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These notes are based on a brief introduction given at the Kavli Institute for Theoretical Physics (Santa
Barbara) in February 2019.

1 The Kac-Rice formula

1.1 The area formula

The Kac-Rice formula is intuitively not derived from any involved probabilistic tool, but rather is a conse-
quence of a purely geometric result, called the area formula (itself a consequence of the more general corea
formula), described in much more generality by Federer [Fed59], and stated for instance in [AW09]. This
formula is the generalization of the following non-rigorous intuition: for a smooth function f: R — R, and
T C R, denoting Nf(u,T’) the number of solutions to the equation f(t) = w with ¢t € T', one would want to
write informally:

N (u,T) :/ 5 (v — u)dv, (1)

(T

)
- /T 5 (F(t) — u) | F/(B)]dt. )

The area formula generalizes and makes rigorous this intuition, by showing a weak version of this last equality.
We follow here the statement of [AW09)].

Proposition 1.1 (Area formula) Let f : U — R? be a C' function defined on an open subset U of R,
Assume that the sets of critical values of f has zero Lebesque measure, and denote N¢(u,T) the number
of solutions to the equation f(t) = u with t € T. Then, for any Borel set T C R%, and any g : R? — R
continuous and bounded:

/ 9(u)Ny(u, T) = / det £/(8)] g(£(£)) . 3)
Rd T

Note that in a large part of the theoretical physics literature, the area formula (and subsequently the Kac-Rice
formula) is written in the form of eq. (2), without further considerations.

1.2 Informal derivation of Kac-Rice

Consider a smooth compact manifold M of dimension n (think of the unit sphere in n dimensions S"~1),
equipped with a Riemannian metric, and an associated volume measure pp. We are given a random smooth
function f : M — R. We want to use the area formula (Proposition 1.1) to estimate the moments of the
number of critical points of f. Given the hypotheses of Proposition 1.1, a reasonable hypothesis is to assume
that f is almost surely a Morse function, i.e. that all its critical points are mon-degenerate. Since M is
compact, one easily deduces that the number of critical points of a Morse function is finite!. For any k € N

1Note that the numbers of critical points of different indices of a Morse function are constrained by the topology of M by
the Morse inequalities, see [MSWW63] for a review on Morse theory.



and Borel set B C R, we define Crity ;(B) to be the number of critical points © € M of f such that f(z) € B
and such that the index of Hess f(z) (that is the number of strictly negative eigenvalues of the Hessian) is
equal to k. The informal area formula of eq. (2), applied to grad f, would read:

Crity x(B) = /M dppm(x)d (grad f(x)) |[det Hess f(z)| 1 [f(z) € B, i(Hess f(x)) = k] (4)

Taking the expectation of this equality, one directly obtains the Kac-Rice formula:

Proposition 1.2 (Kac-Rice formula, informal) Let M be a smooth compact Riemannian manifold of
dimension n, with volume measure ppr. Let f: M — R be a random function that is almost surely Morse.
Denote Qgraq f(x)(0) the density of grad f(x) with respect to the Lebesque measure on R"~', taken at 0. Then:

ECrity1(B) = || dpsa()E [det Hoss [(2)] € [7(z) € B. i (Hess () = Kgead () = 0] 2y 0.

Some remarks

1. The rigorous derivation of this formula is much more involved, as one has to start from the weak
equality of Proposition 1.1 and to use continuity arguments in order to obtain an equality at v = 0,
see for instance the proof of Kac-Rice performed in [AW09]. This is the first reason for which the
formula is usually stated for Gaussian random fields, since in these cases these continuity arguments
can be justified using simple hypotheses on the covariance of the random field. The second reason
is that in general, conditional expectations of non-Gaussian random variables are intractable, making
the Kac-Rice formula effectively useless since one has to know the law of the Hessian conditioned by
the gradient being zero. Under many heavy technical conditions, one can however derive rigorous non-
Gaussian versions of the Kac-Rice formula, see for example Theorem 12.1.1 of [AT09] and Theorem 6.7
of [AWO09].

2. The Kac-Rice formula transforms a random differential geometry problem into a random matrix theory
problem. This does not necessarily mean that the resulting problem will be simpler ! The main
difficulty in evaluating the Kac-Rice formula comes from the distribution of the Hessian conditioned
by the gradient being zero.

3. The Kac-Rice formula can be generalized to compute higher moments of the variable Crits ;(B) as
well (see Theorem 6.3 of [AW09]), and can therefore be used to compute the second moment of the
complexity (see [ST17] for an application to the pure spherical p-spin model) as well as perform heuristic
replica calculations to obtain the quenched complexity (see for instance [RABC19]). Via Morse’s theory,
it can also be used to compute the moments of the Euler characteristic of the level sets of f, see [AAT13]
for an example.

2 The annealed complexity of the pure spherical p-spin model

We essentially detail here a calculation performed first by physicists, and made rigorous in [AACl?)]. We
follow here the derivation of this last paper. For (anterior) theoretical physics derivation of the complexity
of similar models using the Kac-Rice formula along with heuristic theoretical physics arguments (giving
nevertheless the exact result), one can for instance read the works of Fyodorov: [Fyo04], [FWO07].

2.1 Statement of the problem

Consider N > 1, p > 3, and consider the following function fy,, on the unit sphere S¥-1:

fN,p(O') é Z Jil""ipo-il . 'Uip (0’ S SN_l), (5)

1<y, ip <N



1.1

in which Jy, .., v (0,1). In the physics language, the Hamiltonian Hy j, of the spherical p-spin model
(defined on SY~1(V/N)), is related to fn, by: fn,(0) = \/—:LNHN@(\/NU). For any Borel set B C R, we
want to compute the large N limit of the expectation of the number of local minima o of fy ,, such that
fnp(o) € VNB, tha we denote Crit(])v,p(B),. One can apply the Kac-Rice formula (Proposition 1.2)%:

E Crityy ,(B) = /S ., 4(0)Pgrad s (o) (0)

E [|det Hess fy p(0)| 1 [fw,(a') € VNB, Hess fx (o) > 0}

grad fn p(o) = O} ,

in which y is the usual surface measure on S™¥~1. Note that here grad and Hess denote the Riemannian
gradient and Hessian on the sphere, while we will denote V, V2 the Euclidian gradient and Hessian.

2.2 The joint distribution of (f(o),grad f(o), Hess f(o))

Deriving the joint law of (f(o),grad f(o), Hess f(o)) is a necessary step in the Kac-Rice method, as these
three random variables appear in the conditional expectation. We fix o € SV 1. In our case, it is immediate
that the random variable (f(o), grad f(o), Hess f(o)) is a Gaussian centered random variable, as the sum of
independent Gaussian centered random variables. We thus simply need to compute its correlations to fully
characterize their joint distribution. We naturally identify the tangent space T (S™~1) with RV =1, If we
denote P;- the orthogonal projector on {a}*, one has:

grad f(o) = P,V f(o), (6)

Hess f(o) = PrV2f(o)Pt — (0, V(o)) Pt . (7)

For instance one can compute the covariance of the gradient:
E [grad f(o)grad f(0)T] = PyE[Vf(0)Vf(0)T] Py,
= pP;.
Uisng the same kind of simple algebraic calculations, one obtains the joint distribution:

Lemma 2.1 The joint law of (f(o),grad f(o), Hess f(o)) is the following:

f(o) Lz

grad f(o) < \/pg. (8)
Hess f(0) 2 \/2(N — Dplp — 1)My—1 — pZ1dy_1,

in which Z ~ N(0,1), g ~ N(0,Idx_1), and Mn_1 is a matriz from the Gaussian Orthogonal Ensemble of
size (N — 1) with the convention IEM,ZJ = 2};‘21). The variables (Z,g, My_1) are pairwise independent.

Let us make the following important remarks:
1. The joint distribution of these variables is independent of o

2. The variables (f, Hess f) are independent from grad f, so performing the conditioning in the Kac-Rice
formula will be trivial.

3. From the gradient distribution, one easily obtains its density evaluated in 0:
—N-lin(2
Pgrad fN,p(cr)(O) =e 2 n Trp)'
2The proof that fn,p is almost surely a Morse function can be found in [AAClB}




Recalling that the volume of the unit sphere is V(SV~1) = 27/2/T'(N/2), one deduces from the Kac-Rice
formula and what we said above:

2 N/2 — N=1
ECHitN,(B) = [y e * O 2N = Dplp — 1) TR [|det Hy [1(Hy 1 >0, 2€ VNB)|, (9)
in which Hy_1 2 My_; — mz, with z a standard Gaussian variable and My_; a GOE matrix

of size N — 1 (see Lemma 2.1), independent of z. It is now completely clear that we reduced a random
differential geometry problem (counting the number of critical points of a random smooth function) to a
random matrix theory problem.

2.3 Simplification of the problem

It is clear from eq. (9) that the following lemma (from [AAC13]) will be useful:

Lemma 2.2 Let G C R a Borel set, X ~ N (0,t%) (for at>0) and My_1 ~ GOE(N —1). Then:
E[|det(My_1 — XIdy_1)|L((My_1 — XIdy_1) > 0,X € G)]

_N
2

(X)) (N -1 N1 _q)a2 -
_ (2 ) ( ) EGOE(N) |f 2 ((N—l)t2 1)/\()]1 (}\0 c ]VlG>‘| . (10)
t? N

In this equation, g is the smallest eigenvalue of a random matriz from the GOE(N) ensemble.

This lemma is a pure result of random matrix theory. We do not prove it here, as it is proven as a particular
case of Lemma 3.3 of [AAC13]. The idea of the proof is to write explicitly the joint law of the eigenvalues of
Mp—_1, denoted A; < --- < Ay_1, and to interpret X as the smallest eigenvalue of a larger GOE(N) matrix
with eigenvalues X < \; < --- < Ay_1, and use Selberg’s integral. Applying this lemma to eq. (9) with

t=, /m and G = (tv/N)B yields that for any N:
ECritd (B) =2,/ 2(p — 1)5E SNEEEAL (A P _p 11
rity ,(B) = ];(p— )? Ecor(w) |€ E 0€ 2p—1) . (11)

2.4 The large N limit

We are interested in the limit of the annealed complexity %9(B) £ limy_,oc 4 InE Crit} ,(B). A precise
look at eq. (11) can convince that we need to study the large deviations for the smallest eigenvalue of a
GOE(N) matrix. We state this result in an informal way, see Theorem A.1 of [AAC13] for a more precise
statement, along with the Large Deviation Principle (LDP) for eigenvalues of all finite index:

Lemma 2.3 (LDP of the smallest eigenvalue of a GOE matrix, informal) Let Ao be the smallest
eigenvalue of a GOE(N) matriz, and I CR. Then

lim %IHP[AO € Il = —sup F(z), (12)

N—o00 zel

with F defined as:

00 ifz>—v2
F(z) & {

B ) 13
%f\/i dz\/; otherwise 19)

Using Lemma 2.3 alongside eq (11) and Varadhan’s lemma directly yields a final estimate for the annealed
complexity:

22(3) = %ln(p —-1)+  sup {x —F(x)] . (14)



A Q’k(u\

Figure 1: The functions Oy for the first indices

2.5 Description of the results

Considering B = (—oo,u) (for u € R) in eq. (14) leads to effectively count the local minima of the pure
p-spin Hamiltonian of extensive energy smaller than Nu. In this case, the supremum in eq. (14) can be
analytically performed, and one obtains an explicit form for ¥9((—oco,u)). The calculation we sketched can

also be performed for critical points of any fixed index k € N (see again [AAC13]), and if we define:

A . 1 ok
Op(u) = J\}gnoo N In E Crity ,((—o0,u)), (15)
there exists analytic expressions for all ©(u) functions, see eq (2.16) of [AAC13]. Defining the threshold
energy Fo, = 2,/ pp%l, we can sketch the plot of these functions, see Fig. 1. We also denote —FE}, the value

at which the function O (u) becomes positive.

Final remarks

1. The local minima always dominate the complexity for all energies below —N E,, while for all energies
above —N E,, the complexity is dominated by critical points of diverging index.

2. The value —Ej is the lowest energy of critical points, and corresponds to the global minimum of the
original function. It can be shown indeed ([AAC13]) that the ground state energy concentrates to a
deterministic value as N — oc.

3. One can perform similar calculations for the complexity of critical points whose indices diverge with
N, see [AAT13] for the rigorous derivation.

4. This rigorous calculation can also be generalized to the mixed spherical p-spin case, see again [AAT13].
By a classical result of Schoenberg, these models exhaust all stationary isotropic Gaussian random
fields on the sphere in N dimensions.
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