above, the error of eq. (131) is equal to the MMSE of the scalar estimation problem where we observe $y_t = \sqrt{\lambda}m_t X^* + \sqrt{q_t}G$. Notice that this problem as a SNR proportional to $\mu_t := m_t^2/q_t$, and the resulting MMSE is a strictly decreasing function of μ_t . We thus look for $(f_t)_{t \geq 0}$ that maximize $(\mu_t)_{t \geq 1}$. By eq. (128):

$$\sqrt{\mu_{t+1}} = \frac{\mathbb{E}\left[X^* f_t\left(\sqrt{\lambda}m_t X^* + \sqrt{q_t}G\right)\right]}{\sqrt{\mathbb{E}\left[f_t\left(\sqrt{\lambda}m_t X^* + \sqrt{q_t}G\right)^2\right]}} = \frac{\mathbb{E}_{y_t}[f_t(y_t)\mathbb{E}[X^*|y_t]]}{\sqrt{\mathbb{E}[f_t(y_t)^2]}}.$$

By the Cauchy-Schwarz inequality, for a given (m_t, q_t) , the value of μ_{t+1} is maximized at

$$f_t(y) = \mathbb{E}\left[X^* \middle| \sqrt{\lambda}m_t X^* + \sqrt{q_t}G = y\right] = \eta\left(\frac{\lambda m_t^2}{q_t}, \frac{\sqrt{\lambda}m_t}{q_t}y\right). \quad (133)$$

Doing this argument inductively (first optimizing over f_t , then f_{t-1} , etc...), Notice that plugging back eq. (133) in Theorem 4.10 yields, for any $t \geq 0$ (again because of the Nishimori identity):

$$m_{t+1} = q_{t+1}.$$

Thus, no matter the values of (m_0, q_0) , we have for any $t \geq 1$, for the MSE-optimal AMP:

$$\begin{cases} m_t &= q_t, \\ f_t(y) &= g_t(y) = \eta(\lambda q_t, \sqrt{\lambda y}). \end{cases}$$

We have recovered the Bayes-AMP algorithm¹⁸! What we just proved is that, among all AMP algorithms of the type of Algorithm 1, Bayes-AMP is optimal in terms of mean-squared error, at each iteration time.

Optimality among other algorithms – This motivates a further question:

For a given number of iterations t , is Bayes-AMP optimal (in terms of mean-squared error) amongst a larger class of algorithms than AMP algorithms?

It turns out that the answer to this question is positive¹⁹: in particular the authors of [CMW20; MW24] have shown this to be true for a large class of so-called “generalized first-order methods”, including in particular first order optimization methods, and AMP algorithms. More generally, Bayes-AMP is the best-known polynomial-time algorithm (in terms of mean squared error) in many settings, including the spiked matrix model.

4.6 Conclusion: phase diagrams of the spiked matrix model

¹⁸And when written this way, one does not require $m_0 = q_0$ at initialization, it is automatically satisfied after a single iteration.

¹⁹In general, the theorems assume a very small amount of side information, or a spectral initialization, to break symmetry in the first step, since $q = 0$ might be a fixed point of the state evolution.

5 Detection: contiguity, likelihood ratio, and the low-degree method

6 Optimization: Local minima in high-dimensional landscapes

References

- [Abb+18] Emmanuel Abbe et al. “Group synchronization on grids”. In: *Mathematical Statistics and Learning* 1.3 (2018), pp. 227–256.
- [AGZ10] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. *An introduction to random matrices*. 118. Cambridge university press, 2010.
- [Bar19] Jean Barbier. *Mean-field theory of high-dimensional Bayesian inference*. 2019. URL: <https://jeanbarbier.github.io/jeanbarbier/docs/main.pdf>.
- [BBP05] Jinho Baik, Gérard Ben Arous, and Sandrine Péché. “Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices”. In: *Annals of Probability* 33.5 (2005), pp. 1643–1697.
- [Ben+19] Gerard Ben Arous et al. “The landscape of the spiked tensor model”. In: *Communications on Pure and Applied Mathematics* 72.11 (2019), pp. 2282–2330.
- [BM11] Mohsen Bayati and Andrea Montanari. “The dynamics of message passing on dense graphs, with applications to compressed sensing”. In: *IEEE Transactions on Information Theory* 57.2 (2011), pp. 764–785.
- [BM19] Jean Barbier and Nicolas Macris. “The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference”. In: *Probability theory and related fields* 174.3 (2019), pp. 1133–1185.
- [BN11] Florent Benaych-Georges and Raj Rao Nadakuditi. “The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices”. In: *Advances in Mathematics* 227.1 (2011), pp. 494–521.
- [Bol14] Erwin Bolthausen. “An iterative construction of solutions of the TAP equations for the Sherrington–Kirkpatrick model”. In: *Communications in Mathematical Physics* 325.1 (2014), pp. 333–366.
- [BSS23] A. S. Bandeira, A. Singer, and T. Strohmer. *Mathematics of Data Science*. Book draft available [here](#). 2023.
- [CMW20] Michael Celentano, Andrea Montanari, and Yuchen Wu. “The estimation error of general first order methods”. In: *Conference on Learning Theory*. PMLR. 2020, pp. 1078–1141.
- [DAM16] Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. “Asymptotic mutual information for the binary stochastic block model”. In: *2016 IEEE International Symposium on Information Theory (ISIT)*. IEEE. 2016, pp. 185–189.
- [Dia+16] Mohamad Dia et al. “Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula”. In: *Advances in Neural Information Processing Systems* 29 (2016).
- [EK18] Ahmed El Alaoui and Florent Krzakala. “Estimation in the spiked Wigner model: a short proof of the replica formula”. In: *2018 IEEE International Symposium on Information Theory (ISIT)*. IEEE. 2018, pp. 1874–1878.
- [El 21] Ahmed El Alaoui. 2021. URL: <https://courses.cit.cornell.edu/stsci6940/>.
- [FP07] Delphine Féral and Sandrine Péché. “The largest eigenvalue of rank one deformation of large Wigner matrices”. In: *Communications in mathematical physics* 272.1 (2007), pp. 185–228.

[FP95] Silvio Franz and Giorgio Parisi. “Recipes for metastable states in spin glasses”. In: *Journal de Physique I* 5.11 (1995), pp. 1401–1415.

[FP98] Silvio Franz and Giorgio Parisi. “Effective potential in glassy systems: theory and simulations”. In: *Physica A: Statistical Mechanics and its Applications* 261.3-4 (1998), pp. 317–339.

[Gue03] Francesco Guerra. “Broken replica symmetry bounds in the mean field spin glass model”. In: *Communications in mathematical physics* 233.1 (2003), pp. 1–12.

[Han14] Ramon van Handel. *Probability in High Dimension*. 2014. URL: <https://web.math.princeton.edu/~rvan/APC550.pdf>.

[Kun25] Tim Kunisky. 2025. URL: <http://www.kunisky.com/static/teaching/2025fall-rmt/rmt-notes-2025.pdf>.

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. “Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood ratio”. In: *ISAAC Congress (International Society for Analysis, its Applications and Computation)*. Springer. 2019, pp. 1–50.

[KZ24] Florent Krzakala and Lenka Zdeborová. “Statistical physics methods in optimization and machine learning”. In: *Lecture Notes* (2024).

[LKZ15] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. “Phase transitions in sparse PCA”. In: *2015 IEEE International Symposium on Information Theory (ISIT)*. IEEE. 2015, pp. 1635–1639.

[LM19] Marc Lelarge and Léo Miolane. “Fundamental limits of symmetric low-rank matrix estimation”. In: *Probability Theory and Related Fields* 173.3 (2019), pp. 859–929.

[Mai24] Antoine Maillard. 2024. URL: https://anmaillard.github.io/assets/pdf/lecture_notes/MDS_Fall_2024.pdf.

[Mio19] Léo Miolane. “Fundamental limits of inference: A statistical physics approach.” PhD thesis. Ecole normale supérieure-ENS PARIS; Inria Paris, 2019.

[MM09] Marc Mezard and Andrea Montanari. *Information, physics, and computation*. Oxford University Press, 2009.

[MPV86] M Mézard, G Parisi, and MA Virasoro. “SK Model: The Replica Solution without Replicas”. In: *Europhysics Letters (EPL)* 1.2 (1986), pp. 77–82.

[MR14] Andrea Montanari and Emile Richard. “A statistical model for tensor PCA”. In: *Advances in neural information processing systems* 27 (2014).

[MS23] Laurent Massoulié and Ludovic Stéphan. “Inference in large random graphs”. 2023.

[MS24] Andrea Montanari and Subhabrata Sen. “A friendly tutorial on mean-field spin glass techniques for non-physicists”. In: *Foundations and Trends® in Machine Learning* 17.1 (2024), pp. 1–173.

[MV21] Andrea Montanari and Ramji Venkataramanan. “Estimation of low-rank matrices via approximate message passing”. In: *The Annals of Statistics* 49.1 (2021).

[MW24] Andrea Montanari and Yuchen Wu. “Statistically optimal firstorder algorithms: a proof via orthogonalization”. In: *Information and Inference: A Journal of the IMA* 13.4 (2024), iaae027.

[PB20] Marc Potters and Jean-Philippe Bouchaud. *A first course in random matrix theory: for physicists, engineers and data scientists*. Cambridge University Press, 2020.

[Sel24] Mark Sellke. 2024. URL: https://msellke.com/courses/STAT_291/course_page_website.html.

[Tal10] Michel Talagrand. *Mean field models for spin glasses: Volume I: Basic examples*. Vol. 54. Springer Science & Business Media, 2010.

[TAP77] David J Thouless, Philip W Anderson, and Robert G Palmer. “Solution of’solvable model of a spin glass’”. In: *Philosophical Magazine* 35.3 (1977), pp. 593–601.

[Ver18] Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*. Vol. 47. Cambridge university press, 2018.

[Wig55] Eugene P Wigner. “Characteristic Vectors of Bordered Matrices With Infinite Dimensions”. In: *Annals of Mathematics* 62.3 (1955), pp. 548–564.

[ZK16] Lenka Zdeborová and Florent Krzakala. “Statistical physics of inference: Thresholds and algorithms”. In: *Advances in Physics* 65.5 (2016), pp. 453–552.

A Some reminders in probability theory

A.1 General reminders in probability

We assume here that we have fixed a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which all the following events and random variables are defined.

Lemma A.1 (Borel-Cantelli)

Let $(E_n)_{n \geq 1}$ be a sequence of events. Then

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty \Rightarrow \mathbb{P}(\limsup_{n \rightarrow \infty} E_n) = 0.$$

Recall that $\limsup E_n := \cap_{n \geq 1} \cup_{k \geq n} E_k$.

Let $(X_n)_{n \geq 1}$ be a sequence of real-valued random variables. Recall that $X_n \xrightarrow{\text{a.s.}}_{n \rightarrow \infty} X$ if $\mathbb{P}(\lim X_n = X) = 1$.

Proposition A.2 (Reminder on almost sure convergence)

Let $(X_n)_{n \geq 1}$ be a sequence of real-valued random variables. Then

(i) $X_n \xrightarrow{\text{a.s.}} X$ as $n \rightarrow \infty$ if and only if, for all $\varepsilon > 0$:

$$\mathbb{P}\left(\limsup_{n \rightarrow \infty} \{|X_n - X| \geq \varepsilon\}\right) = 0.$$

(ii) If for all $\varepsilon > 0$, $\sum_{n \geq 1} \mathbb{P}(|X_n - X| \geq \varepsilon) < \infty$, then $X_n \xrightarrow{\text{a.s.}} X$ as $n \rightarrow \infty$.

A.2 Gaussian random variables

The following elementary result is sometimes called Stein's lemma.

Lemma A.3 (Gaussian integration by parts)

Let $X \sim \mathcal{N}(0, \sigma^2)$ and $g : \mathbb{R} \rightarrow \mathbb{R}$ a differentiable function such that $\mathbb{E}[|Xg(X)|] < \infty$, $\mathbb{E}[|g'(X)|] < \infty$. Then

$$\mathbb{E}[Xg(X)] = \sigma^2 \mathbb{E}[g'(X)].$$

The following is a classical property of maxima of Gaussian random variables [Ver18]:

Proposition A.4 (Maximum of independent Gaussians)

Let $z_1, \dots, z_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$. Then

$$\lim_{n \rightarrow \infty} \frac{\mathbb{E}[\max_{i \in [n]} z_i]}{\sqrt{2 \log n}} = 1 \text{ and } \text{p-lim}_{n \rightarrow \infty} \frac{\max_{i \in [n]} z_i}{\sqrt{2 \log n}} = 1.$$

Finally, we cite a useful result allowing to compare the maxima Gaussian processes through their covariances. Recall that a random process $(X_t)_{t \in T}$ is called a *Gaussian process* if for every finite subset $T_0 \subseteq T$ the vector $(X_t)_{t \in T_0}$ has normal distribution.

Lemma A.5 (Slepian/Sudakov-Fernique inequality)

Let $(X_t)_{t \in T}$ and $(Y_t)_{t \in T}$ be two mean-zero Gaussian processes. Assume that for all

$(s, t) \in T$ we have

$$\mathbb{E}[(X_s - X_t)^2] \leq \mathbb{E}[(Y_s - Y_t)^2].$$

Then

$$\mathbb{E}[\max_{t \in T} X_t] \leq \mathbb{E}[\max_{t \in T} Y_t].$$

A.3 Sub-Gaussian random variables

Definition A.1 (Sub-Gaussian random variable)

A centered random variable X is sub-Gaussian if it satisfies one of the following three conditions.

(i) **(Tail)** For all $t > 0$, $\mathbb{P}[|X| \geq t] \leq 2 \exp\{-t^2/(2K_1^2)\}$, for some $K_1 > 0$.

(ii) **(MGF)** For all $\lambda \in \mathbb{R}$, $\mathbb{E}[\exp\{\lambda X\}] \leq \exp\{\lambda^2 K_2^2/2\}$, for some $K_2 > 0$.

(iii) **(Moments)** For all $p \geq 1$, $\|X\|_p := [\mathbb{E}|X|^p]^{1/p} \leq K_3 \sqrt{p}$, for some $K_3 > 0$.

We will say that X is σ -sub-Gaussian (or $\text{SG}(\sigma)$) if $\mathbb{E}[\exp\{\lambda X\}] \leq \exp\{\lambda^2 \sigma^2/2\}$ for all $\lambda \in \mathbb{R}$.

Challenge A.1. Check that the conditions (i), (ii), (iii) in Definition A.1 are equivalent, and that (K_1, K_2, K_3) differ by at most an absolute multiplicative constant.

This challenge shows that bounded random variables are sub-Gaussian (which is not surprising, since bounded random variables have tails $\mathbb{P}(|X| \geq t) = 0$ for large enough t !).

Challenge A.2. Show that if $|X| \leq a$, then X is $\text{SG}(Ka)$, for $K > 0$ an absolute constant.

We have a similar upper bound to Proposition A.4 when considering sub-Gaussian random variables.

Proposition A.6 (Maximum of sub-Gaussian random variables)

Let $n \geq 2$, and X_1, \dots, X_n be sub-Gaussian random variables, not necessarily independent. Then $Z := \max_{i \in [n]} X_i$ is also sub-Gaussian, and we have (\lesssim means “up to a global constant”)

$$\begin{cases} \|Z\|_{\psi_2} & \lesssim \left(\max_{i \in [n]} \|X_i\|_{\psi_2} \right) \cdot \sqrt{\log n}, \\ \mathbb{E}[Z] & \lesssim \left(\max_{i \in [n]} \|X_i\|_{\psi_2} \right) \cdot \sqrt{\log n}. \end{cases}$$

A.4 Concentration inequalities

The following concentration inequality is very useful.

Theorem A.7 (Hoeffding's inequality)

Let X_1, \dots, X_n be independent and centered sub-Gaussian random variables, with

sub-Gaussian parameters $\sigma_1, \dots, \sigma_n$. Then for all $a \in \mathbb{R}^n$ and all $t > 0$:

$$\mathbb{P}\left(\left|\sum_{i=1}^n a_i X_i\right| \geq t\right) \leq 2 \exp\left\{-\frac{t^2}{2 \sum_{i=1}^n a_i^2 \sigma_i^2}\right\}.$$

Beyond sums of independent random variables, one can show that Lipschitz functions of Gaussian random variables also enjoy fast concentration properties.

Theorem A.8 (Gaussian concentration)

Let $d \geq 1$ and $\mathbf{X} \sim \mathcal{N}(0, \mathbf{I}_d)$. Let $F : \mathbb{R}^d \rightarrow \mathbb{R}$ a L -Lipschitz function, i.e. such that $|F(\mathbf{x}) - F(\mathbf{y})| \leq L \|\mathbf{x} - \mathbf{y}\|_2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. Then, for any $t > 0$

$$\mathbb{P}(|F(\mathbf{X}) - \mathbb{E}F(\mathbf{X})| \geq t) \leq 2 \exp\left\{-\frac{t^2}{2L^2}\right\}.$$

In particular, for any F as in Theorem A.8 and any $\gamma \in \mathbb{R}$ we have

$$\mathbb{E}e^{\gamma[F(\mathbf{X}) - \mathbb{E}F(\mathbf{X})]} \leq e^{\frac{c\gamma^2 L^2}{2}}, \quad (134)$$

for some $c > 0$ a universal constant.

A similar result holds for the uniform distribution on the unit sphere.

Theorem A.9 (Lipschitz concentration on the sphere)

There is $c > 0$ such that the following holds. Let $d \geq 1$ and $\mathbf{u} \sim \text{Unif}(\mathcal{S}^{d-1})$. Let $F : \mathbb{R}^d \rightarrow \mathbb{R}$ a L -Lipschitz function for the Euclidean distance. Then for any $t > 0$

$$\mathbb{P}(|F(\mathbf{u}) - \mathbb{E}F(\mathbf{u})| \geq t) \leq 2 \exp\left\{-\frac{cdt^2}{L^2}\right\}.$$

B Solutions to problems

B.1 Section 3

Solution of Challenge 3.1 – Let $t > 2$. Changing variables to $x = 2 \cos \theta$ we get:

$$\begin{aligned} G_{\text{s.c.}}(t) &= \frac{2}{\pi} \int_0^\pi \frac{\sin^2 \theta}{t - 2 \cos \theta} d\theta, \\ &= \frac{1}{\pi} \int_{-\pi}^\pi \frac{\sin^2 \theta}{t - 2 \cos \theta} d\theta. \end{aligned}$$

Writing $\zeta = e^{i\theta}$, this can be written as:

$$\begin{aligned} G_{\text{s.c.}}(t) &= \frac{1}{\pi} \oint_{|\zeta|=1} \left(\frac{\zeta - \zeta^{-1}}{2i} \right)^2 \frac{1}{t - (\zeta + \zeta^{-1})} \frac{d\zeta}{i\zeta}, \\ &= \frac{1}{4i\pi} \oint_{|\zeta|=1} \frac{(\zeta^2 - 1)^2}{\zeta^2(\zeta^2 - t\zeta + 1)} d\zeta. \end{aligned} \quad (135)$$

The integrand in eq. (135) has three poles, in $\zeta \in \{0, (t \pm \sqrt{t^2 - 4})/2\}$. Since $t > 2$, the only two poles inside the unit circle are 0 and $(t - \sqrt{t^2 - 4})/2$, and they respectively have residues

$$\text{Res}_0 \left[\frac{(\zeta^2 - 1)^2}{\zeta^2(\zeta^2 - t\zeta + 1)} \right] = t,$$

$$\text{Res}_{(t - \sqrt{t^2 - 4})/2} \left[\frac{(\zeta^2 - 1)^2}{\zeta^2(\zeta^2 - t\zeta + 1)} \right] = -\sqrt{t^2 - 4}.$$

Using the residue theorem in eq. (135), we finally find

$$G_{\text{s.c.}}(t) = \frac{t - \sqrt{t^2 - 4}}{2},$$

which ends the proof. \square

C Extra material for Section 4

C.1 On the proof of the replica-symmetric formula

C.1.1 Discarding the diagonal observations

Proposition C.1 (*Discarding the diagonal*)

Consider the observation model of eq. (54). Let

$$\begin{cases} \tilde{f}_d(\lambda) &:= \frac{1}{d} \mathbb{E} \log \int P_0^{\otimes d}(\mathbf{d}\mathbf{x}) e^{\frac{1}{2} \sum_{1 \leq i, j \leq d} [\sqrt{\lambda} x_i x_j Y_{ij} - \frac{\lambda}{2d} x_i^2 x_j^2]}, \\ f_d(\lambda) &:= \frac{1}{d} \mathbb{E} \log \int P_0^{\otimes d}(\mathbf{d}\mathbf{x}) e^{\sum_{1 \leq i < j \leq d} [\sqrt{\lambda} x_i x_j Y_{ij} - \frac{\lambda}{2d} x_i^2 x_j^2]}. \end{cases}$$

be the free entropies of the problem where the diagonal is observed and discarded.

Then

$$|\tilde{f}_d(\lambda) - f_d(\lambda)| \leq \frac{C(\lambda)}{d},$$

for some constant $C(\lambda) > 0$.

Proof of Proposition C.1 –

\square

C.2 Alternative derivation of the free energy via the replica method