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Abstract

Using a low-dimensional parametrization of signals is a generic and powerful way to enhance per-
formance in signal processing and statistical inference. A very popular and widely explored type of
dimensionality reduction is sparsity; another type is generative modelling of signal distributions. Gen-
erative models based on neural networks, such as GANs or variational auto-encoders, are particularly
performant and are gaining on applicability. In this paper we study spiked matrix models, where a low-rank
matrix is observed through a noisy channel. This problem with sparse structure of the spikes has attracted
broad attention in the past literature. Here, we replace the sparsity assumption by generative modelling,
and investigate the consequences on statistical and algorithmic properties. We analyze the Bayes-optimal
performance under speci�c generative models for the spike. In contrast with the sparsity assumption, we do
not observe regions of parameters where statistical performance is superior to the best known algorithmic
performance. We show that in the analyzed cases the approximate message passing algorithm is able to
reach optimal performance. We also design enhanced spectral algorithms and analyze their performance
and thresholds using random matrix theory, showing their superiority to the classical principal component
analysis. We complement our theoretical results by illustrating the performance of the spectral algorithms
when the spikes come from real datasets.
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1 Introduction

A key idea of modern signal processing is to exploit the structure of the signals under investigation. A
traditional and powerful way of doing so is via sparse representations of the signals. Images are typically
sparse in the wavelet domain, sound in the Fourier domain, and sparse coding [1] is designed to search
automatically for dictionaries in which the signal is sparse. This compressed representation of the signal can be
used to enable e�cient signal processing under larger noise or with fewer samples leading to the ideas behind
compressed sensing [2] or sparsity enhancing regularizations. Recent years brought a surge of interest in
another powerful and generic way of representing signals – generative modeling. In particular the generative
adversarial networks (GANs) [3] provide an impressively powerful way to represent classes of signals. A
recent series of works on compressed sensing and other regression-related problems successfully explored the
idea of replacing the traditionally used sparsity by generative models [4, 5, 6, 7, 8, 9, 10]. These results and
performances conceivably suggest that [11]:

Generative models are the new sparsity.

Next to compressed sensing and regression, another technique in statistical analysis that uses sparsity in a
fruitful way is sparse principal component analysis (PCA) [12]. Compared to the standard PCA, in sparse-PCA
the principal components are linear combinations of a few of the input variables, speci�cally k of them. This
means (for rank-one) that we aim to decompose the observed data matrix Y ∈ Rn×p as Y = uvᵀ + ξ where
the spike v ∈ Rp is a vector with only k � p non-zero components, and u, ξ are commonly modelled as
independent and identically distributed (i.i.d.) Gaussian variables.

The main goal of this paper is to explore the idea of replacing sparsity of the spike v by the assumption
that the spike belongs to the range of a generative model. Sparse-PCA with structured sparsity inducing
priors is well studied, e.g. [13], in this paper we remove the sparsity entirely and in a sense replace it by lower
dimensionality of the latent space of the generative model. For the purpose of comparing generative model
priors and sparsity we focus on the rich range of properties in the noisy high-dimensional regime (denoted
below, borrowing statistical physics jargon, as the thermodynamic limit) where the spike v cannot be estimated
consistently, but can be estimated better than by random guessing. In particular we analyze two spiked-matrix
models as considered in a series of existing works on sparse-PCA, e.g. [14, 15, 16, 17, 18, 19, 20], de�ned as
follows:

Spiked Wigner model (vvᵀ): Consider an unknown vector (the spike) v? ∈ Rp drawn from a distribution
Pv ; we observe a matrix Y ∈ Rp×p with a symmetric noise term ξ ∈ Rp×p and ∆ > 0:

Y =
1√
p
v?v?ᵀ +

√
∆ξ , (1)

where ξij∼N (0, 1) i.i.d. The aim is to �nd back the hidden spike v? from Y (up to a global sign).

Spiked Wishart (or spiked covariance) model (uvᵀ): Consider two unknown vectors u? ∈ Rn and
v? ∈ Rp drawn from distributions Pu and Pv and let ξ ∈ Rn×p with ξµi∼N (0, 1) i.i.d. and ∆ > 0, we observe

Y =
1√
p
u?v?ᵀ +

√
∆ξ ; (2)

the goal is to �nd back the hidden spikes u? and v? from Y ∈ Rn×p.
The noisy high-dimensional limit that we consider in this paper (the thermodynamic limit) is p, n→∞

while β ≡ n/p= Θ(1), and the noise ξ has a variance ∆ = Θ(1). The prior Pv is representing the spike v
via a k-dimensional parametrization with α≡p/k=Θ(1). In the sparse case, k is the number of non-zeros
components of v?, while in generative models k is the number of latent variables.

3



1.1 Considered generative models

The simplest non-separable prior Pv that we consider is the Gaussian model with a covariance matrix Σ, that is
Pv(v) = N (v; 0,Σ). This prior is not compressive, yet it captures some structure and can be simply estimated
from data via the empirical covariance. We use this prior later to produce Fig. 4.

To exploit the practically observed power of generative models, it would be desirable to consider models (e.g.
GANs, variational auto-encoders, restricted Boltzmann machines, or others) trained on datasets of examples of
possible spikes. Such training, however, leads to correlations between the weights of the underlying neural
networks for which the theoretical part of the present paper does not apply readily. To keep tractability in a
closed form, and subsequent theoretical insights, we focus on multi-layer generative models where all the
weight matrices W (l), l = 1, . . . , L, are �xed, layer-wise independent, i.i.d. Gaussian with zero mean and unit
variance. Let v ∈ Rp be the output of such a generative model

v = ϕ(L)

(
1√
k
W (L) . . . ϕ(1)

(
1√
k
W (1)z

)
. . .

)
. (3)

with z ∈ Rk a latent variable drawn from separable distribution Pz , with ρz = EPz
[
z2
]

and ϕ(l) element-wise
activation functions that can be either deterministic or stochastic. In the setting considered in this paper the
ground-truth spike v∗ is generated using a ground-truth value of the latent variable z∗. The spike is then
estimated from the knowledge of the data matrix Y , and the known form of the spiked-matrix and of the
generative model. In particular the matrices W (l) are known, as are the parameters β, ∆, Pz , Pu, Pv , ϕ(l).
Only the spikes v∗, u∗ and the latent vector z∗ are unknown, and are to be inferred.

For concreteness and simplicity, the generative model that will be analyzed in most examples given in the
present paper is the single-layer case of (3) with L = 1:

v = ϕ

(
1√
k
W z
)
⇔ v ∼ Pout

(
·
∣∣∣ 1√
k
W z
)
. (4)

We de�ne the compression ratio α ≡ p/k. In what follows we will illustrate our results for ϕ being linear, sign
and ReLU functions.

1.2 Summary of main contributions

We analyze how the availability of generative priors, de�ned in section 1.1, in�uences the statistical and
algorithmic properties of the spiked-matrix models (1) and (2). Both sparse-PCA and generative priors provide
statistical advantages when the e�ective dimensionality k is small, k � p. However, we show that from the
algorithmic perspective the two cases are quite di�erent. This is why our main �ndings are best presented in a
context of the results known for sparse-PCA. We draw two main conclusions from the present work:

(i) No algorithmic gap with generative-model priors: Sharp and detailed results are known in the
thermodynamic limit (as de�ned above) when the spike v? is sampled from a separable distribution Pv . A
detailed account of several examples can be found in [21]. The main �nding for sparse priors Pv is that when
the sparsity ρ = k/p = 1/α is large enough then there exist optimal algorithms [15], while for ρ small enough
there is a striking gap between statistically optimal performance and the one of best known algorithms [16].
The small-ρ expansion studied in [21] is consistent with the well-known results for exact recovery of the
support of v? [22, 23], which is one of the best-known cases in which gaps between statistical and best-known
algorithmic performance were described.

Our analysis of the spiked-matrix models with generative priors reveals that in this case known algorithms
are able to obtain (asymptotically) optimal performance even when the dimension is greatly reduced, i.e. α� 1.
Analogous conclusion about the lack of algorithmic gaps was reached for the problem of phase retrieval under
a generative prior in [9]. This result suggests that plausibly generative priors are better than sparsity as they
lead to algorithmically easier problems.

(ii) Spectral algorithms reaching statistical threshold: Arguably the most basic algorithm used to
solve the spiked-matrix model is based on the leading singular vectors of the matrix Y . We will refer to this as
PCA. Previous work on spiked-matrix models [17, 21] established that in the thermodynamic limit and for
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separable priors of zero mean PCA reaches the best performance of all known e�cient algorithms in terms
of the value of noise ∆ below which it is able to provide positive correlation between its estimator and the
ground-truth spike. While for sparse priors positive correlation is statistically reachable even for larger values
of ∆ [17, 21], no e�cient algorithm beating the PCA threshold is known1.

In the case of generative priors we �nd in this paper that other spectral methods improve on the canonical
PCA. We design a spectral method, called LAMP, that (under certain assumptions, e.g. zero mean of the
spikes) reach the statistically optimal threshold, meaning that for larger values of noise variance no other (even
exponential) algorithm is able to reach positive correlation with the spike. Again this is a striking di�erence
with the sparse separable prior, making the generative priors algorithmically more attractive. We demonstrate
the performance of LAMP on the spiked-matrix model when the spike is taken to be one of the fashion-MNIST
images showing considerable improvement over canonical PCA.

2 Analysis of information-theoretically optimal estimation

We �rst discuss the information theoretic results on the estimation of the spike, regardless of the computational
cost. A considerable amount of results have been obtained for the spiked-matrix models with separable
priors [14, 15, 25, 26, 19, 18, 27, 28, 29, 30]. Here, we extend these results to the case where the spike v? ∈ Rp
is generated from a generic non-separable prior Pv on Rp.

2.1 Mutual Information and Minimal Mean Squared Error

We consider the mutual information between the ground-truth spike v? and the observation Y , de�ned as
I(Y ; v?) = DKL(P(v?,Y )‖Pv?PY ). Next, we consider the best possible value of the mean-squared-error on
recovering the spike, commonly called the minimum mean-squared-error (MMSE). The MMSE estimator is
computed from marginal-means of the posterior distribution P (v|Y ).

Theorem 1. [Mutual information for the spiked Wigner model with structured spike] Informally (see SM section
C for details and proof), assume the spikes v? come from a sequence (of growing dimension p) of generic structured
priors Pv on Rp, then

lim
p→∞

ip ≡ lim
p→∞

I(Y ; v?)
p

= inf
ρv≥qv≥0

iRS(∆, qv), (5)

with iRS(∆, qv) ≡
(ρv − qv)2

4∆
+ lim
p→∞

I
(
v; v +

√
∆
qv
ξ
)

p
(6)

and ξ being a Gaussian vector with zero mean, unit diagonal variance and ρv = lim
p→∞

EPv [vᵀv]/p.

This theorem connects the asymptotic mutual information of the spiked model with generative prior Pv to
the mutual information between v taken from Pv and its noisy version, I(v; v +

√
∆/qvξ). Computing this

later mutual information is itself a high-dimensional task, hard in full generality, but it can be done for a range
of models. The simplest tractable case is when the prior Pv is separable, then it yields back exactly the formula
known from [26, 19, 18]. It can be computed also for the Gaussian generative model, Pv(v) = N (v; 0,Σ),
leading to I(v; v +

√
∆/qvξ) = Tr (log (Ip + qvΣ/∆)) /2.

More interestingly, the mutual information associated to the generative prior in eq. (6) can also be
asymptotically computed for the multi-layer generative model with random weights, de�ned in eq. (3). Indeed,
for the single-layer prior (4) the corresponding formula for mutual information has been derived and proven
in [31]. For the multi-layer case the mutual information formula has been derived in [6, 32] and proven for the
case of two layers in [33]. Theorem 1 together with the results from [31, 6, 32, 33] yields the following formula

1This result holds only for sparsity ρ = Θ(1). A line of works shows that when sparsity k scales slower than linearly with p,
algorithms more performant than PCA exist [22, 24]
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(see SM sec. C for details) for the spiked Wigner model (1) with single-layer generative prior (4):

iRS(∆, qv) =
ρ2
v

4∆
+

q2
v

4∆
+

1

α
min
qz

max
q̂z

[
1

2
qz q̂z −Ψz(q̂z)− αΨout

(qv
∆
, qz

)]
, (7)

where the functions Ψz,Ψout are de�ned by

Ψz(x) ≡ Eξ
[
Zz
(
x1/2ξ, x

)
log
(
Zz
(
x1/2ξ, x

))]
, (8)

Ψout(x, y) ≡ Eξ,η
[
Zout

(
x1/2ξ, x, y1/2η, ρz − y

)
log
(
Zout

(
x1/2ξ, x, y1/2η, ρz − y

))]
, (9)

with ξ, η∼N (0, 1) i.i.d., andZz andZout are the normalizations of the following denoising scalar distributions:

Qγ,Λz (z) ≡ Pz(z)

Zz(γ,Λ)
e−

Λ
2
z2+γz ;QB,A,ω,Vout (v, x) ≡ Pout(v|x)

Zout(B,A, ω, V )
e−

A
2
v2+Bve−

(x−ω)2

2V . (10)

Result (7) is remarkable in that it connects the asymptotic mutual information of a high-dimensional model
with a simple scalar formula that can be easily evaluated. In the SM sec. B we show how this formula is
obtained using the heuristic replica method from statistical physics and, once we have the formula in hand, we
prove it using the interpolation method in SM sec. C. In SM sec. B.2 we also give the corresponding formula
for the spiked Wishart model, and in sec. B.3 for the multi-layer case.

Beyond its theoretical interest, the main point of the mutual information formula is that it yields the optimal
value of the mean-squared error (MMSE). It is well-known [34] that the mean-squared error is minimized by
an estimator evaluating the conditional expectation of the signal given the observations. Following generic
theorems on the connection between the mutual information and the MMSE [35], one can prove in particular
that for the spiked-matrix model [27] the MMSE on the spike v? is asymptotically given by:

MMSEv = ρv − q?v , (11)

where q?v is the optimizer of the function iRS (∆, qv).

2.2 Examples of phase diagrams

Taking the extremization over qv, q̂z, qz in eq. (7), we obtain the following �xed point equations:

qv = 2∂qvΨout

(qv
∆
, qz

)
, qz = 2∂q̂zΨz (q̂z) , q̂z = 2α∂qzΨout

(qv
∆
, qz

)
. (12)

Using (11), analyzing the �xed points of eqs. (12) provides all the informations about the performance of the
Bayes-optimal estimator in the models under consideration.

Phase transition: A �rst question is whether better estimation than random guessing from the prior is
possible. In terms of �xed points of eqs. (12), this corresponds to the existence of the non-informative �xed
point q?v = 0 (i.e. zero overlap with the spike, or maximum MSEv = ρv). Evaluating the right-hand side of
eqs. (12) at qv = 0, we can see that q?v = 0 is a �xed point if

EPz [z] = 0 and EQ0
out

[v] = 0 , (13)

where Q0
out(v, x) ≡ Q0,0,0,ρz

out (v, x) from eq. (10). Note that for a deterministic channel the second condition is
equivalent to ϕ being an odd function.

When the condition (13) holds, (qv, q̂z, qz) = (0, 0, 0) is a �xed point of eq. (12). The numerical stability
of this �xed point determines a phase transition point ∆c, de�ned as the noise below which the �xed point
(0, 0, 0) becomes unstable. This corresponds to the value of ∆ for which the largest eigenvalue of the Jacobian
of the eqs. (12) at (0, 0, 0), given by
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Figure 1: Spiked Wigner model: MMSEv on the spike as a function of noise to signal ratio ∆/ρ2
v , and generative

prior (4) with compression ratio α for linear (left, ρv = 1), sign (center, ρv = 1), and relu (right, ρv = 1/2)
activations. Dashed white lines mark the phase transitions ∆c, matched by both the AMP and LAMP algorithms.
Dotted white line marks the phase transition of canonical PCA.
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Figure 2: Spiked Wigner model: MMSEv as a function of noise ∆ for a wide range of compression ratios
α = 0, 1, 10, 100, 1000, for linear (left), sign (center), and relu (right) activations. Unique stable �xed point of
(12) is found for all these cases.

2d(∂qvΨout, α∂qzΨout, ∂q̂zΨz)|(0,0,0) =


1
∆

(
EQ0

out
v2
)2

0 1
ρ2
z

(
EQ0

out
vx
)2

α
∆

(
EQ0

out
vx
)2

0 α
ρ2
z

(
EQ0

out
x2 − ρz

)2

0
(
EPzz2

)2
0

 , (14)

becomes greater than one. The details of this calculation can be found in sec. F of the SM.
It is instructive to compute ∆c in speci�c cases. We therefore �xPz = N (0, 1) andPout(v|x) = δ(v−ϕ(x))

and discuss two di�erent choices of (odd) activation function ϕ.

Linear activation: For ϕ(x) = x the leading eigenvalue of the Jacobian becomes one at ∆c = α+ 1. Note
that in the limit α = 0 we recover the phase transition ∆c = 1 known from the case with separable
prior [21]. For α > 0, we have ∆c > 1 meaning the spike can be estimated more e�ciently when its
structure is accounted for.

Sign activation: For ϕ(x) = sgn(x) the leading eigenvalue of the Jacobian becomes one at ∆c = 1 + 4α
π2 .

For α = 0, Pv = Bern(1/2), and the transition ∆c = 1 agrees with the one found for a separable prior
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distribution [21]. As in the linear case, for α > 0, we can estimate the spike for larger values of noise
than in the separable case.

In Fig. 1 we solve the �xed point equations (12) and plot the MMSE obtained from the �xed point in a heat
map, for the linear, sign and relu activations. The white dashed line marks the above stated threshold ∆c. The
property that we �nd the most striking is that in these three evaluated cases, for all values of ∆ and α that we
analyzed, we always found that eq. (12) has a unique stable �xed point. Thus we have not identi�ed any �rst
order phase transition (in the physics terminology). This is illustrated in Fig. 2 for larger values of α, where
we solved the eq. (12) iteratively from uncorrelated initial condition, and from initial condition corresponding
to the ground truth signal, and found that both lead to the same �xed point.

3 Approximate message passing with generative priors

A straightforward algorithmic evaluation of the Bayes-optimal estimator is exponentially costly. This section
is devoted to the analysis of an approximate message passing (AMP) algorithm that for the analyzed cases
is able to reach the optimal performance (in the thermodynamic limit). For the purpose of presentation, we
focus again on the spiked Wigner model (see SM for the spiked Wishart model). For separable priors, the
AMP for the spiked Wigner model is well known [14, 15, 16]. It can, however, be extended to non-separable
priors [36, 6, 37]. We show in SM sec. D how AMP can be generalized to handle the generative model (4).
It reads: where Is and 1s denote respectively the identity matrix and vector of ones of size s. The update

Input: Y ∈ Rp×p and W ∈ Rp×k:
Initialize to zero: (g, v̂,Bv, Av)t=0.
Initialize with: v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2), and ĉt=1

v = 1p, ĉt=1
z = 1k, t = 1.

repeat
Spiked layer:

Btv = 1
∆

Y√
p v̂

t − 1
∆

(1ᵀ
pĉtv)
p v̂t−1 and Atv = 1

∆p‖v̂t‖22Ip.
Generative layer:
V t = 1

k

(
1
ᵀ
kĉ
t
z

)
Ip, ωt = 1√

k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
,

Λt = 1
k‖gt‖22Ik and γt = 1√

k
W ᵀgt + Λtẑt.

Update of the estimated marginals:
v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1

v = ∂Bfv(Btv, Atv,ωt, V t),
ẑt+1 = fz(γ

t,Λt) and ĉt+1
z = ∂γfz(γ

t,Λt),
t = t+ 1.

until Convergence.
Output: v̂, ẑ.
Algorithm 1: AMP algorithm for the spiked Wigner model with single-layer generative prior.

functions fout and fv are the means of V −1 (x− ω) and v with respect to Qout, eq. (10), while the update
function fz is the mean of z with respect to Qz , eq. (10).

The algorithm for the spiked Wishart model is very similar and both derivations are given in SM sec. D. We
de�ne the overlap of the AMP estimator with the ground truth spike as (v̂t)ᵀv?/p−→qtv as p→∞. Perhaps
the most important virtue of AMP-type algorithms is that their asymptotic performance can be tracked exactly
via a set of scalar equations called state evolution. This fact has been proven for a range of models including
the spiked matrix models with separable priors in [38], and with non-separable priors in [37]. To help the
reader understand the state evolution equations we provide a heuristic derivation in the SM, section D.4. The
state evolution states that the overlap qtv evolves under iterations of the AMP algorithm as:

qt+1
v = 2∂qvΨout

(
qtv
∆
, qtz

)
, qt+1

z = 2∂q̂zΨz

(
q̂tz
)
, q̂tz = 2α∂qzΨout

(
qtv
∆
, qtz

)
, (15)
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Figure 3: Comparison between PCA, LAMP and AMP for (left) the linear, (center) and sign activations, at
compression ratio α = 2. Lines correspond to the theoretical asymptotic performance of PCA (red line), LAMP
(green line) and AMP (blue line). Dots correspond to simulations of PCA (red squares), LAMP (green crosses)
for k = 104 and AMP (blue points) for k = 5.103, σ2 = 1. (Right) Illustration of the spectral phase transition
in the matrix Γvvp eq. (18) at α = 2 with an informative leading eigenvector with eigenvalue equal to 1 out
of the bulk for ∆ ≤ 1 + α. We show the bulk spectral density µ(α,∆). The inset shows the two leading
eigenvalues.

with initialization qt=0
v = ε, qt=0

z = ε and a small ε > 0. We notice immediately that (15) are the same
equations as the �xed point equations related to the Bayes-optimal estimation (12) with speci�c time-indices
and initialization, but crucially the same �xed points. Thus the analysis of �xed points in section 2.2 applies
also to the behaviour of AMP. In particular, since in all cases analyzed we found the stable �xed point of (12)
to be unique, it means the AMP algorithm is able to reach asymptotically optimal performance in all these
cases. This is further illustrated in Fig. 3 where we explicitly compare runs of AMP on �nite size instances
with the results of the asymptotic state evolution, thus also giving an idea of the amplitude of the �nite size
e�ects. Note that we provide a demonstration notebook in the GitHub repository [39] that compares AMP,
LAMP and PCA numerical performances.

4 Spectral methods for generative priors

Spectral algorithms are the most commonly used ones for the spiked matrix models. For instance, canonical
PCA estimates the spike from the leading eigenvector of the matrix Y . A classical result from Baik, Ben Arous
and Péché (BBP) [40] shows that this eigenvector is correlated with the signal if and only if the signal-to-noise
ratio ρ2

v/∆ > 1. For sparse separable priors (with ρ2
v = Θ(1)), ∆PCA = ρ2

v is also the threshold for AMP and
it is conjectured that no polynomial algorithm can improve upon it [21]. In the previous section we show that
for the analyzed generative priors AMP has a better threshold than PCA. Here we design a spectral method,
called LAMP, that matches the AMP threshold and is hence superior over the canonical PCA. In order to do so,
we follow the powerful strategy pioneered in [41] and linearize the AMP around its non-informative �xed
point. In the spiked Wigner model with a single-layer prior the linearized AMP leads to the following operator:

Γvvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(
Y√
p
− aIp

)
, (16)

where parameters are moments of distributions Pz and Q0
out according to

a ≡ ρv , b ≡ ρ−1
z EQ0

out
[vx]2 , c ≡ 1

2
ρ−3
z EPz

[
z3
]
EQ0

out
[vx2]EQ0

out
[vx] . (17)

We denote the spectral algorithm that takes the leading eigenvectors of (16) as LAMP (for linearized-AMP). Its
derivation is presented in SM sec. E together with the one for the spiked Wishart model.
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Figure 4: Illustration of canonical PCA (top line) and the LAMP (bottom line) spectral methods (18) on the
spiked Wigner model. The covariance Σ is estimated empirically from the FashionMNIST database [42]. The
estimation of the spike is shown for two images from FashionMNIST, with (from left to right), noise variance
∆ = 0.01, 0.1, 1, 2, 10.

For the speci�c case of Gaussian z and prior (4) with the sign activation function we obtain (a, b, c) =
(1, 2/π, 0). For linear activation we get (a, b, c) = (1, 1, 0), leading to

Γvvp =
1

∆
Kp

[
Y√
p
− Ip

]
with Kp =

[WW ᵀ]

k
= Σ ≈ 1

n

∑
α

vα(vα)ᵀ , (18)

where the last two equalities come from the fact that for the model (4) with linear activation and Gaussian
separablePz ,Kp is asymptotically equal to the covariance matrix between samples of spikes, Σ. Interestingly, Σ
can be estimated empirically from samples of spikes, without the knowledge of the matrixW itself. Analogously
to the state evolution for AMP, the asymptotic performance of both PCA and LAMP can be evaluated in a
closed-form for the spiked Wigner model with single-layer generative prior with linear activation (4). The
corresponding expressions are derived in SM sec. E and plotted in Fig. 3 for the three considered algorithms.

In fact, the spectral method based on the matrix in eq. (18) can also be derived linearizing AMP with a
Gaussian prior with covariance Σ. This means that we can use the above spectral method without extensive
training by simply computing the empirical covariance of n samples of spikes, vα, α = 1, . . . , n. For illustration
purposes, we display the behaviour of this spectral method on the spiked Wigner model with spikes coming
from the Fashion-MNIST dataset in Fig. 4. A demonstration notebook is provided in the GitHub repository,
illustrating PCA and LAMP performances on Fashion-MNIST dataset.

Remarkably, the performance of the spectral method based on matrix (18) can be investigated independently
of AMP using random matrix theory. An analysis of the random matrix (18) shows that a spectral phase
transition for generative prior with linear activations appears at ∆c = 1 + α (as for AMP). This transition is
analogous to the well-known BBP transition [40], but a non-GOE random matrix (18) needs to be analyzed.
For the spiked Wigner models with linear generative prior we prove two theorems describing the behavior of
the supremum of the bulk spectral density, the transition of the largest eigenvalue and the correlation of the
corresponding eigenvector:

Theorem 2 (Bulk of the spectral density, spiked Wigner, linear activation). Let α,∆ > 0, then:
(i) The spectral measure of Γvvp converges almost surely and in the weak sense to a compactly supported

probability measure µ(α,∆). We denote λmax the supremum of the support of µ(α,∆).
(ii) For any α > 0, as a function of ∆, λmax has a unique global maximum, reached exactly at the point

∆ = ∆c(α) = 1 + α. Moreover, λmax(α,∆c(α)) = 1.

Theorem 3 (Transition of the largest eigenvalue and eigenvector, spiked Wigner, linear activation). Let
α > 0. We denote λ1 ≥ λ2 the �rst and second eigenvalues of Γvvp . If ∆ ≥ ∆c(α), then as p→∞ we have a.s.
λ1→λmax and λ2→λmax. If ∆ ≤ ∆c(α), then as p→∞ we have a.s. λ1→1 and λ2→λmax. Further, denoting
ṽ a normalized (‖ṽ‖2 = p ) eigenvector of Γvvp with eigenvalue λ1, then |ṽᵀv?|2/p2→ε(∆) a.s., where ε(∆) = 0
for all ∆ ≥ ∆c(α), ε(∆) > 0 for all ∆ < ∆c(α) and lim∆→0 ε(∆) = 1.

Thm. 2 and Thm. 3 are illustrated in Fig. 3. The proof gives the value of ε(∆), which turns out to lead
to the same MSE as in Fig. 3 in the linear case. We state the theorems counterparts for the uvᵀ linear case
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in SM sec. G. The proofs of the theorems and the precise arguments used to derive the eigenvalue density,
the transition of λ1 and the computation of ε(∆) are given in SM sec. G, and a Mathematica demonstration
notebook is provided in the GitHub repository is also provided. We also describe in SM the di�culties to
circumvent to generalize the analysis to a non-linear activation function with random matrix theory.
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Appendix

A De�nitions and notations

In this section we recall the models introduced in the main body of the article, and introduce the notations
used throughout the Supplementary Material.

A.1 Models

Spiked Wigner model (vvᵀ): Consider an unknown vector (the spike) v? ∈ Rp drawn from a distribution
Pv , we observe a matrix Y ∈ Rp×p such that:

Y =
1√
p
v?v?ᵀ +

√
∆ξ , (19)

with symmetric noise ξ ∈ Rp×p drawn from ξij ∼
i.i.d.
N (0, 1) and ∆ > 0. The aim is to �nd back the hidden

spike v? from the observation of Y .

Spiked Wishart (or spiked covariance) model (uvᵀ): Consider two unknown vectors u? ∈ Rn and
v? ∈ Rp drawn from distributions Pu and Pv , we observe Y ∈ Rn×p such that

Y =
1√
p
u?v?ᵀ +

√
∆ξ , (20)

with noise ξ ∈ Rn×p drawn ξiµ ∼
i.i.d.
N (0, 1), ∆ > 0, and the goal is to �nd back the hidden spikes u? and v?

from the observation of Y . We de�ne the ratio between the spike dimensions β = n/p.
In either models, we are interested in the case where v? is given by a generative model. In the setting

studied here the generative model is a fully-connected single-layer neural network (a.k.a. generalised linear
model) with Gaussian random weights W ∈ Rp×k , Wil ∼

i.i.d.
N (0, 1) and latent variable z? ∈ Rk drawn from a

given factorised distribution Pz ,

v? = ϕ

(
1√
k
W z?

)
with z?l ∼i.i.d.

Pz, (21)

where ϕ : R→ R is the activation function, a real-valued function acting component-wise on Rp that can be
deterministic or stochastic. An equivalent formulation of eq. (21) is

v?∼Pout

(
·
∣∣∣ 1√
k
W z?

)
. (22)

For instance, a deterministic layer with activation ϕ is written in this formulation as Pout(v|x) = δ(v − ϕ(x)).
We de�ne the compression rate of the signal as α = p/k.

Although we will mainly focus on the single-layer model, some of our results apply more broadly to any
generative prior with a well-de�ned free energy density in the thermodynamic limit. In particular, we will
mention the example of a fully-connected multi-layer generative prior, given by

v? = ϕ(L)

(
1√
k
W (L) · · ·ϕ(1)

(
W (1)z

))
with z?l ∼i.i.d.

Pz (23)

where now {ϕ(l)}1≤l≤L are a family of real-valued component-wise activation functions and W (l)
νlνl−1 ∼i.i.d.

N (0, 1) are independently drawn random weights. The equivalent probabilistic formulation of the multi-layer
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case is

v ∼ P (L)
out

(
·
∣∣∣ 1√
kL
W (L)h(L)

)
, v ∈ Rp

h(L) ∼ P (L−1)
out

(
·
∣∣∣ 1√

kL−1

W (L−1)h(L−1)

)
, h(L) ∈ RkL

...

h(2) ∼ P (1)
out

(
·
∣∣∣ 1√
k1
W (1)z

)
, h(2) ∈ Rk2

z ∼
i.i.d.

Pz, z ∈ Rk1 (24)

where we introduced the hidden variables h(l) ∈ Rkl for 2 ≤ l ≤ L and the family of densities
{
P

(l)
out

}
1≤l≤L

.
In this case, we de�ne the compression rate as the ratio between the dimensions of the latent variable in the
�rst layer z ∈ Rk1 and the signal v ∈ Rp, α = p/k1. It is also useful to de�ne the compression at each layer,
αl = kl/k1. The thermodynamic limit for this generative model is de�ned by taking p→∞ while keeping
all α, αl ∼ O(1), 1 ≤ l ≤ L. As one might expect, the single-layer generative prior is a particular case with
L = 1.

A.2 Bayesian inference and posterior distribution

Since the information about the generative model Pv of the spike is given, the optimal estimator for v? is the
mean of its posterior distribution, v̂opt = EP (v?|Y )v, which in general reads

P (v?|Y ) =
1

P (Y )
Pv(v?)

∏
1≤i<j≤p

1√
2π∆

e
− 1

2∆

(
Yij−

v?i v
?
j√
p

)2

, (25)

for the vvᵀ model and by

P (v?|Y ) =
1

P (Y )
Pv(v?)

∫
Rn

du Pu(u)
∏

1≤i≤p,1≤µ≤n

1√
2π∆

e
− 1

2∆

(
Yµi−

u?µv
?
i√
p
,

)2

(26)

for the uvᵀ model. In both cases the evidence P (Y ) is �xed as the normalisation of the posterior. In the
speci�c case of a single-layer generative model from eq. (21), we can be more explicit and write the prior for
v? explicitly

Pv(v?) =

∫
Rk

dz?Pz (z?)
p∏
i=1

Pout

(
v?i

∣∣∣ 1√
k

k∑
l=1

Wilz
?
l

)
. (27)

The multi-layer case is written similarly by integrating over the intermediate hidden variables and their
respective distributions. It is important to stress that we assume the structure of the generative model is
known, i.e. (Pz, Pout,W ) (and Pu in the uvᵀ case) are given and the only unknowns of the problem are the
spike v? and the corresponding latent variable z?. This setting, in which the Bayesian estimator is optimal, is
commonly refereed as the Bayes-optimal inference.

In principle eqs. (25) and (26) are of little use, since sampling from these high-dimensional distributions is
a hard problem. Luckily, physicists have been dealing with high-dimensional distributions - such as the Gibbs
measure in statistical physics - for a long time. The replica trick and the approximate message passing (AMP)
algorithm presented in the main body of the paper are two of the statistical physics inspired techniques we
borrow to circumvent the hindrance of dimensionality.
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Summary of the Supplementary Material: A detailed account of the derivation of eq. (7) from the replica
method is given in Section B. Although the replica calculation is not mathematically rigorous, it gives a
constructive method to compute the mutual information. The �nal expression can be made rigorous using an
interpolation method, which we detail in Section C. The sketch for the derivation of the AMP algorithm 1
and its associated spectral algorithm in eq. (16) are discussed respectively in Section D and E. We detail the
stability analysis of the state evolution equations leading to the transition point for generic activation function
in Section F, and �nally we present a rigorous proof for the transition in the case of linear activation in Section
G.

A.3 Notation and conventions

Index convention: In the whole paper, we use the convention that indices µ, i and l correspond respectively
to variables u, v and z such that µ ∈ [1 : n], i ∈ [1 : p] and l ∈ [1 : k].

Unless otherwise stated, ξ, η ∈ R denote independent random variables variables distributed according to
N (0, 1).

Normalised second moments We de�ne ρv as the normalised second moments of the priors Pv, Pu and
Pz respectively,

ρv = lim
p→∞

EPv
[
vᵀv
p

]
, ρu = lim

n→∞
EPu

[
uᵀu
n

]
, ρz = lim

z→∞
EPz

[
zᵀz
k

]
. (28)

In the case we consider Pz(z) =
k∏
l=1

Pz(zl), ρz is simply the one-dimensional second moment of Pz

ρz = EPzz2. (29)

In the case Pv is the single-layer generative model in eq. (27) with Wil ∼
i.i.d.
N (0, 1) and zl ∼

i.i.d.
Pz , ρv is

self-averaging in the thermodynamic limit and is given by

ρv = EQ0
out
v2 , (30)

where Q0
out is de�ned below in eq. (34).

Denoising distributions The upshot of the replica calculation is that the high dimensional mutual in-
formation between the spike and the data I(Y, v?) is given by a simple one-dimensional expression, c.f. the
right-hand side of the main part eq. (7). This expression can be interpreted as the mutual information of a
one-dimensional denoising problem.

Below we introduce the one-dimensional probability densities appearing in the factorised mutual informa-
tion, from which the free energy and the AMP update equations are derived from:

Qu(u;B,A) ≡ 1

Zu(B,A)
Pu(u)e−

1
2
Au2+Bu , (31)

Qz(z; γ,Λ) ≡ 1

Zz(γ,Λ)
Pz(z)e

− 1
2

Λz2+γz , (32)

Qout(v, x;B,A, ω, V ) ≡ 1

Zout(B,A, ω, V )
e−

1
2
Av2+BvPout (v|x) e−

1
2
V −1(x−ω)2

, (33)

Q0
out(v, x; ρz) ≡ Qout(v, x; 0, 0, 0, ρz) =

1

Z0
out

Pout (v|x) e
− 1

2ρz
x2

. (34)
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Free entropy terms The mutual information density can be written in terms of the partition functions of
the denoising distributions above as:

Ψu(x) ≡ Eξ
[
Zu
(
x1/2ξ, x

)
log
(
Zu
(
x1/2ξ, x

))]
, (35)

Ψz(x) ≡ Eξ
[
Zz
(
x1/2ξ, x

)
log
(
Zz
(
x1/2ξ, x

))]
, (36)

Ψout(x, y) ≡ Eξ,η
[
Zout

(
x1/2ξ, x, y1/2η, ρz − y

)
log
(
Zout

(
x1/2ξ, x, y1/2η, ρz − y

))]
. (37)

AMP update functions Similarly, the update functions appearing in AMP are also given in terms of the
moments of the above denoising distributions:

fu(B,A) ≡ ∂B log (Zu) = EQu [u] , ∂Bfu(B,A) ≡ EQu
[
u2
]
− (fu)2 (38)

fz(γ,Λ) ≡ ∂γ log (Zz) = EQz [z] , ∂γfz(γ,Λ) ≡ EQz
[
z2
]
− (fz)

2 (39)
fv(B,A, ω, v) ≡ ∂B log (Zout) = EQout [v] , ∂Bfv(B,A, ω, v) ≡ EQout

[
v2
]
− (fv)

2 (40)

fout(B,A, ω, v) ≡ ∂ω log (Zout) = V −1EQout [x− ω] , ∂ωfout(B,A, ω, v) ≡ ∂fout

∂ω
(41)

B Mutual information from the replica trick

In this section we give a derivation for the mutual information formula in main part eq. (7) from the replica
trick. The derivation is detailed for the symmetric vvᵀ model, since the derivation for the asymmetric uvᵀ

model follows exactly the same steps. In both cases, it closely follows the calculation of the replica free energy
of the spiked matrix model with factorized prior in [21].

Before diving into the derivation, we note that the formula in main part eq. (7) actually holds for any
channel of the form

P (Y |ω) =
∏

1≤i<j≤p
eg(Yij ,ωij) , (42)

where ω ∈ Rp×p is a matrix with components ωij ≡ vivj√
p and g : R2 → R is any two-dimensional real

function such that P (Y |ω) is properly normalised. The gaussian noise in eq. (1) is a particular case given by
g(Y, ω) = − 1

2∆(Y − ω)2 − 1
2 log 2π∆.

The �rst step in the derivation is to note that the mutual information I(Y, v?) between the observed data
Y and the spike v? can be writen as

I(Y, v?) =
1

4∆
EPv [v?ᵀv?]2 − EY logZ(Y ) , (43)

where

Z(Y ) =

∫
Rp

dv Pv(v)
∏

1≤i<j≤p
eg(Yij ,ωij)−g(Yij ,0). (44)

Note that since the data is generated from a planted spike v?, we have Y = Y (v?), and therefore the partition
function Z depends on v? implicitly through Y .

B.1 Derivation of the replica free energy for the vvᵀ model

The partition function Z is a p-dimensional integral, and computing the average over Y (a p× p integral) of
logZ seems hopeless. The replica trick is a way to surmount this hindrance. It consists of writing

EY logZ = lim
r→0+

1

r
(EY Zr − 1) . (45)
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Note that Zr is the partition function of r non-interacting copies (named in the physics literature and hereafter
replicas) of the initial system. The average over the replicated partition function Zr can be conveniently written
as

EY Zr =

∫ ∏
1≤i<j≤p

dYij eg(Yij ,0)

∫
Rp×(r+1)

r∏
a=0

dvaPv (va)
r∏

a=0

∏
1≤i<j≤p

eg(Yij ,ω
a
ij)−g(Yij ,0) , (46)

where in the second line we have de�ned

va =

{
v? for a = 0

va for 1 ≤ a ≤ r .
(47)

Averaging over Y The key observation to simplify the integrals in eq. (46) is to note that ωij is of order
1/
√
p, and therefore in the large-p limit of interest, we can keep only terms of order 1/p,

exp

(
r∑

a=0

[
g(Yij , ω

a
ij)− g(Yij , 0)

])
= 1 +

r∑
a=0

(∂ωg)ω=0 ω
a
ij +

1

2

r∑
a=0

(
∂2
ωg
)
ω=0

(
ωaij
)2

+
1

2

r∑
a,b=0

(∂ωg)2
ω=0 ω

a
ijω

b
ij +O

(
p−3/2

)
(48)

From the normalisation condition of P (Y |ω), we can derive the following relations∫ ∏
1≤i<j≤p

dYij eg(Yij ,0) = 1,∫ ∏
1≤i<j≤p

dYij eg(Yij ,0) (∂ωg)ω=0 = 0,∫ ∏
1≤i<j≤p

dYij eg(Yij ,0)
[
∂2
ωg + (∂ωg)2

]
ω=0

= 0. (49)

Further de�ning

∆−1 =

∫ ∏
1≤i<j≤p

dYij eg(Yij ,0) (∂ωg)2
ω=0 , (50)

allows us to evaluate the integral over Y term by term in the expansion in eq. (48),

EY Zr =

∫
Rp×(r+1)

r∏
a=0

dva Pv (va)
∏

1≤i<j≤p

1 +
1

2∆

∑
0≤a<b≤r

ωaijω
b
ij +O

(
p−3/2

)
=

∫
Rp×(r+1)

r∏
a=0

dva Pv (va)
∏

1≤i<j≤p
e

1
2∆

∑
0≤a<b≤r

ωaijω
b
ij

+O
(
p−3/2

)
. (51)

The upshot of this expansion is that on the large-p limit ∆ is the only relevant parameter we need from the
channel. Therefore, from the perspective of the mutual information density, a channel with parameter ∆ is
completely equivalent to a Gaussian channel with variance ∆. This property is known as channel universality
[21].

Rewritting as a saddle-point problem Note that we can rewrite∑
1≤i<j≤p

ωaijω
b
ij =

1

p

∑
1≤i<j≤n

vai v
a
j v
b
i v
b
j =

p

2

(
qabv

)2
, (52)
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where we de�ned the overlap between two replicas as qabv = p−1
p∑
i=1

vai v
b
i . This allows us to write the average

over the replicated partition function as a function of a set of order parameters qabv , and therefore to factorise
all the index i dependence of the exponential,

EY Zr =

∫
Rp×(r+1)

r∏
a=0

dva Pv (va) e
p

4∆

∑
0≤a<b≤r

(qabv )
2

. (53)

Since the expression above only depends on qabv now, we exchange the integral over the spike for an integral
over this order parameter by introducing

1 ∝
∫
R(r+1)×(r+1)

∏
0≤a<b≤r

dqabv
∏

0≤a<b≤r
δ

(
p∑
i=1

qabv − pqabv

)

∝
∫
R(r+1)×(r+1)

∏
0≤a<b≤r

dqabv
∫

(iR)(r+1)×(r+1)

∏
0≤a<b≤r

q̂abv e
−p

∑
0≤a<b≤r

q̂abv q
ab
v +

∑
0≤a<b≤r

q̂abv

p∑
i=1

vai v
b
i

(54)

Note that we neglected some constants and made a rotation to the complex axis over the Fourier integral.
These will not be important for the argument that follows.

Inserting this identity in eq. (53) yields

EY Zr ∝
∫
R(r+1)×(r+1)

∏
0≤a<b≤r

dqabv
∫

(iR)(r+1)×(r+1)

∏
0≤a<b≤r

q̂abv epΦ
(r)(qab,q̂ab) ,

Φ(r)(qabv , q̂
ab
v ) =

1

4∆

∑
0≤a<b≤r

(
qabv

)2
−

∑
0≤a<b≤r

q̂abv q
ab
v + Ψ(r)

v (q̂abv ) , (55)

where Ψ
(r)
v (q̂abv ) contains all the information about the prior Pv :

Ψ(r)
v (q̂abv ) =

1

p
log

∫
Rp×(r+1)

r∏
a=0

dva Pv (va)
p∏
i=1

e

∑
0≤a<b≤p

vai q̂
ab
v v

b
i

. (56)

Note that when the prior factorises, Pv(v) =
p∏
i=1

Pv(vi), Ψ
(r)
v is given by a simple one-dimensional integral.

However in the case of a generative model for v, Pv is kept general.
We are interested in the mutual information density in the thermodynamic limit. According to eq. (76),

this is given by

lim
p→∞

ip(Y, v?) = lim
p→∞

1

p
I(Y, v?) =

1

4∆
lim
p→∞

EPv
[
v?ᵀv?

p

]
− lim
p→∞

1

p
EY logZ (57)

=
ρ2
v

4∆
− lim
r→0+

1

r

(
lim
p→∞

1

p
EY Zr

)
. (58)

where we assumed that ρv , the re-scaled second moment of Pv , remains �nite and that we can commute the
r → 0+ and the p → ∞ limit. Since EY Zr is given in terms of an integral weighted by epΨ(r) , in the limit
p → ∞ the integral will be dominated by the con�gurations of (qabv , q̂

ab) that extremise the potential Ψ(r).
This extremality condition, known as the Laplace method, yields the following saddle-point equations,

q̂abv =
1

2∆
qabv , qabv = lim

p→∞
∂q̂vΨ

(r)
v (q̂abv ). (59)

where we also assume that Pv is such that Ψ
(r)
v remains well de�ned in the limit p→∞.
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Replica symmetric solution Enforcing the �rst saddle-point equation allow us to write

lim
p→∞

1

p
EY Zr = extr

qabv

− 1

2∆

∑
0≤a<b≤r

(
qabv

)2
+ lim
p→∞

Ψ(r)
v

(
qabv
∆

) (60)

Solving this extremisation problem for general matrices is cumbersome. We therefore restrict ourselves to
solutions that are replica symmetric

qabv = qv for 0 ≤ a ≤ r. (61)

The replica symmetry assumption might seen restrictive, but it is justi�ed in the Bayes-optimal case under
consideration - see [43]. Replica symmetry allow us to factor the r dependence explicitly for each term,

∑
0≤a<b≤r

(
qabv

)2
=
r(r + 1)

2
q2
v ,

∑
0≤a<b≤r

vai q
ab
v v

b
i = qvv

?
r∑

a=1

vai + qv

r∑
a,b=1

vai v
b
i (62)

the last sum that couples a, b can be decoupled using

e

qv
2

r∑
a,b=1

vai v
b
i

= Eξ

[
e
−√qvξ

r∑
a=1

(vai )
2
]

(63)

where ξ ∼ N (0, 1). This transformation factorise Ψ
(r)
v in replica space,

Ψ(r)
v (qv) =

1

p
log

∫
Rp

dv? Pv (v?)
∫
R

dξ√
2π
e−

1
2
ξ2

[∫
Rp

dv Pv(v)

p∏
i=1

e−
qv
2∆
v2
i+( qv∆ v?i +

√
q
∆
ξ)vi

]r

=
r→0+

r

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
qv
2∆
v2
i+( qv∆ v?i +

√
q
∆
ξ)vi +O

(
r2
)
. (64)

allowing us to take the r → 0+ limit explicitly, and giving the following partial result

lim
p→∞

ip(Y, v?) =
ρ2
v

4∆
+ extr

qv

[
1

4∆
q2
v − lim

p→∞
Ψv

(qv
∆

)]
, (65)

where

Ψv

(qv
∆

)
= lim

r→0+
Ψ(r)
v =

1

p
Eξ,Pv(v?) logEPv(v)

[
p∏
i=1

e−
qv
2∆
v2
i+( qv∆ v?i +

√
qv
∆
ξ)vi

]
. (66)

Interpretations of Ψv as a mutual information: The prior term Ψv in the free energy has an interesting
interpretation as the mutual information of an e�ective denoising problem over v. To see this, we complete
the square in the exponential of eq. (66),

Ψv (x) =
1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2
+x

2 (v?i +x−1/2ξ)
2

,

=
x

2p
Eξ,Pv(v?)

p∑
i=1

(
v?i + x−1/2ξ

)2
+

1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2

,

=
x

2
EPv

[
vᵀv
p

]
+

1

2
+

1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2

. (67)
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The last integral is a convolution between the prior Pv and a un-normalised Gaussian. Up to an aditive constant
it admits a natural representation as the mutual information of a denoising problem,

1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2

= −1

p
I(v?; v? + x−1/2ξ)− 1

2
. (68)

Putting together with eq. (67) and taking the limit,

lim
p→∞

Ψv

(qv
∆

)
=
qvρv
2∆
− lim
p→∞

1

p
I

(
v?; v? +

√
∆

qv
ξ

)
. (69)

Together with eq. (65), this representation lead to eq. (6) in the main article.
Interestingly, the signal to noise ratio in the e�ective denoising problem is proportional to ∆ and inversely

proportional to the overlap qv . This is quite intuitive: when ∆� 1 (or the overlap with the ground truth is
small), denoising is hard. On the other hand, when ∆ = 0 the mutual information reaches its upper bound,
given by the entropy of Pv .

B.2 Free energy for the uvᵀ model

The exact same steps outlined above can be followed for the spiked Wishart model with spikes u? ∈ Rn and
v? ∈ Rp drawn from non-factorisable priors Pu and Pv respectively. In this case, the free energy density
associated with the following partition function

Zuv(Y ) =

∫
Rp

dv Pv (v)

∫
Rn

du Pu (u)
n∏
µ=1

p∏
i=1

e
g
(
Yµi,

uµvi√
p

)
−g(Yµi,0) (70)

is given by

lim
p→∞

1

p
EY logZuv = extr

qu,qv

[
β

2∆
quqv − lim

p→∞
Ψv

(
β
qu
∆

)
− β lim

n→∞
Ψu

(qv
∆

)]
(71)

with β = n/p �xed. The functions Ψv,Ψu are given by

Ψu

(
β
qv
∆

)
=

1

n
Eξ,Pu(u?) log

∫
Rn

du Pu(u)
n∏
µ=1

e−β
qv
2∆
u2
µ+(β qu∆ u?µ+

√
β qv

∆
ξ)uµ

Ψv

(qu
∆

)
=

1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
qu
2∆
v2
i+( qv∆ v?i +

√
qu
∆
ξ)vµ (72)

B.3 Application to generative priors

Generalised linear model prior The expression we derived for the mutual information density in the vvᵀ
model is valid for any prior Pv as long as Ψv is well de�ned in the thermodynamic limit. For the speci�c case
when

Pv(v) =

∫
Rk

(
k∏
l=1

dzl Pz(zl)
)

p∏
i=1

Pout

(
vi

∣∣∣ 1√
k

k∑
l=1

Wilzl

)
, (73)

with Wil ∼
i.i.d.
N (0, 1), Ψv is, up to a global 1/α scaling, the Bayes-optimal free energy of a generalised linear

model with channel given by

P̃out (v|x; ξ, qv) = Pout(v|x)e−
qv
2∆
v2+
√

qv
∆
ξv , (74)
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and factorised prior Pz . The expression for this free energy is well known - see for example [31] for a derivation
and [31] for a proof - and reads

lim
p→∞

Ψv =
1

α
extr
qz ,q̂z

[
−1

2
qz q̂z + αΨout

(qv
∆
, qz

)
+ Ψz (q̂z)

]
(75)

where the functions Ψout and Ψz are de�ned in eq. (A.3). Inserting this expression in our general formula for
the mutual information density eq. (65) give us

lim
p→∞

ip =
ρv
4∆

+ extr
qv ,qz ,q̂z

[
1

4∆
q2
v +

1

2α
q̂zqz −Ψout

(qv
∆
, qz

)
− 1

α
Ψz(q̂z)

]
(76)

which is precisely the result from eq. (7). The extremisation problem in eq. (76) is solved by looking for the
directions (qv, q̂z, qz) of zero gradient of the potential Ψv . These saddle-point equations are known in this
context as state evolution equations, and they can be conveniently written in terms of the auxiliary function we
de�ned in Section A.3, equations (34-41) as

qv = 2∂qvΨout
(qv

∆
, qz

)
= Eξ,η

[
Zout

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)
fv

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)2
]

q̂z = 2α∂qzΨout
(qv

∆
, qz

)
= Eξ,η

[
Zout

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)
fout

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)2
]

qz = 2∂q̂zΨz (q̂z) = Eξ
[
Zz
(√

q̂zξ, q̂z

)
fz

(√
q̂zξ, q̂z

)2
]

(77)

Multi-layer prior The multi-layer prior can be conveniently written as

Pv(v) =

∫ L∏
l=1

kl∏
νl=1

dh(l)
νl
P

(l−1)
out

h(l)
νl

∣∣∣ 1√
kl−1

kl−1∑
νl−1=1

W (l−1)
νlνl−1

hνl−1

 p∏
i=1

P
(L)
out

(
vi

∣∣∣ 1√
kL

kL∑
νL=1

WiνLhL

)
,

(78)

where we de�ne h(1) ≡ z ∈ Rk1 and P (0)
out ≡ Pz . As in the single-layer case, the Bayes-optimal free energy of

Pv has been computed in [6], and in our notation it is written as

lim
p→∞

Ψv =
1

α
extr

{q̂l,ql}1≤l≤L

[
−1

2

L∑
l=1

αlq̂lql + αΨout
(qv

∆
, qL

)
+

L∑
l=2

αlΨout (q̂l, ql−1) + Ψz (q̂1)

]
, (79)

where in this case α = p/k1 and we de�ned αl = kl/k1 for 1 ≤ l ≤ L (note in particular that α1 = 1). The
(q̂l, ql) are the overlaps of the hidden variables h(l) at each layer, and to be consistent with the shorthand
notation introduced we have (q̂1, q1) = (q̂z, qz). Inserting this expression in our general formula for the
mutual information density eq. (65):

lim
p→∞

ip =
ρv
4∆

+ extr
qv ,{q̂l,ql}l

[
1

4∆
q2
v +

1

2α

L∑
l=1

αlq̂lql −
1

α

L∑
l=2

αlΨout (q̂l, ql−1)−Ψout
(qv

∆
, qL

)
− 1

α
Ψz (q̂1)

]
.

(80)

C Proof of the mutual information for the vvᵀ case

In this section, we present a proof of the theorem 1 in the main part, for the mutual information of Wigner
model eq. (19) with structured prior

Y =
1√
p
v?v?ᵀ +

√
∆ξ , (81)

where the spike v? ∈ Rp is drawn from Pv . The proof is based on Guerra Interpolation [44, 45].
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C.1 Notations, free energies, and Gibbs average

The mutual information being invariant to reparametrization, we shall work instead inside this section with
the following notations:

Y =

√
λ

p
v?v?ᵀ + ξ , (82)

where λ is the signal to noise ratio. Up to the reparametrization, it corresponds to our model with λ = ∆−1.
Our aim is to compute I(Y ;v)

p .
While the information theoretic notation is convenient in stating the theorem, it is more convinient to use

statistical physics notation and "free energies" for the proof, that relies heavily on concepts from mathematical
physics. Let us �rst translate one into the other. The mutual information between the observation Y and the
unknown v is de�ned using the entropy as I(Y ; v) = H(Y ) −H(Y |v). Using Bayes theorem one obtains
H(Y ) = EY {logEPvPY (Y |v)} and a straightforward computation shows that the mutual information per
variable is then expressed as

I(Y ; v)

p
= fp + λ

E[vᵀv]

4p
, (83)

where, using again statistical physics terms, fp = −EY [logZp(Y )] /p is the so called free energy density and
Zp(Y ) the partition function de�ned by

Zp(Y ) ≡
∫
Rp

dv Pv(v) exp

∑
i<j

(
−λ

v2
i v

2
j

2p
+
√
λ
vivjYij√

p

) . (84)

Notice that the sum does not includes the diagonal term in (84). Di�erent conventions can be used dependning
on whether or not one suppose the diagonal terms to be measured, but these yields only order 1/p di�erences in
the free energies, and thus does not a�ect the limit p→∞. Correspondingly, we thus de�ne the Hamiltonian:

−H(v) ≡
∑
i<j

√
λ

p
Yijvivj −

λ

2p
v2
i v

2
j =

∑
i<j

√
λ

p
ξijvivj +

λ

p
vivjv

?
i v
?
j −

λ

2p
v2
i v

2
j .

so that the partition function (84) is associated with the Gibbs-Boltzmann measure e−H/Zp(Y ).
Consider now the term I

(
v; v + z/

√
qvλ
)

that enters the expression to be proven eq. (6). This is the
mutual information for another denoising problem, in which we assume one observes a noisy version of the
vector v?, denoted ỹ such that

ỹ =
1

σ
v∗ + z, (85)

where z ∼ N (0p, Ip) and σ = 1/
√
qvλ, where we shall assume that the limit exists. Again, it is easier to work

with free energies. We thus write the corresponding posterior distribution as

P (v|ỹ) =
1

Z0(ỹ, σ)
Pv(v) exp

(
−‖v‖

2
2

2σ2
+

vᵀỹ
σ

)
, (86)

where Z0(ỹ) is the normalization factor. For this denoising problem, the averaged free energy per variables
reads

f0
p (σ) ≡ −1

p
Eỹ[logZ0(ỹ, σ)], (87)

and a short computation shows that

I

(
v; v +

1√
qvλ

z
)

= f0
p

(
1√
λqv

)
+
ρvλqv

2
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Putting all the pieces together, this means that we need to prove the following statement on the free energy
fp: the free energy fp = −EY [logZp(Y )] /p is given, as p→∞ by

lim
p→∞

fp = minφRS

(
1√
qvλ

)
with φRS (r) ≡ lim

p→∞
f0
p (r) +

λq2
v

4
. (88)

This statement is equivalent to theorem 1, and we shall present a proof for the case where the prior over
v has a "good" limit: we shall assume that the limiting free energy exists and concentrates over the
disorder, and that the distribution over each vi is bounded. These hypothesis will be explicitly given
when needed.

Finally, it will be useful to consider Gibbs averages, and to work with r copies of the same system. For any
g : (Rp)r+1 7→ R, we de�ne the Gibbs average as〈

g(v(1), · · · , v(r), v?)
〉
≡
∫
g(v(1), · · · , v(r), v?)

∏r
l=1 e

−H(v(l))dPv(v(l))(∫
e−H(v(l))dPv(v(l))

)r . (89)

This is the average of g with respect to the posterior distribution of r copies v(1), · · · , v(r) of v?. The variables
{vl}l=1...r are called replicas, and are interpreted as random variables independently drawn from the posterior.
When r = 1 we simply write g(v, v?) instead of g(v(1), v?). Finally we shall denote the overlaps between two
replicas as follows: for l, l′ = 1...r, we let

Rl,l′ ≡ v(l) · v(l′) =
1

p

p∑
i=1

v
(l)
i v

(l′)
i . (90)

A simple but useful consequence of Bayes rule is that the (r+1)-tuples (v(1), · · · , v(r+1)) and (v(1), ..., v(r), v∗)
have the same under under the expectation E〈·〉 (see [26] or proposition 16 in [18]). This bears the name of
the Nishimori property in the spin glass literature [43].

C.2 Guerra Interpolation for the upper bound

We start by using the Guerra interpolation to prove an exact formula for the free energy.
Let t ∈ [0, 1] and let qv be a non-negative variable. We now consider an interpolating Hamiltonian

−Ht(v) ≡
∑
i<j

√
tλ

p
ξijvivj +

tλ

p
viv

?
i vjv

?
j −

tλ

2p
v2
i v

2
j

+

p∑
i=1

√
(1− t)λqvzivi + (1− t)λqvviv?i −

(1− t)λqv
2

v2
i .

The Gibbs states associated with this Hamiltonian −Ht correspond to an estimation problem given an aug-
mented set of observations {

Yij =
√

tλ
p v

?
i v
?
j + ξij , 1 ≤ i ≤ j ≤ p,

ỹi =
√

(1− t)λqvv?i + zi, 1 ≤ i ≤ p.

Reproducing the argument of [26], we prove using Guerra’s interpolation [44] and the Nishimori property the
following:

Proposition C.1 (Upper bound on the Free energy). : Assume the elements of v are bounded. Then there exists
a constantK > 0 such that for all qv ∈ R we have:

fp ≤ f0
p (1/

√
λqv) +

λq2
v

4
+
K

p
. (91)
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The proof is a verbatim reproduction of the argument of [26] for non-factorized prior. We de�ne

ϕ(t) ≡ −1

p
E log

∫
e−Ht(v)dPv(v). (92)

A simple calculation based on Gaussian integration by parts (in technical terms, Stein’s lemma) applied on the
gaussian variebles ξ and z shows that (see [26] for details

ϕ′(t) =
λ

4
E
〈
(R1,2 − qv)2

〉
t
− λ

4
q2v −

λ

4p2

p∑
i=1

E
〈
v
(1)
i

2
v
(2)
i

2〉
t

− λ

2
E
〈
(R1,∗ − qv)2

〉
t

+
λ

2
q2v +

λ

2p2

p∑
i=1

E
〈
vi

2v∗i
2
〉
t
,

We now use the Nishimori property, and the expressions involving the pairs (v, v?) and (v(1), v(2)) become
equal. We thus obtain

ϕ′(t) = −λ
4
E
〈
(R1,∗ − qv)2

〉
t
+
λ

4
q2
v +

λ

4p2

p∑
i=1

E
〈
vi

2v∗i
2
〉
t
. (93)

Observe that the last term is O (1/p) since the variables vi are bounded. Moreover, the �rst term is always
non-negative so we obtain

ϕ′(t) ≤ λ

4
q2
v +

K

p
. (94)

Since ϕ(1) = fp and ϕ(0) = f0
p (1/
√
λqv), integrating over t, we obtain for all qv ≥ 0, fp ≤ φRS(λ, qv) + K

p ,
and this concludes the proof of the upper bound of proposition.

C.3 A bound of the Franz-Parisi Potential

To attack the lower bound, we shall adapt the argument of [27], that uses the Franz-Parisi potential [46], and
this will require additional concentration properties on the prior model. For v? ∈ Rp �xed, m ∈ R and ε > 0
we follow [27] and de�ne

Φp
ε (m, v

?) ≡ −1

p
E log

∫
Rp
1{R1,∗ ∈ [m,m+ ε)}e−H(v)dPv(v) . (95)

This is simply the free energy with con�gurations forced to be at a distance m (to precision ε) from the ground
truth. Note that since the measure is limited to a subset of con�gurations, it is clear that Ev?Φ

p
ε (m, v?) ≥ fp.

We are now going to prove an interpolating bound for the Franz-Parisi Potential:

Proposition C.2 (Lower bound on the Franz-Parisi potential). : Assume the elements of v are bounded. Then
there existsK > 0 such that for anym = qv and ε > 0 we have

Φp
ε (m = qv, v?) ≥ f0

p

(
1/
√
λqv, v?

)
+
λq2

v

4
− λ

2
ε2 +

K

p
. (96)

The proof proceeds very similarly. Let t ∈ [0, 1] and consider a slightly di�erent interpolating Hamiltonian

−Ht(v) ≡
∑
i<j

√
tλ

p
ξijvivj +

tλ

p
viv

?
i vjv

?
j −

tλ

2p
v2
i v

2
j

+

p∑
i=1

√
(1− t)λqvzivi + (1− t)λmviv?i −

(1− t)λqv
2

v2
i ,
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Notice the subtle change: in front of the term (1− t)viv?i we replace the qv from the former section by m. We
de�ne now

ϕε,m(t) ≡ −1

p
E log

∫
Rp
e−Ht(v)1{R1,∗ ∈ [m,m+ ε)}dPv(v). (97)

Denoting now the Gibbs average with the additional constraint 1{R1,∗ ∈ [m,m+ ε)} as 〈〉m,εt , we �nd when
we repeat the former computation:

ϕ′ε,m(t) =
λ

4
E
〈
(R1,2 − qv)2

〉m,ε
t
− λ

4
q2v +

λ

2
m2 − λ

2
E
〈
(R1,∗ −m)2

〉m,ε
t

+ o (1)

The trick is now to notice that, by construction, the E
〈
(R1,∗ −m)2

〉m,ε
t
≤ ε2 given the overlap restriction,

and therefore

ϕ′ε,m(t) ≥λ
4
E
〈
(R1,2 − qv)2

〉m,ε
t
− λ

4
q2v +

λ

2
m2 − λε2

2
+ o (1) ,

and

ϕ′ε,m(t) ≥ −λ
4
q2v +

λ

2
m2 − λε2

2
+ o (1) .

We now denote

f0
p (σ, v?) ≡ − 1

N
Ez[logZ0(ỹ, σ)], (98)

with the previous f0
p being the expectation f0

p (σ) ≡ Ev? [f
0
p (σ, v?)]. Then, since ϕε,m(1) = Φp

ε (m, v?) and
ϕε,m(0) ≥ f0

p (1/
√
λqv) (again, this is an obvious consequence of the restriction in the sum) integrating over t,

we obtain a bound for the Parisi-Franz potential for any qv and m. Using, in particular, the value m = qv , this
yields yields the �nal result.

C.4 From the Potential to a Lower bound on the free energy

It remains to connect the Franz-Parisi potential to the actual free energy. This is done by proving a Laplace-like
result between the free energy and the Franz-Parisi free energy, again following the technics used in the
separable case in [27]:

Proposition C.3. There existsK > 0 such that for all ε > 0, we have

fp ≥ Ev?
[

min
l∈Z,|l|≤K/ε

Φp
ε (lε, v

?)
]
− log(K/ε)√

p
. (99)

Combining this proposition with the bound on the Franz-Parisi potential, we see that

fp ≥ Ev?
[

min
qv=lε
|l|≤K/ε

f0
p

(
1/
√
λqv, v?

)
+
λq2

v

4

]
− λ

2
ε2 − log(K/ε)√

p
. (100)

At this point, we need to push the expectation with respect to the spike inside the minimum. This is the only
assumption that we are going to require over the generative model: that its free energy concentrates over the
distribution of spikes. This �nally leads to following result:

Proposition C.4 (Laplace principle). Assume that the free energy f0
p (v?) concentrates such that

E
[∣∣∣∣f0

p (
1√
λqv

, v?)− E
[
f0
p (

1√
λqv

, v?)
]∣∣∣∣] < C/

√
p (101)

for some constant C for all qv in [0, ρv), then:

fp ≥ min
qv

[
f0
p

(
1/
√
λqv

)
+
λq2

v

4

]
+ o

(
log p√
p

)
. (102)
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which gives us the needed converse bound. To conclude this section, let us prove these propositions.
Proof of Proposition C.3. This is prooven in [27], and we brei�y repeat the arguement here. Let ε > 0.

Since the prior Pv has bounded support, we can grid the set of the overlap values R1,∗ by 2K/ε many
intervals of size ε for some K > 0. This allows the following discretisation, where l runs over the �nite range
{−K/ε, · · · ,K/ε}:

−fp =
1

p
E log

∑
l

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v)

≤ 1

p
E log

2K

ε
max
l

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v)

=
1

p
Emax

l
log

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v) +

log(2K/ε)

p
. (103)

Note that in the above, the expectation E is taken with respect to both the noise matrix ξ and the spike v?. We
shall now use concentration of measure to push the expectation over ξ to the other side of the maximum in
order to recover the Franz-Parisi potential as de�ned in the previous section.

Let
Zl ≡

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v). (104)

One can show that each term Xl = 1
p logZl individually concentrates around its expectation with respect to

the random variable ξ. This follows from the following lemma

Lemma C.1. [from [27]] There exists a constantK > 0 such that for all γ ≥ 0 and all l,

Eξeγ(Xl−Eξ[Xl]) ≤ Kγ√
p
eKγ

2/p. (105)

that is a direct consequence of the Tsirelson-Ibragimov-Sudakov inequality [47], see [27], Lemma 7.
Given that all Xl concentrates, the expectation of the maximum concentrates as well:

Eξ max
l

(Xl − Eξ[Xl]) ≤
1

γ
logEξ exp

(
γmax

l
(Xl − Eξ[Xl])

)
=

1

γ
logEξ max

l
eγ(Xl−E′[Xl])

≤ 1

γ
logEξ

∑
l

eγ(Xl−Eξ[Xl])

≤ 1

γ
log

(
2K

ε

γK√
p
eγ

2K/p

)
=

log(2K/ε)

γ
+

1

γ
log

γK√
p

+
γK

p
.

We set γ =
√
p and obtain

Eξ max
l

(Xl − Eξ[Xl]) ≤
log(K/ε)√

p
. (106)

Therefore, inserting the above estimates into (103), we obtain

−fp ≤ Ev? max
l

EξXl +
log(K/ε)√

p
+

log(K/ε)

p
≤ Ev? max

l
Φε(lε, v?) + 2

log(K/ε)√
p

so that �nally

fp ≥ Ev? min
l

Φε(lε, v?)−
log(K/ε)√

p
,
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for some constant K .
Proof of Proposition C.4. Here we need to pay attention to the fact that the prior is not separable, and

thus at this point the proof di�ers from form [27], We wish to push the expectation with respect to v? inside
the minimum. We start by using again qv = lε and de�ning the following random (in v? variable):

X̃l = −
(
f0
p

(
1/
√
λlε, v?

)
+
λq2

v

4

)
(107)

and start from Proposition C.3:

− fp ≤ Ev?
[

max
qv=lε
|l|≤K/ε

X̃l

]
+
λ

2
ε2 +

log(K/ε)√
p

. (108)

We now wish to push the max inside. We proceed as follow:

Ev?
[
|max

l

(
X̃l − E[X̃l]

)
|
]
≤ Ev?

[∑
l

|
(
X̃l − E[X̃l]

)
|
]

(109)

=
∑
l

Ev?
[
|
(
X̃l − E[X̃l]

)
|
]

(110)

≤
∑
l

C√
p

=
K

ε
√
p

(111)

Inserting this in eq.(108) we �nd that

− fp ≤ max
qv=lε
|l|≤K/ε

[
Ev?X̃l

]
+
λ

2
ε2 +

K ′

ε
√
p

+
log(K/ε)√

p
, (112)

and therefore,
fp ≥ min

qv=lε
|l|≤K/ε

[
− Ev?X̃l

]
− λ

2
ε2 − K ′

ε
√
p
− log(K/ε)√

p
, (113)

so that choosing �nally ε = p−1/4 we reach

fp ≥ min
qv=lε
|l|≤K/ε

[
f0
p

(
1/
√
λqv

)
+
λq2

v

4

]
+ o

(
log p√
p

)
. (114)

C.5 Main theorem

We can now combine the upper and lower bound to reach the statement of the main theorem, presented in the
main as theorem 1:
Theorem C.1. [Mutual information and MMSE for the spiked Wigner model with structured spike] Assume the
spikes v? come from a sequence (of growing dimension) of generic structured prior Pv on Rp, such that

1. The elements of v are bounded by a constant.

2. The free energy f0
p (λqv) = − 1

NEỹ[logZ0(ỹ, 1/
√
λqv)] has a limit f0(λqv) for all qv ∈ [0, ρv] as p→∞.

3. The free energy f0
p (v?) concentrates such that E

[
|f0
p (1/
√
λqv, v?)− E

[
f0
p (1/
√
λqv, v?)

]
|
]
< C/

√
p for

some constant C for all qv ∈ [0, ρv] as p→∞:

then

lim
p→∞

ip ≡ lim
p→∞

I(Y ; v?)
p

= inf
ρv≥qv≥0

iRS(∆, qv), (115)

with

iRS(∆, qv) =
(ρv − qv)2

4∆
+ lim
p→∞

I
(
v; v +

√
∆
qv
z
)

p
(116)

with z being a Gaussian vector with zero mean, unit diagonal variance and ρv = lim
p→∞

EPv [vᵀv]/p.
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C.6 Mean-squared errors

It remains to deduce the optimal mean squared errors from the mutual information. These are actually simple
application of known results which we reproduce here brie�y for completeness. It is instructive to distinguish
between the reconstruction of the spike and the reconstruction of the rank-one matrix.

Let us �rst focus on the denoising problem, where one aim to reconstruct the rank-one matrixX? = v?v?ᵀ.
In this case the mean squared error between an estimate X̂(Y ) and the hidden one X? reads

Matrix−mse(X̂, Y ) =
1

p2
‖v?v?ᵀ − X̂(Y )‖22 (117)

It is well-known [34] that the mean squared error is minimized by using the conditional expectation of the
signal given the observation, that is the posterior mean. The minimal mean square error is thus given by

Matrix−MMSE(Y ) =
1

p2
‖v?v?ᵀ − E[vvᵀ|Y ]‖2F (118)

We can now state the result:

Theorem C.2. [Matrix MMSE, from [15, 25, 19]] The matrix-MMSE is asymptotically given by

lim
p→∞

Matrix−MMSE(Y ) = ρ2
v − (q?v)

2 (119)

where q?v is the optimizer of the function iRS (∆, qv).

Proof. This is a simple application of the I-MMSE theorem [35], that has been used in this context multiple-times
(see e.g [15, 25, 19]). Indeed, the I-MMSE theorem states that, denoting λ = ∆−1:

d

dλ

I

p
=

1

4
Matrix−MMSE(Y ) (120)

We thus need to compute the derivative of the mutual information:

d

dλ
iRS(q?v ,∆ = 1/λ) = ∂λiRS(q?v ,∆ = 1/λ) + ∂qv iRS(qv,∆ = 1/λ)|q?v∂λ(q?v) (121)

= ∂λiRS(q?v ,∆ = 1/λ) (122)

where we used ∂qv iRS(q,∆ = 1/λ)|q?v = 0. Denoting then I(λv, qv) = lim
p→∞

I
(
v;v+

√
1
λqv

z
)

p we �nd

∂λiRS(q?v ,∆ = 1/λ) =
(ρv − qv)2

4
+ ∂λI(λv, qv)|q?v (123)

We now use the fact that the derivate of the replica mutual information is zero at q?. This implies

λ

2
(ρv − q?v) = ∂qvI(λv, qv)|q?v =

λ

q?v
∂λI(λv, qv)|q?v (124)

so that

∂λiRS(q?v ,∆ = 1/λ) =
(ρv − qv)2

4
+

1

2
(ρv − q?v)q?v =

1

4

(
ρ2
v − (q?v)

2
)

(125)

which proves the claim. �
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We now consider the problem of reconstruction the spike itself. In this case the mean square error reads

Vector−mse(X̂, Y ) =
1

p
‖v− v̂(Y )‖22 (126)

Vector−MMSE(Y ) =
1

p
‖v− E[v|Y ]‖22 (127)

(128)

Taking the square and averaging, we thus �nd that the asymptotic vector MMSE reads

Vector−MMSE(Y ) = ρv +
‖E[v|Y ]‖22

p
− 2

E[vᵀv?|Y ]

p
= ρv −

E[vᵀv?|Y ]

p
(129)

where we have use the Nishimori identity. In order to show that the MMSE is given by ρv − q?v , we thus needs
to show that q?v is indeed equal to E[vᵀv?|Y ]

p .
Fortunately, this is easy done by using Theorem 7 in [28], which apply in our case since it only depends

on the free energy and the Franz-Parisi bound, that we have reproduced in the coupled cases in the present
section. This proposition states the convergence in probability of the overlaps:

Theorem C.3 (Convergence in probability of the overlap, from [28]). Informally, for the Wigner-Spikel model:

lim
p→∞

E〈1(|R1,∗| − q?v | ≥ ε)〉 → 0 (130)

Note that the absolute value is necessary here, because if the prior is symmetric, is it impossible to distinguish
between v? and −v?. If the prior is not symmetric, then the absolute value can be removed.

D Heuristic derivation of AMP from the two simples AMP algorithms

In this section we present the derivation of the AMP algorithm described in sec. 3 of the main part. The idea is
to simplify the Belief Propagation (BP) equations by expanding them in the large n, p, k limits. Together with
a Gaussian ansatz for the distribution of BP messages, this yields a set of O

(
k2
)

simpli�ed equations known
as relaxed BP (rBP) equations. The last step to get the AMP algorithm is to remove the target dependency of
the messages that further reduces the number of iterative equations to O (k).

Our derivation is closely related to the derivation of AMP for a series of statistical inference problems with
factorised priors, see for example [21] and references therein. In the interest of the reader, instead of repeating
these steps in detail here we describe how two AMP algorithms derived for independent inference problems
can be composed into a single AMP for a structured inference problem. In particular, this is illustrated for
the case of interest in this manuscript, namely a spiked-matrix estimation with single-layer generative model
prior. In this case, the underlying inference problems are the rank-one matrix factorization (MF) [21] and the
generalized linear model (GLM)[31]. We focus the derivation on the more general Wishart model (uvᵀ) as the
result for the Wigner model (vvᵀ) �ows directly from it.

Factor graph: In order to compose AMP algorithms, the idea is to replace the separable prior Pv of the
variable v in the low-rank MF model by a non-separable prior coming from a GLM model with channel Pout

(see de�nition in eq. (22)), while keeping separable distributions Pu and Pz for the variables u ∈ Rn and
z ∈ Rk .2 Hence to obtain the factor graph of the uvᵀ model, we connect the factor graphs of the MF (in green)
and GLM (in red) models together by means of Pout (in black) (See Fig. 5).

D.1 Heuristic Derivation

We recall the AMP equations for the two modules and we will explain how to plug them together.
2Note that di�erently from the replica calculation in sec. B, to write down the factor graph and derive the associated AMP algorithm

we need to �x beforehand the structure of the prior distribution.
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Pu(uµ) uµ P
(
Yµi| 1√

puµvi

)
vi Pout

(
vi| 1√

k
Wᵀi z

)
zl Pz(zl)

Figure 5: Factor graph corresponding to a low-rank matrix factorization layer (green) with a prior coming from
a GLM (red). We stress that in the classical low-rank layer, red part does not exist and black nodes Pout(vi|.)
are replaced by separable prior Pv(vi).

AMP equations for the MF layer (variables v and u): Consider the low-rank matrix factorization model
eq. (20) with separable priors Pu and Pv for the variables u and v. The corresponding non-Bayes-optimal AMP
equations, given in [21], read:

ût+1 = fu(Btu, Atu) ,

ĉt+1
u = ∂Bfu(Btu, Atu) ,

v̂t+1 = fv(Btv, Atv) ,

ĉt+1
v = ∂Bfv(Btv, Atv) ,

and



Btv = 1√
pS
ᵀût − 1

p(S2)ᵀĉtuIpv̂t−1 ,

Atv =
[

1
p(S2)ᵀ(ût)2 − 1

pR
ᵀ
(
ĉtu + (ût)2

)]
Ip ,

Btu = 1√
pSv̂

t − 1
pS

2ĉtvInû
t−1 ,

Atu =
[

1
pS

2(v̂t)2 − 1
pR
(
ĉtv + (v̂t)2

)]
In ,

(131)

with matrices S and R de�ned as

Sµi =
Yµi
∆

and Rµi = − 1

∆
+ S2

µi , (132)

and the operation (·)2 is taken component-wise. The update function fu is the mean of Qu, de�ned in sec. A.3,
and fv is the mean of the distribution Qv(v;B,A) ≡ 1

Zv(B,A)
Pv(v)e−

1
2
Av2+Bv .

AMPequations for theGLM layer (variable z): On the other hand, the non-Bayes-optimal AMP equations
for the GLM model in eq. (21), given in [31], read

ẑt+1 = fz(γ
t,Λt)

ĉt+1
z = ∂γfz(γ

t,Λt)

gt = fout

(
v?,ωt, V t

) and


Λt = − 1

k (W 2)ᵀ∂ωgtIk and γt = 1√
k
W ᵀgt + Λtẑt

V t = 1
k (W 2)ĉtzIp and ωt = 1√

k
W ẑt − V tgt−1

(133)

where fz is the mean of Qz de�ned in sec. A.3 and fout is the mean of V −1(x − ω) with respect to
Qout (x; v?, ω, V ) = Pout(v?|x)

Zout(v?,ω,V )e
− 1

2
V −1(x−ω)2

.

Plug and play: In principle composing the AMP equations for the inference problems above is complicated,
and require analyzing the BP equations on the composed factor graph in Fig. 5. However, the upshot of
this cumbersome computation is rather simple: the AMP equations for the composed model are equivalent
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to coupling the MF eqs. (131) and the GLM eqs. (133) by replacing Qv(v;B,A) and Qout(x;ω, V ) with the
following joint distribution:

Qout(v, x;B,A, ω, V ) ≡ 1

Zout(B,A, ω, V )
e−

1
2
Av2+BvPout (v|x) e−

1
2
V −1(x−ω)2

. (134)

The associated update functions fv , fout are thus replaced by the mean of v and V −1(x− ω) with respect to
this new joint distribution Qout. Replacing this distribution in both AMP algorithms eq. (131)-(133), we obtain
the AMP algorithm of the structured model, summarized in the next section.

D.2 Summary of the AMP algorithms - vvᵀ and uvᵀ

Replacing the separable distributions Qu and Qout by the joint distribution eq. (134) and corresponding update
functions as described above, we obtain the following AMP algorithm for the Wishart model:

Wishart model (uvᵀ):
Input: vector Y ∈ Rn×p and matrix W ∈ Rp×k:
Initialize to zero: (g, û, v̂,Bu, Au,Bv, Av)t=0

Initialize with: ût=1 = N (0, σ2), v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
u = 1n, ĉt=1

v = 1p, ĉt=1
z = 1k. t = 1

repeat
Spiked layer:
Btu = 1√

pSv̂
t − 1

pS
2ĉtvInû

t−1 and Atu =
[

1
pS

2(v̂t)2 − 1
pR
(
ĉtv + (v̂t)2

)]
In

Btv = 1√
pS
ᵀût − 1

p(S2)ᵀĉtuIpv̂t−1 and Atv =
[

1
p(S2)ᵀ(ût)2 − 1

pR
ᵀ
(
ĉtu + (ût)2

)]
Ip

Generative layer:
V t = 1

k (W 2)ĉtzIp and ωt = 1√
k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = − 1

k (W 2)ᵀ∂ωgtIk and γt = 1√
k
W ᵀgt + Λtẑt

Update of the estimated marginals:
ût+1 = fu(Btu, Atu) and ĉt+1

u = ∂Bfu(Btu, Atu)

v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1
v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: û, v̂, ẑ

Wigner model (vvᵀ): The AMP algorithm for the Wigner model can be easily obtained from the one above
by simply taking taking ut = vt, and removing redundant equations:
Input: vector Y ∈ Rp×p and matrix W ∈ Rp×k:
Initialize to zero: (g, v̂,Bv, Av)t=0

Initialize with: v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
v = 1p, ĉt=1

z = 1k. t = 1
repeat
Spiked layer:
Btv = 1√

pSv̂
t − 1

pS
2ĉtvIpv̂

t−1 and Atv =
[

1
pS

2(v̂t)2 − 1
pR
(
ĉtv + (v̂t)2

)]
Ip

Generative layer:
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V t = 1
k (W 2)ĉtzIp and ωt = 1√

k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = − 1

k (W 2)ᵀ∂ωgtIk and γt = 1√
k
W ᵀgt + Λtẑt

Update of the estimated marginals:
v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1

v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: û, v̂, ẑ

D.3 Simpli�ed algorithms in the Bayes-optimal setting

In the Bayes-optimal setting, it can be shown using Nishimori property (see sec. C or [21]) that:

〈R〉 = 0 ⇐⇒ 〈S2〉 =
1

∆
, 〈∂ωgt〉 = −〈(gt)2〉 (135)

where 〈·〉 denotes the average with respect to the posterior distribution in eq. (26).
Note that the AMP algorithm derived above is also valid for arbitrary weight matrix W ∈ Rp×k. In the

case of interest where Wil ∼
i.i.d.
N (0, 1), we can further simplify E

[
W 2
il

]
= 1. Together, these simpli�cations

give:

Wishart model (vvᵀ) - Bayes-optimal
Input: vector Y ∈ Rn×p and matrix W ∈ Rp×k:
Initialize to zero: (g, û, v̂,Bv, Av,Bu, Au)t=0

Initialize with: ût=1 = N (0, σ2), v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
u = 1n, ĉt=1

v = 1p, ĉt=1
z = 1k. t = 1

repeat
Spiked layer:
Btu = 1

∆
Y√
p v̂

t − 1
∆
1
ᵀ
pĉtv
p Inût−1 and Atu = 1

∆
‖v̂t‖22
p In

Btv = 1
∆
Y ᵀ
√
p û

t − 1
∆
1
ᵀ
nĉtu
p Ipv̂t−1 and Atv = 1

∆
‖ût‖22
p Ip

Generative layer:
V t = 1

k

(
1
ᵀ
kĉ
t
z

)
Ip and ωt = 1√

k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = 1

k‖gt‖22Ik and γt = 1√
k
W ᵀgt + Λtẑt

Update of the estimated marginals:
ût+1 = fu(Btu, Atu) and ĉt+1

u = ∂Bfu(Btu, Atu)

v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1
v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: û, v̂, ẑ

Wigner model (vvᵀ) - Bayes-optimal
Input: vector Y ∈ Rp×p and matrix W ∈ Rp×k:
Initialize to zero: (g, v̂,Bv, Av)t=0
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Initialize with: v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
v = 1p, ĉt=1

z = 1k. t = 1
repeat
Spiked layer:
Btv = 1

∆
Y√
p v̂

t − 1
∆
1
ᵀ
pĉtv
p v̂t−1 and Atv = 1

∆
‖v̂t‖22
p Ip

Generative layer:
V t = 1

k

(
1
ᵀ
kĉ
t
z

)
Ip and ωt = 1√

k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = 1

k‖ĝ
t‖22Ik and γt = 1√

k
W ᵀgt + Λtẑt

Update of the estimated marginals:
v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1

v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: v̂, ẑ

D.4 Derivation of the state evolution equations

The AMP algorithms above are valid for any large but �nite sizes k, n, p. A central object of interest are the
state evolution equations (SE) that predict the algorithm’s behaviour in the in�nite size limit k → ∞. We
show in this section the derivation of these equations, directly from the algorithm to explicitly show that it
provides the same set of equations as the saddle point equations obtained from the replica free entropy eq. (77).
As before, we focus on the derivation of the more general Wishart model uvᵀ, and quote the result for the
symmetric vvᵀ. We �rst derive the SE equations without loss of generality in the non-Bayes-optimal case, and
we will state them in their simpli�ed formulation in the Bayes-optimal case.

The idea is to compute the average distributions of the messages involved in the AMP algorithm updates
in sec. (D.2), namely Bu, Au,Bv, Av,ω, V,γ and V . The usual derivation starts with rBP equations that we
did not present here, see [21]. However this equations are roughly equivalent to AMP messages if we remove
the Onsager terms containing messages with delayed time indices (·)t−1.

De�nition of the overlap parameters: We �rst de�ne the order parameters, called overlaps in the physics
literature, that will measure the correlation of the Bayesian estimator with the ground truth signals

mt
u ≡ Eu? lim

n→∞

(ût)ᵀu?

n
, qtu ≡ Eu? lim

n→∞

(ût)ᵀût

n
, Σt

u ≡ Eu? lim
n→∞

1
ᵀ
nĉu,t

n
,

mt
v ≡ Ev? lim

p→∞

(v̂t)ᵀv?

p
, qtv ≡ Ev? lim

p→∞

(v̂t)ᵀv̂t

p
, Σt

v ≡ Ev? lim
p→∞

1
ᵀ
pĉv,t

p
, (136)

mt
z ≡ Ez? lim

k→∞

(ẑt)ᵀz?

k
, qtz ≡ Ez? lim

k→∞

(ẑt)ᵀẑt

k
, Σt

z ≡ Ez? lim
k→∞

1
ᵀ
kĉ
z,t

k
.

As the algorithm performance, such as the mean squared error or the generalization error, can be computed
directly from these overlap parameters, our goal is to derive the their average distribution in the in�nite size
limit.

Messages distributions: As stressed above, we compute the average distribution of the messages, taking
the average over variables W , ξ, the planted solutions v?,u?, z? and taking the limit k →∞. Note that we
use the BP independence assumption over the messages and keep only dominant terms in the 1/p expansion.
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• Bu, Au: Starting with the AMP update equations for the uvᵀ model in sec. (D.2), we obtain

E
[
Btu
]

=
1√
p∆

E
[
Y v̂t

]
=

1√
p∆

E
[(

u?(v?)ᵀ√
p

+
√

∆ξ

)
v̂t
]
−→
p→∞

mt
v

∆
u? , (137)

E
[
Btu(Btu)ᵀ

]
=

1

p∆2
E
[
Y v̂t(v̂t)ᵀY ᵀ

]
=

1

∆

1

p
E
[
ξv̂t(v̂t)ᵀξᵀ

]
+ o (1/p) −→

p→∞

qtv
∆

In , (138)

E
[
Atu
]

= E
[

1

p
S2(v̂t)2 − 1

p
R
(
ĉtv + (v̂t)2

)]
In −→

p→∞

qtv
∆

In − R̄Σt
vIn . (139)

where we de�ned, see [21],

R̄ = EP (Y |ω)

[
∂2
ωg + (∂ωg)2

]
ω=0

=

∫ ∏
1≤i≤p,1≤µ≤n

dYµi eg
?(Yµi,0)

[
∂2
ωg + (∂ωg)2

]
Y,ω=0

with P (Y |ω), g de�ned in eq. (42) and g? the ground truth channel function. Note that in the Bayes-optimal
case, g? = g that yields R̄ = 0 as mentioned in eq. (49).

• Bv, Av: Similarly,

E
[
Btv
]

=
1√
p∆

E
[
Y ᵀût

]
=

1√
p∆

E
[(

u?(v?)ᵀ√
p

+
√

∆ξ

)ᵀ
ût
]
−→
p→∞

β
mt
u

∆
v? , (140)

E
[
Btv(B

t
v)
ᵀ] =

1

p∆2
E
[
Y ᵀût(ût)ᵀY

]
−→
p→∞

β
qtu
∆

Ip , (141)

E
[
Atv
]

= E
[

1

p
(Sᵀ)2(ût)2 − 1

p
R
(
ĉtu + (ût)2

)]
Ip −→

p→∞
β

(
qtu
∆
− R̄Σt

u

)
Ip . (142)

• ω, V :

E
[
ωt
]

= E
[

1√
k
W ẑt

]
= 0p , (143)

E
[
ωt(ωt)ᵀ

]
= E

[
1

k
W ẑt(ẑt)ᵀW ᵀ

]
−→
n→∞

qtzIp , (144)

E [V ] = E
[

1

k
(W 2)ĉtzIp

]
−→
k→∞

Σt
zIp . (145)

Conclusion: Finally we conclude that to leading order:

Bu ∼
mt
v

∆
u? +

√
qtv
∆
ξu , Atu ∼

qtv
∆

In − R̄Σt
vIn , (146)

Bv ∼ β
mt
u

∆
v? +

√
β
qtu
∆
ξv , Atv ∼ β

(
qtu
∆
− R̄Σt

u

)
Ip , (147)

ω ∼
√
qtzη , V ∼ Σt

zIp , (148)

with ξu ∼ N (0n, In) , ξv ∼ N (0n, In) ,η ∼ N (0p, Ip).

State evolution - Non Bayes-optimal case With the averaged limiting distributions of all the messages,
we can now compute the state evolution of the overlaps. Using the de�nition of the overlaps eq. (136) and
distributions in eq. (148), we obtain:
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Variable u:

qt+1
u ≡ Eu? lim

n→∞

1

n
(ût+1)ᵀût+1 = Eu? lim

n→∞

1

n
fu(Btu, A

t
u)ᵀfu(Btu, A

t
u) (149)

= Eu?,ξ

fu(mt
v

∆
u? +

√
qtv
∆
ξ,
qtv
∆
− R̄Σt

v

)2


mt+1
u ≡ Eu? lim

n→∞

1

n
(ût+1)ᵀu? = Eu? lim

n→∞

1

n
fu(Btu, A

t
u)ᵀu? (150)

= Eu?,ξ

[
fu

(
mt
v

∆
u? +

√
qtv
∆
ξ,
qtv
∆
− R̄Σt

v

)
u?

]
Σt+1
u ≡ Eu? lim

n→∞

1

n
1ᵀnĉ

u,t+1 = Eu? lim
n→∞

1

n
∂Bfu(Btu, A

t
u)ᵀ1n (151)

= Eu?,ξ

∂Bfu(mt
v

∆
u? +

√
qtv
∆
ξ,
qtv
∆
− R̄Σt

v

)2


Variable v:

qt+1
v = Ev? lim

p→∞

1

p
(v̂t+1)ᵀv̂t+1 = Ev? lim

p→∞

1

p
fv(Btv, A

t
v,ω

t, V t)ᵀfv(Btv, A
t
v,ω

t, V t) (152)

= Ev?,ξ,η

fv (βmt
u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σt

u

)
,
√
qtzη,Σ

t
z

)2


mt+1
v = Ev? lim

p→∞

1

p
(v̂t+1)ᵀv̂t+1 = Ev? lim

p→∞

1

p
fv(Btv, A

t
v,ω

t, V t)ᵀv? (153)

= Ev?,ξ,η

[
fv

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σt

u

)
,
√
qtzη,Σ

t
z

)
v?

]
Σt+1
v = Ev? lim

p→∞

1

p
1ᵀpĉ

z,t+1 = Ev? lim
p→∞

1

p
∂γfv(Btv, A

t
v,ω

t, V t)ᵀ1p (154)

= Ev?,ξ,η

∂γfv (βmt
u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σt

u

)
,
√
qtzη,Σ

t
z

)2


Variable ẑ: We de�ne intermediate hat overlap parameters3 that will be useful in the following. The hat
overlaps don’t have as much physical meaning as the standard overlaps that quantify the reconstruction
performances. Though we might notice anyway that all the overlap parameters are built similarly as function
of the update functions fu, fv, fz and fout (see eq. (41)

q̂tz ≡ αEv?,ξ,η

fout

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σt

u

)
,
√
qtzη,Σ

t
z

)2
 (155)

m̂t
z ≡ αEv?,ξ,η

[
∂xfout

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σt

u

)
,
√
qtzη,Σ

t
z

)
v?

]
(156)

Σ̂t
z ≡ αEv?,ξ,η

[
−∂ωfout

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σt

u

)
,
√
qtzη,Σ

t
z

)]
(157)

3These variables appear as well in the replica computation through Dirac delta Fourier representation.
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Variable z: Averages are explicitly expressed as a function of the hat overlaps introduced just above:

E
[
γt
]
∼ m̂t

zz
? (158)

E
[
γt(γt)ᵀ

]
∼ q̂tzIk (159)

E
[
Λt
]
∼ Σ̂t

zIk (160)

And we conclude that at the leading order:

γt ∼ m̂t
zz
? +

√
q̂tzξ , Λt ∼ Σ̂t

zIk . (161)

with ξ ∼ N (0k, Ik).
From these later equations, we obtain

qt+1
z = Ez? lim

k→∞

1

k
(ẑt+1)ᵀẑt+1 = Ez? lim

k→∞

1

k
fz(γ

t,Λt)ᵀfz(γ
t,Λt) (162)

= Ez?,ξ
[
fz

(
m̂t
zz
? +

√
q̂tzξ, Σ̂

t
z

)2
]

mt+1
z = Ez? lim

k→∞

1

k
(ẑt+1)ᵀz? = Ez? lim

k→∞

1

k
fz(γ

t,Λt)ᵀz? (163)

= Ez?,ξ
[
fz

(
m̂t
zz
? +

√
q̂tzξ, Σ̂

t
z

)
z?
]

Σt+1
z = Ez? lim

k→∞

1

k
1
ᵀ
kĉ
z,t+1 = Ez? lim

k→∞

1

k
1
ᵀ
k∂γfz(γ

t,Λt) (164)

= Ez?,ξ
[
∂γfz

(
m̂t
zz
? +

√
q̂tzξ, Σ̂

t
z

)]
Equations (149- 157, 162-164) constitute the closed set of AMP state evolution equations in the non-Bayes-

optimal case.

State evolution - Bayes-optimal case In the Bayes-optimal case, the Nishimori property (See sec. 19)
implies mu = qu, mz = qz , mv = qv and m̂z = q̂z , R̄ = 0 and we also note that Σt

z = ρz − qtz , Σ̂t
z = q̂tz .

The set of twelve state evolution equations reduce to only four, and they can be rewritten using a change of
variable.

Wishart model

qt+1
u = Eξ

Zu(√qtv
∆
ξ,
qtv
∆

)
fu

(√
qtv
∆
ξ,
qtv
∆

)2
 (165)

= 2∂qvΨu

(
qtv
)
,

qt+1
z = Eξ

[
Zz
(√

q̂tzξ, q̂
t
z

)
fz

(√
q̂zξ, q̂

t
z

)2
]

(166)

= 2∂q̂zΨz

(
q̂tz
)
,

q̂tz = αEξ,η

Zout

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)
fout

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)2
 (167)

= 2α∂qzΨout

(
βqtu
∆

, qtz

)
,

qt+1
v = Eξ,η

Zout

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)
fv

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)2
 (168)

= 2∂quΨout

(
βqtu
∆

, qtz

)
.
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Wigner model The state evolution for the Wigner model (vvᵀ) is a particular case of the state evolution of
the Wishart model discussed above, obtained by simply restricting qu = qv and β = 1. It �nally reads

qt+1
z = Eξ

[
Zz
(√

q̂tzξ, q̂
t
z

)
fz

(√
q̂tzξ, q̂

t
z

)2
]

(169)

= 2∂q̂zΨz

(
q̂tz
)
,

q̂tz = αEξ,η

Zout

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)
fout

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)2
 (170)

= 2α∂qzΨout

(
qtv
∆
, qtz

)
,

qt+1
v = Eξ,η

Zout

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)
fv

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)2
 (171)

= 2∂qvΨout

(
qtv
∆
, qtz

)
,

which are precisely the state evolution equations derived from the replica trick in sec. B, eq. (77), except that
the algorithm provides the correct time indices in which the iterations should be taken.

E Heuristic derivation of LAMP

We present in this section the derivation of the linearized-AMP (LAMP) spectral algorithm. This method,
pioneered in [41], relies on the existence of the non-informative �xed point of the SE equations eq. (12), qv = 0
that translates to v̂ = 0 in the AMP equations. Linearizing the Bayes-optimal AMP equations for the Wigner
and Wishart models sec. D.3 around this trivial �xed point will lead to the LAMP spectral method. First,
we detail the calculation for the simpler Wigner model, and then generalize the spectral algorithm in the
Wishart case. Finally, we derive the state evolution associated to spectral method in the case of linear activation
function.

E.1 Wigner model: vvᵀ

We start deriving the existence conditions of the trivial non-informative �xed point in the Wigner model
eq. (19), that refers to eq. (13) in the main part. These conditions can be alternatively derived from the SE
eqs. (230)-(231) - see sec. F.

Existence of the uninformative �xed point: Consider v̂ = 0. We obtain easily from the algorithm D.3,
(Bv, Av) = (0, 0), leading to g = fout (0, 0,ω, V ) = EQ0

out
[(x − ω)] = 0, and (γ,Λ) = (0, 0). Finally,

inserting these values in the update functions fout and fv , de�ned in eq. (41), we obtain su�cient conditions
to get the trivial �xed point in the Wigner model:

(v̂, ẑ) = (0, 0) if C ≡
{

EQ0
out

[v] = 0 and EPv [z] = 0
}
. (172)

Linearization: To lighten notation, we denote with |? quantities that are evaluated at (Bv, Av,ω, V,γ,Λ) =
(0, 0, 0, ρzIp, 0, 0), and we linearize the equations of the AMP algorithm D.3 around the �xed point

(v̂, ĉv) = (0, ρvIp), (ẑ, ĉz) = (0, ρzIk), (173)
(Bv, Av) = (0, 0), (γ,Λ) = (0, 0), (ω, V, g) = (0, ρzIp, 0) . (174)
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In a scalar formulation, the linearization yields

δv̂t+1
i = ∂Bfv|?δBv,ti + ∂Afv|?δAv,ti + ∂ωfv|?δωti + ∂V fv|?δV t

i , (175)
δĉv,t+1
i = ∂2

B,Bfv|?δBv,ti + ∂2
A,Bfv|?δAv,ti + ∂2

ω,Bfv|?δωti + ∂2
V,Bfv|?δV t

i , (176)
δẑt+1
l = ∂γfz|?δγtl + ∂Λfz|?δΛtl , (177)

δĉz,t+1
i = ∂2

γ,γfz|?δγtl + ∂2
Λ,γfz|?δΛtl , (178)

δgti = ∂Bfout|?δBv,ti + ∂Afout|?δAv,ti + ∂ωfout|?δωti + ∂V fout|?δV t
i , (179)

with

δBv,ti =
1

∆

p∑
j=1

Yji√
p
δv̂tj −

1

∆

 p∑
j=1

ĉv,tj |?
p

 δv̂t−1
i − 1

∆

 p∑
j=1

δĉv,tj
p

 v̂t−1
i |? , (180)

δAv,t =
2

∆

p∑
j=1

v̂tj |?δv̂tj
p

= 0 , (181)

δωti =
1√
k

k∑
l=1

Wilδẑtl − δV t
i g

t−1
i |? − V t

i |?δgt−1
i , (182)

δV t =
1

k

k∑
l=1

δĉz,tl , (183)

δΛt =
2

k

p∑
i=1

gti|?δgti = 0 , (184)

δγtl =
1√
k

p∑
i=1

Wilδgti + δΛtl ẑ
t
l |? + Λtl |?δẑtl . (185)

These equations can be simpli�ed and closed over three vectorial variables v̂ ∈ Rp, ẑ ∈ Rk and ω ∈ Rp, where
we used the existence condition C that leads to ∂ωfout|? = ∂V fout|? = 0. Finally, injecting eq. (180)-(185) in
(175), (177), (182) we obtain

δv̂t+1 =
1

∆
∂Bfv|?

(
Y√
p
δv̂t − ∂Bfv|?Ipδv̂t−1

)
+ ∂ωfv|?Ipδωt +

∂V fv|?∂2
γ,γfz|?

∂γfz|?
1p1

ᵀ
k

k
δẑt , (186)

δẑt+1 =
1

∆
∂γfz|?∂Bfout|?

W ᵀ

√
k

[
Y√
p
δv̂t − ∂Bfv|?Ipδv̂t−1

]
, (187)

δωt+1 =
1

∆

(
∂γfz|?∂Bfout|?

WW ᵀ

k

[
Y√
p
δv̂t − ∂Bfv|?Ipδv̂t−1

])
− (188)

∂γfz|?∂Bfout|?
[
Y√
p
δv̂t−1 − ∂Bfv|?Ipδv̂t−2

]
.

Conclusion: This set of equations involves partial derivatives of fv , fz and fout that can be simpli�ed using
the condition C, and rewritten as moments of the distributions Pz and Qout:

∂γfz|? = EPz
[
z2
]

= ρz ,

∂2
γ,γfz|? = −2∂Λfz|? = EPz

[
z3
]
,

∂ωfout|? = ∂V fout|? = 0 ,

and



∂Bfv|? = EQ0
out

[v2] = ρv ,

∂ωfv|? = ∂Bfout|? = ρ−1
z EQ0

out
[vx] ,

∂V fv|? = 1
2ρ
−2
z EQ0

out
[vx2] .

(189)

37



Injecting eq. (188)-(187) in (186), we �nally obtain a closed equation over v̂. Forgetting time indices, it
leads the de�nition of the LAMP operator as

Γvvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(
Y√
p
− aIp

)
, (190)

with

a ≡ EQ0
out

[v2] = ρv , b ≡ ρ−1
z EQ0

out
[vx]2 , c ≡ 1

2
ρ−3
z EPz

[
z3
]
EQ0

out
[vx2]EQ0

out
[vx] . (191)

Note that in most of the cases we studied, the parameter c, taking into account the skewness of the variable
z, is zero, simplifying considerably the structured matrix as discussed in the main part. Taking the leading
eigenvector of the operator Γvvp leads to the LAMP algorithm.

Applications: Consider a gaussian Pz = Nz (0, 1) or binary Pz = 1
2 (δ(z − 1) + δ(z + 1)) prior, for which

ρz = 1. Taking a noiseless channel Pout(v|x) = δ (v − ϕ(x)), condition C is veri�ed, and we obtain simple
and explicit coe�cients

• Linear activation (ϕ(x) = x): (a, b, c) = (1, 1, 0) .

• Sign activation (ϕ(x) = sgn(x)): (a, b, c) = (1, 2/π, 0) .

E.2 Wishart model: uvᵀ

In this section, we generalize the previous derivation of the LAMP spectral algorithm for the Wishart model in
eq. (20). The strategy is exactly the same: it follows from linearizing the AMP algorithm D.3 in its Bayes-optimal
version around the trivial �xed point. Except that in this case there are more equations to deal with.

Existence of the uninformative �xed point: Consider (û, v̂) = (0, 0). Injecting this condition in the
algorithm’s equations, we simply obtain (Bu, Au,Bv, Av) = (0, 0, 0, 0). However, we now need EPu [u] = 0
for this to be consistent with the update equation for ût+1. Besides, this also implies g = fout (0, 0,ω, V ) =
EQ0

out
[(x − ω)] = 0, and (γ,Λ) = (0, 0). Finally, putting all conditions together in the update equations

involving fv , fu and fout, de�ned in eq. (41), we arrive at the following su�cient conditions for the existence
of the uninformative �xed point in the Wishart model:

(v̂, ẑ) = (0, 0) if C ≡
{

EQ0
out

[v] = 0 , EPv [z] = 0 and EPu [u] = 0
}
. (192)

Linearization: As previously, to lighten notations we denote |? quantities that are evaluated at

(Bu, Au,Bv, Av,ω, V,γ,Λ) = (0, 0, 0, 0, 0, ρzIp, 0, 0).

We linearize AMP equations algorithm D.3 around the �xed point

(û, ĉu) = (0, ρuIn), (v̂, ĉv) = (0, ρvIp), (ẑ, ĉz) = (0, ρzIk), (193)
(Bu, Au) = (0, 0), (Bv, Av) = (0, 0), (γ,Λ) = (0, 0), (ω, V, g) = (0, ρzIp, 0) . (194)

In a scalar formulation, linearization yields four additional equations over the u variable:

δût+1
µ = ∂Bfu|?δBu,tµ + ∂Afu|?δAu,tµ , (195)

δĉu,t+1
µ = ∂2

B,Bfu|?δBu,tµ + ∂2
A,Bfu|?δAu,tµ , (196)

δv̂t+1
i = ∂Bfv|?δBv,ti + ∂Afv|?δAv,ti + ∂ωfv|?δωti + ∂V fv|?δV t

i , (197)
δĉv,t+1
i = ∂2

B,Bfv|?δBv,ti + ∂2
A,Bfv|?δAv,ti + ∂2

ω,Bfv|?δωti + ∂2
V,Bfv|?δV t

i , (198)
δẑt+1
l = ∂γfz|?δγtl + ∂Λfz|?δΛtl , (199)

δĉz,t+1
i = ∂2

γ,γfz|?δγtl + ∂2
Λ,γfz|?δΛtl , (200)

δgti = ∂Bfout|?δBv,ti + ∂Afout|?δAv,ti + ∂ωfout|?δωti + ∂V fout|?δV t
i , (201)
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and

δBu,tµ =
1

∆

p∑
i=1

Yµi√
p
δv̂ti −

1

∆

(
p∑
i=1

ĉv,ti |?
p

)
δût−1

µ − 1

∆

(
p∑
i=1

δĉv,ti
p

)
ût−1
µ |? , (202)

δAu,t =
2

∆

p∑
i=1

v̂ti|?δv̂ti
p

= 0 , (203)

δBv,ti =
1

∆

n∑
µ=1

Yµi√
p
δûtµ −

1

∆

 n∑
µ=1

ĉu,tµ |?
p

 δv̂t−1
i − 1

∆

 n∑
µ=1

δĉu,tµ
p

 v̂t−1
i |? , (204)

δAv,t =
2

∆

n∑
µ=1

ûtµ|?δûtµ
p

= 0 , (205)

δωti =
1√
k

k∑
l=1

Wilδẑtl − δV t
i g

t−1
i |? − V t

i |?δgt−1
i , (206)

δV t =
1

k

k∑
l=1

δĉz,tl , (207)

δΛt =
2

k

p∑
i=1

gti |?δgti = 0 , (208)

δγtl =
1√
k

p∑
i=1

Wilδgti + δΛtl ẑ
t
l |? + Λtl |?δẑtl . (209)

These equations can be closed over four vectorial variables û ∈ Rn, v̂ ∈ Rp, ẑ ∈ Rk and ω ∈ Rp, where we
used the existence condition C leading again to ∂ωfout|? = ∂V fout|? = 0. Finally, injecting eq. (202)-(209) in
(195), (197), (199), (206) we obtain:

δût+1 =
1

∆
∂Bfu|?

(
Y√
p
δv̂t − ∂Bfv|?Inδût−1

)
, (210)

δv̂t+1 =
1

∆
∂Bfv|?

(
Y ᵀ√
p
δût − β∂Bfu|?Ipδv̂t−1

)
+ ∂ωfv|?Ipδωt +

∂V fv|?∂2
γ,γfz|?

∂γfz|?
1p1

ᵀ
k

k
δẑt , (211)

δẑt+1 =
1

∆
∂γfz|?∂Bfout|?

W ᵀ

√
k

[
Y ᵀ√
p
δût − β∂Bfu|?Ipδv̂t−1

]
, (212)

δωt+1 =
1

∆

(
∂γfz|?∂Bfout|?

W ᵀ

√
k

[
Y ᵀ√
p
δût − β∂Bfu|?Ipδv̂t−1

])
− (213)

∂γfz|?∂Bfout|?
[
Y ᵀ√
p
δût−1 − β∂Bfu|?Ipδv̂t−2

]
.

Conclusion: This set of equations involves partial derivatives of fu, fv , fout that can be simpli�ed using
the condition C and rewritten as moments of distributions Pu, Pz and Qout:

∂γfz|? = EPz
[
z2
]

= ρz ,

∂2
γ,γfz|? = −2∂Λfz|? = EPz

[
z3
]
,

∂ωfout|? = ∂V fout|? = 0 ,

∂Bfu|? = EPu [u2] = ρu ,

and



∂Bfv|? = EQ0
out

[v2] = ρv ,

∂ωfv|? = ∂Bfout|? = ρ−1
z EQ0

out
[vx] ,

∂V fv|? = 1
2ρ
−2
z EQ0

out
[vx2] .

(214)
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Injecting eq. (213),(212)-(210) in (211), we �nally obtain a self-consistent equation over v̂ that, forgetting
time indices, leads to de�ne the following LAMP structured matrix, from which we need to compute the top
eigenvector:

Γuvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(

1

a+ ∆
d

Y ᵀY

p
− dβIp

)
, (215)

with

a ≡ ρv , c ≡ 1

2
ρ−3
z EPz

[
z3
]
EQ0

out
[vx2]EQ0

out
[vx], b ≡ ρ−1

z EQ0
out

[vx]2 , d ≡ ρu . (216)

Applications: Consider a gaussian Pz, Pu = N (0, 1) or binary Pz, Pu = 1
2 (δ(z − 1) + δ(z + 1)) prior,

for which ρz = ρu = 1. For a noiseless channel Pout(v|x) = δ (v − ϕ(x)), we obtain the following simple
and explicit coe�cients:

• Linear, ϕ(x) = x: (a, b, c, d) = (1, 1, 0, 1)

• Sign, ϕ(x) = sgn(x): (a, b, c, d) = (1, 2/π, 0, 1)

E.3 State evolution equations of LAMP and PCA - linear case

In this section we describe how to obtain the limiting behaviour of the LAMP spectral method for the Wigner
model in the large size limit p→∞. We will show that in the linear case, mean squared errors of LAMP and
PCA are directly obtained from the optimal overlap performed by AMP or its state evolution. Recall that the
numerical simulations of LAMP and PCA are compared with their state evolution in Fig. 3, with green and red
lines respectively.

LAMP: For the noiseless linear channel Pout(v|x) = δ (v − x), the set of eqs. (186-188) are already linear,
and do not require linearizing as above. Hence the LAMP spectral method �ows directly from the AMP
eqs. (D.3). As a consequence, this means that the state evolution equations associated to the spectral method
are simply dictated by the set of AMP state evolution equations from sec. 169. However, it is worth stressing
that the LAMP MSE is not given by the AMP mean squared error, as LAMP returns a normalized estimator.
We now compute the overlaps and mean squared error performed by this spectral algorithm.

Recall thatmv and qv are the parameters de�ned in eq. (136), that respectively measure the overlap between
the ground truth v? and the estimator v̂, and the norm of the estimator. In eq. (129), the MSE is given by:

MSEv = ρv + Ev? lim
p→∞

1

p
‖v̂‖22 − 2Ev? lim

p→∞

1

p
v̂ᵀv? (217)

= ρv + qv − 2mv , (218)

However the LAMP spectral method computes the normalized top eigenvector of the structured matrix Γp.
Hence the norm of the LAMP estimator is ‖v̂‖2LAMP = qv,LAMP = 1, while the Bayes-optimal AMP estimator is
not normalized with ‖v̂‖2AMP = q?v,AMP = m?

v,AMP 6= 1, solutions of eq. (169). As the non-normalized LAMP
estimator follows AMP state evolutions in the linear case, the overlap with the ground truth is thus given by:

mv,LAMP ≡ Ev? lim
p→∞

1

p
v̂ᵀLAMPv

? = Ev? lim
p→∞

1

p

(
v̂AMP
‖v̂‖AMP

)ᵀ
v? (219)

=
m?
v,AMP(

q?v,AMP

)1/2
=
(
m?
v,AMP

)1/2
. (220)

Finally the mean squared error performed by the LAMP method is easily obtained from the optimal overlap
reached by the AMP algorithm and yields

MSEv,LAMP = ρv + 1− 2
(
q?v,AMP

)1/2
. (221)
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PCA: Similarly, in the noiseless linear channel case, we note that at α = 0, LAMP reduces exactly to PCA,
i.e. it consists in �nding the top eigenvector of Y , instead Γp. As LAMP follows AMP in this case, we can
simply state that the mean squared error performed by PCA is computed using the optimal overlap reached by
AMP at α = 0:

MSEv,PCA = ρv + 1− 2
(
q?v,AMP|α=0

)1/2
. (222)

F Transition from state evolution - stability

In this section we derive su�cient conditions for the existence of the uninformative �xed point (qv, q̂z, qz) =
(0, 0, 0) from the state evolution eqs. (15). In the case (0, 0, 0) is a �xed point, we derive its stability, obtaining
the Jacobian in eq. (14). Its eigenvalues determine the regions for which (0, 0, 0) is stable and unstable, and
therefore the critical point ∆c where the transition occurs.

For the purpose of our analysis we de�ne the following shorthand notation for the update functions,

f (r, t, s) ≡

f1 (r, s)
f2 (r, s)
f3 (t)

 (223)

where (f1, f2, f3) are explicitly given by

f1(r, s) = 2∂rΨout(r, s) = Eξ,η


(∫

dv e−
r
2
v2+
√
rvξ
∫ dx√

2π(ρz−s)
e
− 1

2
(x−
√
sη)2

ρz−s Pout(v|x)v

)2

∫
dv e−

r
2
v2+
√
rvξ
∫ dx√

2π(ρz−s)
e
− 1

2
(x−
√
sη)2

ρz−s Pout(v|x)



f2(r, s) = 2α∂sΨout(r, s) = αEξ,η


(∫

dv e−
r
2
v2+
√
rvξ
∫ dx√

2π(ρz−s)
e
− 1

2
(x−
√
sη)2

ρz−s Pout(v|x)(x−√sη)

)2

∫
dv e−

r
2
v2+
√
rvξ
∫ dx√

2π(ρz−s)
e
− 1

2
(x−
√
sη)2

ρz−s Pout(v|x)


f3(t) = 2∂tΨz(t) = Eξ


(∫

dx Pz(z)e−
t
2
z2+
√
tzξz

)2

∫
dx Pz(z)e−

t
2
z2+
√
tξz

 (224)

In terms of these, the right-hand side of the state evolution equations is given by evaluating (r, t, s) =( qv
∆ , q̂z, qz

)
.

F.1 Conditions for �xed point

Note that the denominator in the �rst two state evolution equations is actually constant at r = 0,∫
dv
∫ dx√

2πρz
e
− 1

2ρz
x2

Pout(v|x) =

∫ dx√
2πρz

e
− 1

2ρz
x2
(∫

dv Pout(v|x) =

∫ dx√
2πρz

e
− 1

2ρz
x2
)

= 1.

(225)

And in particular, this means that

f2(0, s) = Eξ,η
(∫

dv
∫ dx√

2πρz
e
− 1

2ρz
x2

Pout(v|x)
(
x−√sη

))2

= Eξ,η
(∫ dx√

2πρz
e
− 1

2ρz
x2 (

x−√sη
) ∫

dv Pout(v|x)

)2

= Eξ,η
(∫ dx√

2πρz
e
− 1

2ρz
x2 (

x−√sη
))2

= 0 (226)
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for any value of s ∈ R. In terms of the overlaps, this means that if qu is a �xed point, we necessarily have
q̂z = 0. What is the implication for qz? We need to look at f3(q̂z = 0), which is simply given by

f3(0) = Eξ
(∫

dx Pzz
)2

. (227)

This means that if qu = 0 and Pz has zero mean, then qz = 0. It remains to check what is a su�cient condition
for qu = 0 to be a �xed point. This is the case if

f1(0, 0) = Eξ,η
(∫

dv
∫ dx√

2πρz
e
− 1

2ρz
x2

Pout(v|x)v

)2
!

= 0 (228)

implying ∫
dv
∫ dx√

2πρz
e
− 1

2ρz
x2

Pout(v|x)v =

∫ dx√
2πρz

e
− 1

2ρz
x2
(∫

dv Pout(v|x)v

)
!

= 0 (229)

Therefore a set of su�cient conditions for (qu, q̂z, qz) = (0, 0, 0) to be a �xed point of the state evolution
equations are

EPzz =

∫
dx Pz(z)z = 0 (230)

EQ0
out
v =

∫
dv
∫ dx√

2πρz
e
− 1

2ρz
x2

Pout(v|x)v = 0 (231)

note that the last condition is equivalent to requiring the function m(x) = EPoutv to be odd.

F.2 Stability analysis

We now study the stability of the �xed point (r, t, s) = (0, 0, 0), which is determined by the linearisation of
the state evolution equations. But before, to help in the analysis we introduce notation.

Some notation It will be useful to introduce the following notation for the denoising functions in eq. (34)
evaluated at the overlaps:

Q
(r,s)
out (v, x; ξ, η) =

1

Z(r,s)
out (ξ, η)

e−
r
2
u2+
√
rξu 1√

2π(ρz − s)
e
− 1

2
(x−
√
sη)2

ρz−s Pout(v|x) (232)

Qtz(z; ξ) =
1

Ztz(ξ)
e−

t
2
z2+
√
tξzPz(z) (233)

where Z(r,s)
out and Zz are the normalisation of the distributions, given explicitly by

Z(r,s)
out (ξ, η) =

∫
dv e−

r
2
v2+
√
rvξ

∫ dx√
2π(ρz − s)

e
− 1

2
(x−
√
sη)2

ρz−s Pout(v|x)

Ztz(ξ) =

∫
dx Qtz(z; ξ) =

∫
dx Pz(z)e−

t
2
z2+
√
tξz (234)

Note that Qout is a family of joint distributions over (v, x), indexed by r, s ∈ [0, 1]. It will be useful to have in
mind the following particular cases,

Q
(0,s)
out (v, x; η) =

1√
2π(ρz − s)

e
− 1

2

(x−
√
sη)2

ρz−s Pout(v|x) (235)

Q
(r,0)
out (v, x; ξ) =

1

Z(r,0)
out (ξ, η)

e−
r
2
v2+
√
rvξ 1√

2πρz
e
− 1

2ρz
x2

(236)
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where we have used that Z(0,s)
out (η, ξ) = 1 (as shown above). It is also useful to de�ne short hands to the

associated distributions when we evaluate both (r, s) = (0, 0),

Q0
out(v, x) = Q

(0,0)
out (v, x; ξ, η) =

1√
2πρz

e
− 1

2ρz
x2

Pout(v|x) (237)

while Q0
z(z; ξ) = Pz(z). Note that they are indeed independent of the noises, and that in particular we have

Z0
z (ξ) = 1.

In this notation the condition in eq. (231) simply reads that v has mean zero with respect to the Q0
out,

EQ0
out
v = 0 (238)

Expansion around the �xed point

We now suppose (r, t, s) = (0, 0, 0) is a �xed point of the state evolution equations, i.e. that the conditions in
eqs. (230) and (231) hold. We are interested in the leading order expansion of the update functions (f1, f2, f3)
around this point.

Expansion of f1: Since (f1, f2) are functions of (r, s) only, we look them separately �rst. Instead of
expanding around (r, s) = (0, 0) together, we �rst expand around r = 0 keeping s �xed. This allow us to take
the average over ξ explicitly simplifying the expansion considerably,

f1(r, s) =
r�1

Eη
{(

E
Q

(0,s)
out

v
)2

+

[(
E
Q

(0,s)
out

v
)4

+
(
E
Q

(0,s)
out

v2
)2
− 2

(
E
Q

(0,s)
out

v
)2

E
Q

(0,s)
out

v2

]
r +O

(
r3/2

)}
(239)

We can now focus on the leading order expansion around s = 0. Note we have,

E
Q

(0,s)
out

v =

∫
dv
∫ dx√

2π(ρz − s)
e
− 1

2
(x−
√
sη)2

ρz−s Pout(v|x) v

=
s�1

Eρv0v +

√
sη

ρz
EQ0

out
vx− s

2

η2 − 1

ρ2
z

(
ρzEQ0

out
v − EQ0

out
x2v
)

+O
(
s3/2

)
(240)

=

√
sη

ρz
EQ0

out
vx+

s

2

η2 − 1

ρ2
z

EQ0
out
x2v +O

(
s3/2

)
(241)

where we used the consistency condition in eq. (238) that ensures (r, s) = (0, 0) is indeed a �xed point.
Moreover, the leading order term in the expansion of E

Q
(0,s)
out

v is O(s1/2), therefore
(
E
Q

(0,s)
out

v
)2
∼ O(s) and(

E
Q

(0,s)
out

v
)4
∼ O

(
s2
)
. Expanding now eq. (239) to leading order in y gives

f1(r, s) =
r,s�1

Eη
[
s

ρ2
z

η2
(
EQ0

out
vx
)2

+ r
(
Eρv0v

2
)2

+O
(
r3/2, s3/2

)]
=

s

ρ2
z

(
EQ0

out
vx
)2

+ r
(
Eρv0v

2
)2

+O
(
r3/2, s3/2

)
(242)

From this expansion we read the �rst two entries of the Jacobian,

∂rf1|(0,0) =
(
EQ0

out
v2
)2

∂sf1|(0,0) =
1

ρ2
z

(
EQ0

out
vx
)2

(243)
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Expansion of f2: For f2, we start by expanding with respect to s, allowing us to take the average with
respect to η explicitly,

f2(r, s) =
s�1

αEξ
{(

E
Q

(r,0)
out

x
)2

+
s

2ρ2
z

[
2
(
E
Q

(r,0)
out

x
)4
− 4

(
E
Q

(r,0)
out

x
)2

E
Q

(r,0)
out

x2 + 2
(
E
Q

(r,0)
out

x2 − ρz
)2
]}

(244)

We can now focus on the leading order expansion around r = 0. Note that

E
Q

(r,0)
out

x =
r�1

EQ0
out
x+
√
rξEQ0

out
xv +

r

2
(ξ2 − 1)EQ0

out
xv2 +O

(
r3/2

)
(245)

=
√
rξEQ0

out
xv +

r

2
(ξ2 − 1)EQ0

out
xv2 +O

(
r3/2

)
(246)

since

EQ0
out
x =

∫
dv
∫ dx√

2πρz
e
− 1

2ρz
x2

Pout(v|x)x =

∫ dx√
2πρz

e
− 1

2ρz
x2

x = 0. (247)

Therefore the leading order term is of order O(r1/2), and
(
EQ0

out
x
)2
∼ O(s),

(
EQ0

out
x
)4
∼ O(s2). Expanding

now eq. (244) in r � 1,

f2(r, s) =
x,s�1

αEξ
[
xξ2

(
EQ0

out
vx
)2

+
s

ρ2
z

(
EQ0

out
x2 − ρz

)2
]

+O
(
r3/2, s3/2

)
(248)

= rα
(
EQ0

out
vx
)2

+
s

ρ2
z

α
(
EQ0

out
x2 − ρz

)2
+O

(
r3/2, s3/2

)
(249)

From this expansion we can read the second two entries of the Jacobian,

∂rf2|(0,0) = α
(
EQ0

out
vx
)2

∂sf2|(0,0) =
α

ρ2
z

(
EQ0

out
x2 − ρz

)2
(250)

Expansion of f3: Note that f3 is independent of (r, s), so it can be treated separately. Expanding in t� 1
gives

f3(t) = Eξ

[
1

Ztz

(∫
dx Pz(z)e−

t
2
z2+
√
tzξz

)2
]

=
t�1

(
EPzz2

)2
t+O(t3/2) (251)

where we have used the consistency condition in eq. (230). Therefore

∂tf3|t=0 =
(
EPzz2

)2 (252)

Bringing the overlaps back

In our problem, we have

r =
qu
∆

t = q̂z s = qz (253)

and therefore the partial derivatives have to be re-scaled,

∂r = ∆∂qu ∂t = ∂q̂z ∂s = ∂qz (254)

And therefore the Jacobian of the problem is

df(0, 0, 0) =


1
∆

(
EQ0

out
v2
)2

0 1
ρ2
z

(
EQ0

out
vx
)2

α
∆

(
EQ0

out
vx
)2

0 α
ρ2
z

(
EQ0

out
x2 − ρz

)2

0
(
EPzz2

)2
0

 (255)
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Jacobian for the uvᵀ model

The main di�erence in the Wishart model is that the state evolution is given in terms of four variables
(p, r, t, s) ≡

( qu
∆ , β

qv
∆ , qz, q̂z

)
, with the update functions given by

f(p, r, t, s) =


f0(r)
f1(p, s)
f2(p, s)
f3(t)

 = 2


∂rΨu(r)

∂pΨout(p, s)
α∂sΨout(p, s)
∂tΨz(t)

 . (256)

Note that (f1, f2, f3) are exactly as before, with the only di�erence that (f1, f2) are now evaluated at p instead
of r. The only new function is f0, which depends only on r. This means that the new column in the Jacobian
is orthogonal to all the other columns, with a single non-zero entry given by ∂rf0|r=0. An easy expansion of
f0 to �rst order together with the de�nitions of (p, r, t, s) yield

df(0, 0, 0, 0) =


0 1

∆

(
EPuu2

)2
0 0

β
∆

(
EQ0

out
v2
)2

0 0 1
ρ2
z

(
EQ0

out
vx
)2

βα
∆

(
EQ0

out
vx
)2

0 0 α
ρ2
z

(
EQ0

out
x2 − ρz

)2

0 0
(
EPzz2

)2
0

 . (257)

Transition points for speci�c activations

The transition point ∆c is de�ned as the point in which the uninformative point goes from being stable to
unstable. The stability is determined in terms of the eigenvalues of the Jacobian: a �xed point is stable when
the eigenvalues are smaller than one, and is unstable when the leading eigenvalue becomes greater than one.

It is instructive to look at ∆c in speci�c cases. We let Pu = Pz = N (0, 1) together with Pout(v|x) =
δ (v − ϕ(x)) and look at di�erent (odd) activation functions ϕ.

Linear activation: Let ϕ(x) = x. In this case the transition is ∆c = α+ 1 in the Wigner model (vvᵀ) and
∆c =

√
β(α+ 1) in the Wishart model (uvᵀ)

Sign activation: Let ϕ(x) = sgn(x). In this case the transition is ∆c = 1 + 4
π2α in the Wigner model (vvᵀ)

and ∆c =
√
β
(
1 + 4

π2α
)

in the Wishart model (uvᵀ).

G Random matrix analysis of the transition

In this section, we describe how we can derive the value ∆c at which a transition appears in the recovery for a
linear activation function, for both the symmetric vvᵀ and non-symmetric uvᵀ case, purely from a random
matrix theory analysis. This transition is in essence similar to the celebrated Baik-Ben Arous-Péché (BBP)
transition of the largest eigenvalue of a spiked Wishart (or Wigner) matrix [40].

G.1 A reminder on the Stieltjes transform

Let C+ = {z ∈ C, Im z > 0}. For any probability measure ν on R, and any z ∈ C\supp ν, we can de�ne the
Stieltjes transform of ν as:

gν(z) ≡ Eν
1

X − z .

Note that gν(z) is a one-to-one mapping of C+ on itself. The Stieltjes transform has proven to be a very
useful tool from random matrix theory. One of its important features, that we will use to compute the bulk
density (see Fig. (3) of the main material) is the Stieltjes-Perron inversion formula, that we state here (see
Theorem X.6.1 of [48]):
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Theorem G.1 (Stieltjes-Perron). Assume that ν has a continuous density on R with respect to the Lebesgue
measure. Then:

∀x ∈ R,
dν

dx
= lim

ε→0+

1

π
Im gν(x+ iε).

Informally, one has to think that the knowledge of the Stieltjes transform above the real line uniquely
determines the measure ν. The Stieltjes transform is particulaly useful in random matrix theory. Consider a
(random) symmetric matrix M of size n, with real eigenvalues {λi}. Then the empirical spectral measure of
M is de�ned as:

νn ≡
1

n

n∑
i=1

δλi . (258)

For some random matrix ensembles, the (random) probability measure νn will converge almost surely and in
the weak sense to a deterministic probability measure ν as n→∞. In this case, we will call ν the asymptotic
spectral measure of M .

G.2 RMT analysis of the LAMP operator

G.2.1 The symmetric vvᵀ linear case

In this setting, the stationary AMP equations can be reduced on the vector v̂ as:

v̂ =

[
1

k
WW ᵀ

] [
1√
∆p

ξ +
1

∆

vvᵀ

p
− 1

∆
Ip

]
v̂. (259)

We assume in the following that ρv = 1 to simplify the analysis (in this linear problem, it does not imply
any loss of generality). Here ξ/√p is a matrix from the Gaussian Orthogonal Ensemble, i.e. ξ is a real
symmetric matrix with entries drawn independently from a Gaussian distribution with zero mean and variance
E ξ2

ij = (1 + δij). We denote:

Γvvp ≡
[

1

k
WW ᵀ

] [
1√
∆p

ξ +
1

∆

vvᵀ

p
− 1

∆
Ip

]
. (260)

From the state evolution analysis we expect that the eigenvector of Γvvp associated to its largest eigenvalue
has a non-zero overlap with v in the large p limit as soon as ∆ < ∆c(α) ≡ 1 + α. In this section, we show
this fact using only random matrix theory.

Informally, we �rst demonstrate that the supremum of the support of the asymptotic spectral measure of
Γvvp touches 1 exactly for ∆ = ∆c(α). Then, for ∆ ≤ ∆c(α), the largest eigenvalue of Γvvp will converge to 1,
which is separated from the bulk of the asymptotic spectral density. The corresponding eigenvector is also
positively correlated with v. This gives more detail to the mechanisms of the transition. We show �rst the
following characterization of the asymptotic spectral density of Γvvp :

Theorem G.2. For any α,∆ > 0, as p→ +∞, the spectral measure of Γvvp converges almost surely and in the
weak sense to a well-de�ned and compactly supported probability measure µ(α,∆), and we denote suppµ its
support. We separate two cases:

(i) If ∆ ≤ 1
4 , then suppµ ⊆ R−.

(ii) Assume now ∆ > 1
4 and denote z1(∆) ≡ −∆−1 + 2∆−1/2 > 0. Let ρ∆ be the probability measure on R

with density

ρ∆(dt) =

√
∆

2π

√
4−∆

(
t+

1

∆

)2

1

{∣∣∣∣t+
1

∆

∣∣∣∣ ≤ 2√
∆

}
dt. (261)
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Note that the supremum of the support of ρ∆ is z1(∆). The following equation admits a unique solution for
s ∈ (−z1(∆)−1, 0):

α

∫
ρ∆(dt)

(
st

1 + st

)2

= 1. (262)

We denote this solution as sedge(α,∆) (or simply sedge). The supremum of the support of µ(α,∆) is denoted
λmax(α,∆) (or simply λmax). It is given by:

λmax =


− 1

sedge
+ α

∫
ρ∆(dt)

t

1 + sedget
if α ≤ 1,

max

(
0,− 1

sedge
+ α

∫
ρ∆(dt)

t

1 + sedget

)
if α > 1.

(263)

Before proving Theorem G.2, we state a very interesting corollary:

Corollary G.1. Let α > 0. As a function of ∆, λmax (see Theorem G.2) has a unique global maximum, reached
exactly at the point ∆ = ∆c(α) = 1 + α. Moreover, λmax(α,∆c(α)) = 1.

We can then state the transition result. Its method of proof is very much inspired by [49] 4.

Theorem G.3. Let α,∆ > 0. Let us denote λ1 ≥ λ2 the �rst and second eigenvalues of Γvvp . Then we have:

• If ∆ ≥ ∆c(α), then as p→∞ we have λ1 →
a.s.

λmax and λ2 →
a.s.

λmax.

• If ∆ ≤ ∆c(α), then as p→∞ we have λ1 →
a.s.

1 and λ2 →
a.s.

λmax.

Moreover, let us denote ṽ an eigenvector of Γvvp with eigenvalue λ1, normalized such that ‖ṽ‖2 = p. Then:

1

p2
|ṽᵀv|2 →

a.s.
ε(∆). (264)

The function ε(∆) satis�es the following properties: ε(∆) = 0 for all ∆ ≥ ∆c(α), ε(∆) > 0 for all ∆ < ∆c(α)
and lim∆→0 ε(∆) = 1.

Our method of proof for Theorem G.3 allows us to compute numerically the squared correlation ε(∆). It is
given, for all ∆ < ∆c(α), as

ε(∆) =
1

α

[
S(2)(1)

]2
S(1,2)(1)

.

The S(1,2) and S(2) functions are de�ned in Lemma G.2, and formulas are also given that allow to compute
them numerically. A non-trivial consistency check is to verify that ε(∆) coincides with the variable qv given
by the mutual information analysis of Theorem 1 of the main material. We show numerically that they indeed
coincide in Fig. 6.
Remark (The nature of the transition). As was already noticed in some previous works (see for instance a
related remark in [49]), the existence of a transition in the largest eigenvalue and the corresponding eigenvector
for a large matrix of the typeM +θP (with P of �nite rank and θ > 0) depends on the decay of the asymptotic
spectral density of M at the right edge of its bulk. For a power-law decay, there can be either no transition, a
transition in the largest eigenvalue and the corresponding eigenvector, or a transition in the largest eigenvalue
but not in the corresponding eigenvector. The situation in our setting is somewhat more involved, as both
the bulk and the spike depend on the parameter ∆, and they are not independent (they are correlated via the
matrix W ). However, this intuition remains true: if we do not show and use it explicitely, the decay of the
density of µ(α,∆) at the right edge is of the type (λmax−λ)1/2, which is the hidden feature that is responsible
for a transition both in the largest eigenvalue and the corresponding eigenvector, which is what we show in
Theorem G.2.

4Note that while all the calculations are justi�ed, re�nements would be needed in order to be completely rigorous. These re�nements
would follow exactly some proofs of [50] and [49], so we will refer to them when necessary.
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Figure 6: The function ε(∆) computed in the linear case by Theorem 1 of the main material (information
theoretic analysis) and Theorem G.3 (random matrix analysis) (α = 2).

G.2.2 The non-symmetric uvᵀ linear case

The analysis is very similar to the one of the symmetric case of Section G.2.1. The counterpart to the matrix of
eq. (260) is here:

Γuvp ≡
1

∆

WW ᵀ

k
×
(

1

1 + ∆

yᵀy

p
− β Ip

)
∈ Rp×p. (265)

Recall that we have here α = p
k and β = n

p . W ∈ Rp×k is an i.i.d. standard Gaussian matrix, and the matrix
y ∈ Rn×p is constructed as:

y =
√

∆ξ +
uvᵀ√
p
. (266)

Here, ξ ∈ Rn×p is also an i.i.d. standard Gaussian matrix, independent of W . As it will be useful for stating
the theorem, we recall the Marchenko-Pastur probability measure with ratio β, denoted ρMP,β [51]:

λ+(β) =

(
1 +

1√
β

)2

, (267a)

λ−(β) =

(
1− 1√

β

)2

, (267b)

dρMP,β

dt
≡ (1− β) δ(t) +

β

2π

√
[λ+(β)− t] [t− λ−(β)]

t
1t∈(λ−(β),λ+(β)). (267c)

We can now state the couterpart to Theorem G.2 in the uvᵀ setting:

Theorem G.4. For any α, β,∆ > 0, the spectral measure of Γuvp converges almost surely and in the weak sense
to a well-de�ned and compactly supported measure µ(∆, α, β). We denote suppµ its support. We introduce a
function z1 and a probability measure ρβ,∆ as follows:

z1(β,∆) ≡ −β + ∆ + 2∆
√
β

∆(1 + ∆)
,

dρβ,∆
dt

≡ 1 + ∆

β

dρMP,β

dt

(
1 + ∆

β
t+

1 + ∆

∆

)
. (268)

Note that z1(β,∆) is the supremum of the support of ρβ,∆. Let �nally

∆pos(β) ≡ β

1 + 2
√
β
. (269)

We separate two cases:
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(i) If ∆ ≤ ∆pos(β), then z1(β,∆) ≤ 0 and suppµ ⊆ R−.

(ii) Assume now ∆ > ∆pos(β). Then z1(β,∆) > 0. The following equation admits a unique solution for
s ∈ (−z1(β,∆)−1, 0):

α

∫
ρβ,∆(dt)

(
st

1 + st

)2

= 1. (270)

We denote this solution as sedge(α, β,∆) (or simply sedge). We denote λmax(α, β,∆) (or only λmax) the
supremum of the support of µ(∆, α, β). Then we have:

λmax =


− 1

sedge
+ α

∫
ρβ,∆(dt)

t

1 + sedget
if α ≤ 1,

max

(
0,− 1

sedge
+ α

∫
ρβ,∆(dt)

t

1 + sedget

)
if α > 1.

(271)

We can state the corresponding corollary to this theorem:

Corollary G.2. Let α, β > 0. Seen as a function of ∆, λmax (see Theorem G.2) has a unique global maximum,
attained exactly at the point ∆c(α, β) ≡

√
β(1 + α). Moreover,

λmax(α, β,∆c(α, β)) = 1.

We can then describe the complete transition. Proving this transition would follow the same main lines as
the proof of the transition in the vvᵀ case (Theorem G.3), but would be signi�cantly heavier. This is left for
future work, so we state the transition in this setting as a conjecture:

Conjecture G.1. Let α, β,∆ > 0. Let us denote λ1 ≥ λ2 the �rst and second eigenvalues of Γuvp . Then we have:

• If ∆ ≥ ∆c(α, β), then as p→∞ we have λ1 →
a.s.

λmax and λ2 →
a.s.

λmax.

• If ∆ ≤ ∆c(α, β), then as p→∞ we have λ1 →
a.s.

1 and λ2 →
a.s.

λmax.

Let us denote ṽ an eigenvector of Γuvp with eigenvalue λ1, normalized such that ‖ṽ‖2 = p. Then:

1

p2
|ṽᵀv|2 →

a.s.
ε(∆). (272)

It satis�es ε(∆) = 0 for all ∆ ≥ ∆c(α, β), ε(∆) > 0 for all ∆ < ∆c(α, β) and lim∆→0 ε(∆) = 1.

G.3 Proofs

G.3.1 Proof of Theorem G.2 and Corollary G.1

Proof of Theorem G.2

Proof of Theorem G.2 (ii). We begin by treating the more involved case (ii), that is we assume ∆ > 1
4 . Note

�rst that by basic linear algebra, the spectrum of Γvvp is, up to 0 eigenvalues, the same as the spectrum of the
following matrix Γvvk :

Γvvk ≡
1

k
W ᵀ

[
1√
∆p

ξ +
1

∆

vvᵀ

p
− 1

∆
Ip

]
W ∈ Rk×k, (273)

More precisely, if p ≥ k (so α ≥ 1) we have Sp (Γvvp ) = Sp (Γvvk ) ∪ {0}p−k, and conversely if k > p. These
additional zero eigenvalues in the case α > 1 explain the max(0, ·) term in the conclusion of Theorem G.2.

For the remainder of the proof we can thus consider Γvvk instead of Γvvp given the remark above. Moreover,
for simplicity we will drop the vv exponent in those matrices, and just denote them Γk,Γp. The bulk of Γk can
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be studied using standard random matrix theory results. Such matrices were �rst studied by Marchenko and
Pastur in a seminal work [51], which was generalized (and made rigorous) later in [50]. Note �nally that by
the celebrated results of Wigner [52], the spectral distribution of the matrix ξ/

√
∆p− Ip/∆ converges in law

(and almost surely) as p→∞ to ρ∆, given by eq. (261). We can then use Theorem 1.1 of [50], that we recall
here for our setting:

Theorem G.5 (Silverstein-Bai). Let p, k →∞ with p/k → α > 0. LetW ∈ Rp×k be an i.i.d. Gaussian matrix,
whose elements come from the standard Gaussian distribution N (0, 1). Let Tp ∈ Rp×p be a random symmetric
matrix, independent ofW , such that the empirical spectral distribution of Tp converges (almost surely) in law to a
measure ρT . Then, almost surely, the empirical spectral distribution of Bk ≡ 1

kW
ᵀTpW converges in law to a

(nonrandom) measure µB , whose Stieltjes transform satis�es, for every z ∈ C+:

gµB (z) = −
[
z − α

∫
νT (dt)

t

1 + tgµB (z)

]−1

. (274)

Moreover, for every z ∈ C+, there is a unique solution to eq. (274) such that gµB (z) ∈ C+. This equation thus
characterizes unambiguously the measure µB .

Applying Theorem G.5 to our setting shows that we can de�ne ν(α,∆) as the limit eigenvalue distribution
of Γk, and we denote gν(z) its Stieltjes transform. From the remarks above, µ(α,∆) and ν(α,∆) only di�er
by the addition of a delta distribution. For instance, if α ≥ 1:

µ(α,∆) = αν(α,∆) + (1− α)δ0. (275)

The main quantity of interest to us is zedge, de�ned as the supremum of the support of ν(α,∆). If zedge ≥ 0,
then it will also be the supremum of the support of µ(α,∆), and thus equal to λmax. Theorem G.5 shows that
for every z ∈ C+ ∪ (R\supp ν), gν(z) is the only solution in C+ ∪ R to the following equation:

gν(z) = −
[
z − α

∫
ρ∆(dt)

t

1 + tgν(z)

]−1

. (276)

The validity of the equation for R\supp ν (and not only on C+) follows from the continuity of gν(z) on
C+ ∪ (R\supp ν), a generic property of the Stieltjes transform. It is easy to see that gν induces a strictly
increasing di�eomorphism gν : (zedge,+∞) → (limz→z

+
edge

gν(z), 0), so that we can de�ne its inverse g−1
ν

and from eq. (276), it satis�es for every s ∈ (limz→z
+
edge

gµ(z), 0):

g−1
ν (s) = −1

s
+ α

∫
ρ∆(dt)

t

1 + st
. (277)

Remark Note that this can be written in terms of theR-transform of ν (an useful tool of free probability):

Rν(s) ≡ g−1
ν (−s)− 1

s
= α

∫
ρ∆(dt)

t

1− st .

In order to compute zedge from eq. (276), we use a result of Section 4 of [50], also stated for instance in
[53], that describes the form of the support of ν(α,∆). It can be stated in the following way. Recall that since
∆ > 1

4 , z1(∆) > 0 is the maximum of the support of ρ∆. Let sedge be the unique solution in (−z1(∆)−1, 0) of
the equation (g−1

ν )′(s) = 0, that is by eq. (277):

α

∫
ρ∆(dt)

(
st

1 + st

)2

= 1. (278)

Indeed, it is straighforward to show that the left-hand side of eq. (278) tends to 0 as s→ 0−, tends to +∞ as
s→ −z1(∆)−1, and is a strictly decreasing and continuous function of s. Then (see for instance eq. (2.13) and
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eq. (2.14) of [53]) zedge is given by

zedge = lim
s→s+edge

g−1
ν (s),

= − 1

sedge
+ α

∫
ρ∆(dt)

t

1 + sedget
. (279)

This ends the proof of (ii). �

Let us make a �nal remark that will be useful in our future analysis. Note that z1(∆) > 1 for all ∆ > 1.
Moreover, for all ∆ > 1, we have by an explicit computation:

α

∫
ρ∆(dt)

(
t

1− t

)2

=
α

∆− 1
.

By the argument above, this yields the following result, that we state as a lemma:

Lemma G.1. Assume ∆ > 1. Then:

(i) If ∆ < ∆c(α), then sedge > −1.

(ii) If ∆ = ∆c(α), then sedge = −1.

(iii) If ∆ > ∆c(α), then sedge < −1.

Proof of Theorem G.2, (i). Assume now ∆ ≤ 1
4 . Then the support of ρ∆ is a subset of R−. Since 0 ∈ R−, we

can use again the remark we made in the proof of (ii) to study Γk instead of Γp. Moreover, Theorem G.5 still
applies here so that we have the Silverstein equation (277) for every s ∈ C+:

g−1
ν (s) = −1

s
+ α

∫
ρ∆(dt)

t

1 + st
.

By the Stieltjes-Perron inversion Theorem G.1, it is enough to check that for every z > 0, there exists a unique
s < 0 such that g−1

ν (s) = z. Indeed, this will yield s = gν(z) ∈ R. In particular, limε→0+ Im gν(z + iε) = 0
for every z > 0, which will imply supp(ν) ⊆ R− and thus supp(µ) ⊆ R−.

Therefore, let z > 0. From eq. (277) and the fact that supp(ρ∆) ⊆ R−, we easily obtain:

lim
s→−∞

g−1
ν (s) = 0,

lim
s→0−

g−1
ν (s) = +∞.

Moreover, g−1
ν (s) is a strictly increasing continuous function of s, so that the existence and unicity of s =

gν(z) < 0 is immediate, which ends the proof. �

Proof of Corollary G.1

Proof. Let us make a few remarks:

• By Theorem G.2, we know that if ∆ ≤ 1
4 , then λmax ≤ 0.

• It is trivial by the form of Γp that, as ∆→ +∞, λmax → 0.

Let zedge = − 1
sedge

+α
∫
ρ∆(dt) t

1+sedget
. Then we know that λmax = zedge if α ≤ 1 and λmax = max(0, zedge)

if α > 1. In particular, by the remark above, zedge ≤ 0 for ∆ = 1
4 and zedge → 0+ as ∆→∞. It is easy to see

that zedge is a continuous and di�erentiable function of ∆, so that if we show the two following facts for any
∆ ≥ 1

4 :

dzedge

d∆
= 0⇔ ∆ = ∆c(α) = 1 + α, (280)

zedge(∆c(α)) = 1, (281)
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this would end the proof as zedge would necessarily have a unique global maximum, located in ∆ = ∆c(α), in
which we have λmax = 1. We thus prove eq. (280) and eq. (281) in the following.

Proof of eq. (280) By the chain rule:

dzedge

d∆
=
∂zedge

∂∆
+
∂sedge

∂∆

∂zedge

∂sedge
,

=
∂zedge

∂∆
,

using the very de�nition of sedge, eq. (278), as zedge = g−1
ν (sedge). Given the explicit form of ρ∆, one can

compute easily:

∂zedge

∂∆
= −α

sedge + 2s2
edge −∆ +

√
s2

edge − 2sedge(1 + 2sedge)∆ + ∆2

2s3
edge

√
s2

edge − 2sedge(1 + 2sedge)∆ + ∆2
.

It is then simple analysis to see that since sedge < 0, ∂zedge

∂∆ = 0 is equivalent to sedge = −1 and ∆ > 1. Recall
that sedge is originally de�ned as a solution to eq. (278):

α

∫
ρ∆(dt)

(
sedget

1 + sedget

)2

= 1.

Inserting sedge = −1 into this equation and using the explicit form of ρ∆ given by eq. (261), and using moreover
that ∆ > 1, this reduces to:

α

∆− 1
= 1,

which is equivalent to ∆ = ∆c(α) = 1 + α.
Proof of eq. (281) By Lemma G.1, we know that for ∆ = ∆c(α) we have sedge = −1. Given eq. (261),

it is then straightforward to compute:

zedge(∆c(α)) = −1 + α

∫
ρ∆c(α)(dt)

t

1− t ,

= 1.

�

G.3.2 Proof of Theorem G.3

Transition of the largest eigenvalue This part is a detailed outline of the proof. Some parts of the
calculation are not fully rigorous, however they can be justi�ed more precisely by following exactly the lines
of [49] and [54]. We will emphasize when such re�nements have to be made. Recall that we have by eq. (260)
the following decomposition of Γvvp (that we denote Γp for simplicity):

Γp =

[
1

k
WW ᵀ

] [
1√
∆p

ξ − 1

∆
Ip

]
︸ ︷︷ ︸

Γ
(0)
p

+
1

∆

WW ᵀ

k

vvᵀ

p︸ ︷︷ ︸
rank 1 perturbation

. (282)

Theorem G.2 and Corollary. G.1, along with their respective proofs, already describe in great detail the limit
eigenvalue distribution of Γ

(0)
p . We �rst note that for any λ ∈ R that is not an eigenvalue of Γ

(0)
p one can write:

det (λIp − Γp) = det
(
λIp − Γ(0)

p

)
det

(
Ip −

(
λIp − Γ(0)

p

)−1 1

∆

WW ᵀ

k

vvᵀ

p

)
.
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In particular, this implies immediately that λ is an eigenvalue of Γp and not an eigenvalue of Γ
(0)
p if and only if

1 is an eigenvalue of
(
λIp − Γ

(0)
p

)−1
1
∆
WW ᵀ

k
vvᵀ
p . Since this is a rank-one matrix, its only non-zero eigenvalue

is equal to its trace, so it is equivalent to:

1 = Tr

[(
λIp − Γ(0)

p

)−1 1

∆

WW ᵀ

k

vvᵀ

p

]
. (283)

Recall that by de�nition, v is constructed as v = W z/
√
k, with z a standard Gaussian i.i.d. vector in Rk,

independent ofW . For any matrixA, we have the classical concentration 1
kz
ᵀAz = 1

kTrAwith high probability
as k →∞. In eq. (283), this yields at leading order as p→∞:

∆ =
1

p
Tr

[(
λIp − Γ(0)

p

)−1
(
WW ᵀ

k

)2
]
. (284)

We will prefer to use k× k matrices. We use the simple linear algebra identity, for any p× p symmetric matrix
A, and any integer q ≥ 1:

Tr

[(
λIp −

WW ᵀ

k
A

)−1(WW ᵀ

k

)q]
= Tr

[(
λIk −

1

k
W ᵀAW

)−1(W ᵀW

k

)q]
.

This can be derived for instance by expanding both sides in powers of λ−1 and using the cyclicity of the trace.
Finally, we can state that the eigenvalues of Γp that are outside of the spectrum of Γ

(0)
p must satisfy, as k →∞:

α∆ =
1

k
Tr

[(
λIk − Γ

(0)
k

)−1
(
W ᵀW

k

)2
]
, (285)

with

Γ
(0)
k ≡

1

k
W ᵀ

[
1√
∆p

ξ − 1

∆
Ip

]
W.

We will now make use of two important lemmas, at the core of our analysis. They will also prove to be
useful in the eigenvector correlation analysis.

Lemma G.2. Recall that ν is the limit eigenvalue distribution of Γ
(0)
k , that the supremum of its support is λmax,

and its Stieltjes transform is gν . For every integer r ≥ 0, we de�ne:

S
(r)
k (λ) ≡ 1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)r]
.

For r ∈ {0, 1, 2, 3}5 and every λ > λmax, as k → ∞ S
(r)
k (λ) converges almost surely to a well de�ned limit

S(r)(λ). This limit is given by:

S(0)(λ) = gν(λ),

S(1)(λ) = gν(λ) [α− (1 + λgν(λ))] ,

S(2)(λ) = gν(λ)
[
α(1 + α)− (1 + 2α)(1 + λgν(λ)) + (1 + λgν(λ))2

]
,

S(3)(λ) = gν(λ)
[
(α+ 3α2 + α3)− (1 + 5α+ 3α2)(1 + λgν(λ))

+(2 + 3α)(1 + λgν(λ))2 − (1 + λgν(λ))3
]
.

(286)

We de�ne similarly for every integer r, q ≥ 0:

S
(r,q)
k (λ) ≡ 1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)r (
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)q]
.

5The almost sure convergence could probably be extended to all r ∈ N? but we will only use these values of r in the following.
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Note that S(r,q)
k = S

(q,r)
k and that S(r,0)

k (λ) = ∂zS
(r)
k (λ). For every λ > λmax, S

(1,1)
k (λ) and S(1,2)

k (λ) converge
almost surely (as k →∞) to well-de�ned limits, that satisfy the following equations:

S(1,1)(λ) = gν(λ)S(2)(λ)− [1 + λgν(λ)] ∂λS
(1)(λ)

+ αgν(λ)
[
gν(λ) + S(1)(λ)

] ∫ ρ∆(dt)t

(1 + tgν(λ))2

[
t ∂λS

(1)(λ)− gν(λ)
]
,

S(1,2)(λ) = gν(λ)S(3)(λ)− [1 + λgν(λ)]
[
S(1,1)(λ) + (1 + α)∂λS

(1)(λ)
]

+ αgν(λ)
[
(1 + α)gν(λ) + S(1)(λ) + S(2)(λ)

] ∫ ρ∆(dt)t

(1 + tgν(λ))2

[
t ∂λS

(1)(λ)− gν(λ)
]
.

Lemma G.3. Let α,∆ > 0. We focus mainly on S(2)(λ). We have:

(i) For every r, S(r)(λ) is a strictly increasing function of λ, and limλ→∞ S
(r)(λ) = 0.

(ii) For every λ > λmax, S(2)(λ) = −α∆ if and only if ∆ ≤ ∆c(α) and λ = 1.

(iii) For every ∆ > ∆c(α), limλ→λmax S
(2)(λ) ∈ (−α∆, 0) (it is well de�ned by monotonicity of S(2)(λ)).

Let us see how item (ii) of Lemma G.3 and eq. (285) end the proof of the eigenvalue transition. First, note
that by the celebrated Weyl’s interlacing inequalities [55], we have:

lim inf
p→∞

λ1 ≥ λmax,

lim sup
p→∞

λ2 ≤ λmax.

This implies that because the perturbation of the matrix is of rank one, at most one outlier eigenvalue will
exist in the limit p→∞. By eq. (285), this outlier λ1 exists if and only if it satis�es, in the large p→∞ limit,
the equation S(2)(λ1) = −α∆. By item (ii) of Lemma G.3, this is the case only for λ1 = 1 and ∆ ≤ ∆c(α),
which ends the proof. A completely rigorous treatement of these arguments requires to state more precisely
concentration results. Such a treatment has been made in [49] in a very close case (from which all the arguments
transpose), and we refer to it for more details. We �nally describe the proofs of the lemmas in the following.

Proof of Lemma. G.2. The essence of the computation originates from the derivation of Theorem G.5 in [50].
Note that S(0)

k (λ) converges a.s. to the Stieljtes transform gν(λ) as k → ∞ by Theorem G.5. For every
1 ≤ i ≤ p, wi denotes the i-th row of W . We denote y = 1√

∆p
ξ − 1

∆ Ip. Since W is independent of y, we can
denote y1, · · · , yp the eigenvalues of y, and their empirical distribution converges a.s. to ρ∆ as we know. We
have in distribution:

Γ
(0)
k =

1

k
W ᵀ yW

d
=
α

p

p∑
i=1

yiwiw
ᵀ
i .

For every i, we denote:

Γ
(0)
k,i ≡=

α

p

p∑
j(6=i)

yj wj w
ᵀ
j .

Note that Γ
(0)
k,i is independent of wi. We start from the (trivial) decomposition, for every λ:

− 1

λ
=
(

Γ
(0)
k − λIk

)−1
− 1

λ

W ᵀ yW

k

(
Γ

(0)
k − λIk

)−1
. (287)
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We will make use of the Sherman-Morrison formula that gives the inverse of a matrix perturbed by a rank-one
change:

(B + τωωᵀ)−1 = B−1 − 1

1 + τωᵀB−1ω
B−1ωωᵀB−1, (288)

ωᵀ (B + τωωᵀ)−1 =
1

1 + τωᵀB−1ω
ωᵀB−1. (289)

Using it in eq. (287) yields:

− 1

λ
=
(

Γ
(0)
k − λIk

)−1
− α

λ

1

p

p∑
i=1

yi
wi

1 + yi
k w
ᵀ
i (Γ

(0)
k,i − λIk)−1wi

wᵀi

(
Γ

(0)
k,i − λIk

)−1
. (290)

Taking the trace of eq. (290), using the independence of wi and Γ
(0)
k,i , and the concentration 1

kw
ᵀ
iAwi = 1

kTrA
with high probability for large k, we obtain the following equation:

− 1

λ
= gν(λ)− gν(λ)

α

λ

∫
ρ∆(dt)

t

1 + tgν(λ)
. (291)

This is exactly the identity in Theorem G.5 ! In the following, we will use very similar identities. A completely
rigorous derivation of these would, however, require many technicalities to ensure in particular the concentra-
tion of all the involved quantities. It would exactly follow the proof of [50], and thus we do not repeat all the
technicalities here. We can multiply eq. (290) by W ᵀW

k , and take the trace:

− 1

λ

1

k
Tr

[
WW ᵀ

k

]
= S

(1)
k (λ)− α

λ

1

p

∑
i

yi

wᵀ
i√
k

(
Γ

(0)
k,i − λIk

)−1 (
1
k

∑
j( 6=i)wjw

ᵀ
j + 1

kwiw
ᵀ
i

)
wi√
k

1 + yi
k w
ᵀ
i (Γ

(0)
k,i − λIk)−1wi

.

In the large p, k limit, this implies that S(1)
k (λ) converges to a well-de�ned limit S(1)(λ), and this limit satis�es:

−α
λ

= S(1)(λ)− α

λ

[∫
ρ∆(dt)

t

1 + tgν(λ)

](
gν(λ) + S(1)(λ)

)
Using �nally eq. (291), it is equivalent to:

S(1)(λ) = gν(λ) [α− (1 + λgν(λ))] .

Multiplying eq. (290) by
(
W ᵀW
k

)2 or
(
W ᵀW
k

)3 yields, by the same analysis:

S(2)(λ) = gν(λ)
[
α(1 + α)− (1 + 2α)(1 + λgν(λ)) + (1 + λgν(λ))2

]
,

S(3)(λ) = gν(λ)
[
(α+ 3α2 + α3)− (1 + 5α+ 3α2)(1 + λgν(λ))

+(2 + 3α)(1 + λgν(λ))2 − (1 + λgν(λ))3
]
.

The convergence of S(1,1)
k (λ) and S(1,2)

k (λ) follows from the same analysis, as well as the equations they
satisfy. We detail the derivation of the equation on S(1,1)(λ) and leave the derivation of the second equation
for the reader. We multiply eq. (290) by W ᵀW

k . To simplify the calculations, we make use of concentrations,
and denote Fi ≡ W ᵀW

k − 1
kwiw

ᵀ
i , which is independent of wi. We obtain at leading order as p→∞:

−W
ᵀW

kλ
=
(

Γ
(0)
k − λIk

)−1 W ᵀW

k
− α

λ

1

p

p∑
i=1

yi
1 + yigν(λ)

wiw
ᵀ
i

(
Γ

(0)
k,i − λIk

)−1
Fi

− α

λ

1

p

p∑
i=1

yigν(λ)

1 + yigν(λ)
wiw

ᵀ
i .
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We multiply this equation by (Γ
(0)
k − λIk)

−1 and we use Sherman-Morrison formula eq. (288):(
Γ

(0)
k − λIk

)−1
=
(

Γ
(0)
k,i − λIk

)−1
−
(

Γ
(0)
k,i − λIk

)−1 yiwiw
ᵀ
i

1 + yigν(λ)

(
Γ

(0)
k,i − λIk

)−1
.

Using again the concentration of 1
kw
ᵀAw on 1

kTr[A], this yields the cumbersome expression:

−W
ᵀW

kλ

(
Γ

(0)
k − λIk

)−1
=
(

Γ
(0)
k − λIk

)−1 W ᵀW

k

(
Γ

(0)
k − λIk

)−1
(292)

− α

λ

1

p

p∑
i=1

yi
1 + yigν(λ)

wiw
ᵀ
i

(
Γ

(0)
k,i − λIk

)−1
Fi

(
Γ

(0)
k,i − λIk

)−1

+
∂λS

(1)(λ)

λ

α

p

p∑
i=1

y2
i

(1 + yigν(λ))2
wiw

ᵀ
i

(
Γ

(0)
k,i − λIk

)−1

− α

λ

1

p

p∑
i=1

yigν(λ)

(1 + yigν(λ))2
wiw

ᵀ
i

(
Γ

(0)
k,i − λIk

)−1
.

We �nally multiply this equation by W ᵀW
k and take its trace. Using again the concentrations, we reach:

−S
(2)(λ)

λ
= S(11)(λ)− α

λp

p∑
i=1

yi
1 + yigν(λ)

[
S(11)(λ) + ∂λS

(1)(λ)
]

+
∂λS

(1)(λ)

λ

α

p

p∑
i=1

y2
i

(1 + yigν(λ))2

[
gν(λ) + S(1)(λ)

]
− α

λ

1

p

p∑
i=1

yigν(λ)

(1 + yigν(λ))2

[
gν(λ) + S(1)(λ)

]
.

We now take the limit p→∞ in the sum over i and use Theorem G.5 in the form:

α

λ

∫
ρ∆(dt)

t

1 + tgν(λ)
= 1 +

1

λgν(λ)
.

Inserting this into eq. (292) along with some trivial algebra yields:

S(1,1)(λ) = gν(λ)S(2)(λ)− [1 + λgν(λ)] ∂λS
(1)(λ)

+ αgν(λ)
[
gν(λ) + S(1)(λ)

] ∫ ρ∆(dt)t

(1 + tgν(λ))2

[
t ∂λS

(1)(λ)− gν(λ)
]
,

which is what we aimed to show. Performing the same analysis for S(1,2)(λ) ends the proof. �

Proof of Lemma G.3. Point (i) is trivial by de�nition of S(r)
k (λ) and the almost sure convergence proven in

Lemma G.2. We turn to points (ii) and (iii). Let us denote the following function:

T (2)(s) ≡ s
[
α(1 + α)− (1 + 2α)

(
1 + sg−1

ν (s)
)

+
(
1 + sg−1

ν (s)
)2]

.

By Lemma G.2, we have T (2)(s) = S(2)(g−1
ν (s)) so T (2)(s) < 0 for s ∈ (sedge, 0) by negativity of S(2)(λ) (as

the trace of a negative matrix). Therefore, point (ii) is equivalent to:

∀s ∈ (sedge, 0), T (2)(s) = −α∆⇔ s = gν(1) and ∆ ≤ ∆c(α), (293)

while point (iii) means that for every ∆ > ∆c(α),

∀s ∈ (sedge, 0), T (2)(s) > −α∆. (294)
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The condition s > sedge arises naturally as the counterpart of z ≥ λmax. Recall that by Corollary G.1, we have
λmax ≤ 1 for all ∆. As g−1

ν (s) is here completely explicit by eq. (277), and recalling the form of ρ∆ in eq. (261),
it is easy to show by an explicit computation the following identity:

∀s 6= −1, T (2)(s) = −α∆ + α
[
g−1
ν (s)− 1

] s−∆− 2s∆ +
√
s2 − 2s(1 + s)∆ + ∆2

2(1 + s)
,

T (2)(−1) =

{
−α(1 + α) if ∆ ≥ 1,

−α∆(1 + α∆) if ∆ ≤ 1.

It is then easy to see that the only possible solution to T (s) = −α∆ with s ∈ (sedge, 0) is s = gν(1), if
gν(1) 6= −1. However, by Lemma G.1, for any ∆ > ∆c(α) we have sedge < −1. Moreover, in this case, one
computes very easily (all expressions are explicit) g−1

ν (−1) = 1. Given the identity above, there is therefore no
solution to T (2)(s) = −α∆ in (sedge, 0). By continuity of T (2)(s), and since lims→0 T

(2)(s) = 0, this implies
T (2)(s) > −α∆ for s ∈ (sedge, 0), which proves point (iii).

Assume now ∆ ≤ ∆c(α). Note that the case ∆ = ∆c(α) is easy, as sedge = −1 is the unique solution to
T (2)(s) = −α(1+α). For ∆ < ∆c(α), by Lemma G.1 we obtain−1 < sedge. In particular, gν(1) > sedge > −1,
and we thus have that s = gν(1) is a solution (and the only one) to T (2)(s) = −α∆ by the identity shown
above. This shows (ii) and ends the proof of Lemma G.3. �

Correlation of the leading eigenvector We now turn to the study of the leading eigenvector. Let ṽ be an
eigenvector associated with the largest eigenvalue λ1, normalized such that ‖ṽ‖2 = p. Then we have:

(λ1Ip − Γ(0)
p )ṽ =

1

∆

WW ᵀ

k

vᵀṽ
p

v. (295)

By normalization of ṽ, we obtain:

ṽ =
√
p

(
λ1Ip − Γ

(0)
p

)−1
WW ᵀ

k v√
vᵀWW ᵀ

k

(
λ1Ip −

(
Γ

(0)
p

)ᵀ)−1 (
λ1Ip − Γ

(0)
p

)−1
WW ᵀ

k v
,

and therefore:

1

p2

∣∣ṽTv∣∣2 =
1

p

[
vᵀ
(
λ1Ip − Γ

(0)
p

)−1
WW ᵀ

k v
]2

vᵀWW ᵀ

k

(
λ1Ip −

(
Γ

(0)
p

)ᵀ)−1 (
λ1Ip − Γ

(0)
p

)−1
WW ᵀ

k v
. (296)

Using v = W√
k
z and the concentration of 1

kz
ᵀAz on 1

kTrA, we reach that as p, k →∞, we have:

1

p2

∣∣ṽTv∣∣2 ∼
[

1
pTr

{(
λ1Ip − Γ

(0)
p

)−1 (
WW ᵀ

k

)2}]2

1
pTr

{(
λ1Ip −

(
Γ

(0)
p

)ᵀ)−1 (
λ1Ip − Γ

(0)
p

)−1 (
WW ᵀ

k

)3} . (297)

The numerator is equal to [α−1S
(2)
k (λ1)]2, using the S(r) functions that we introduced in Lemma G.2. Let

us compute the denominator. Recall that we can write Γ
(0)
p = WW ᵀM/k, with a symmetric matrix M that is
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independent of W . For any z large enough, we can expand:

Tr

{(
zIp −

(
Γ(0)
p

)ᵀ)−1 (
zIp − Γ(0)

p

)−1
(
WW ᵀ

k

)3
}
,

=

∞∑
a=0

∞∑
b=0

z−a−b−2 Tr

{(
M
WW ᵀ

k

)a(WW ᵀ

k
M)

)b(WW ᵀ

k

)3
}
,

(a)
=

∞∑
a=0

∞∑
b=0

z−a−b−2 Tr

{(
W ᵀMW

k

)a W ᵀW

k

(
W ᵀMW

k

)b(W ᵀW

k

)2
}
,

= Tr

{(
zIk − Γ

(0)
k

)−1 W ᵀW

k

(
zIk − Γ

(0)
k

)−1
(
W ᵀW

k

)2
}
,

= kS
(1,2)
k (z),

where in (a) we used the cyclicity of the trace. Given Corollary G.1, we know lim infp→∞ λ1 ≥ λmax, so we
can use the above calculation to write:

ε(∆) = lim
λ→λ1

lim
k→∞

1

α

[
S

(2)
k (λ)

]2

S
(1,2)
k (λ)

. (298)

As in the eigenvalue transition proof, to make this fully rigorous one would need to use more precisely the
concentration results, and follow exactly the lines of [49]. We now use the transition of the leading eigenvalue
(Corollary G.1), that gives us the value of λ1.

• For ∆ < ∆c(α), we know that λ1 converges almost surely to 1. Consequently, we have in this case:

ε(∆) =
1

α

[
S(2)(1)

]2
S(1,2)(1)

.

By Lemma G.3, we know that S(2)(1) = −α∆. Moreover, by Corollary G.1 λmax < 1. This implies that
S(1,2)(1) ∈ (0,+∞). Indeed, 1 is out of the bulk of ν(α,∆), so gν(1) ∈ (−∞, 0) and by the relations
shown in Lemma G.2, all the transforms S(r)(1) and S(r,q)(1) will be �nite. Note that S(1,2)(1) > 0 by
positivity of the matrices involved. This implies that for every ∆ < ∆c(α), ε(∆) > 0.

• For ∆ = ∆c(α), we have λmax = 1 and limλ→1 S
(2)(λ) = −α∆ as we have shown. For every r, q,

let us de�ne the functions T (r) and T (r,q) by S(r)(λ) = T (r)[gν(λ)] and S(r,q)(λ) = T (r,q)[gν(λ)]. By
Lemma G.2 and the chain rule, we have:

∀s ∈ (sedge, 0), (299)

T (1,2)(s) = sT (3)(s)−
[
1 + sg−1

ν (s)
] [
T (1,1)(s) + (1 + α)

∂sT
(1)(s)

∂sg
−1
ν (s)

]

+ αs
[
(1 + α)s+ T (1)(s) + T (2)(s)

] ∫ ρ∆(dt)t

(1 + ts)2

[
t
∂sT

(1)(s)

∂sg
−1
ν (s)

− s
]
.

Recall that g−1
ν (s) is explicit by eq. (277) and sedge = limλ→λmax gν(λ). It moreover satis�es (cf The-

orem G.2) ∂sg−1
ν (sedge) = 0. For ∆ = ∆c(α), by Lemma G.1 we have gν(1) = −1 = sedge. It is then only

trivial algebra to verify from eq. (299) and the remaining relations of Lemma G.2 that T (1,2)(−1) = +∞,
which implies ε(∆c(α)) = 0.

• We investigate here the ∆→ 0 limit. In this limit, we know from eq. (298) and the analysis in the case
∆ < ∆c(α) above that

lim
∆→0

ε(∆) = lim
∆→0

α∆2

S(1,2)(1)
.
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It is again heavy but straightforward algebra to verify from eq. (299) and the remaining relations of
Lemma G.2 that as ∆→ 0 and for any s ∈ (sedge, 0):

T (1,2)(s) = α∆2 +O(∆3).

This yields lim∆→0 ε(∆) = 1.

• Finally, we consider ∆ > ∆c(α). By eq. (298) and item (iii) of Lemma G.3, to obtain ε(∆) = 0 we only
need to prove that limλ→λmax S

(1,2)(λ) = +∞. Equivalently, we must show lims→sedge
T (1,2)(s) = +∞.

Recall that ∂sg−1
ν (sedge) = 0 and that since sedge is �nite, all T (r)(sedge) for r = 0, 1, 2, 3 are �nite as

well by Lemma G.2. It thus only remains to check that lims→sedge
T (1,2)(s)∂s g

−1
ν (s) > 0. This would

imply that lims→sedge
T (1,2)(s) = +∞. We put this statement as a lemma, actually stronger than what

we need:

Lemma G.4. For every α > 0 and ∆ > 1, we have

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) > 0.

We prove this for every ∆ > 1, while only the case ∆ > 1 + α is needed in our analysis. As already
argued, this lemma ends the proof.

Proof of Lemma G.4. The idea is to lower bound S(1,2)(λ) by ∂λgν(λ), for every λ > λmax. We separate
three cases:

– First, assume α > 1. Then W ᵀW/k is full rank. In particular, by the classical results of [51],
its lowest eigenvalue, denoted ζmin converges almost surely to (1 − α−1/2)2, the left edge of
the Marchenko-Pastur distribution. Moreover, for any two symmetric positive square matrices
A and B, we know that Tr [AB] ≥ 0. Indeed, there exists a positive square root of A, and
Tr [AB] = Tr[A1/2BA1/2] ≥ 0. This implies immediately that if a0 is the smallest eigenvalue of
A, then Tr [AB] ≥ a0Tr [B], as A− a0I is positive. We can use this to write, for any λ > λmax:

S
(1,2)
k (λ) =

1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)2
]
,

≥ ζ2
min

1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)(
Γ

(0)
k − λIk

)−1
]
,

≥ ζ3
min

1

k
Tr

[(
Γ

(0)
k − λIk

)−2
]
.

Taking the limit k →∞ in this last inequality, we obtain:

S(1,2)(λ) ≥
(

1− α−1/2
)6
∂λgν(λ). (300)

Taking the limit λ→ λmax (or equivalently s→ sedge) yields

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) ≥

(
1− α−1/2

)6
> 0. (301)

– Now assume α < 1. We do the same reasoning, as WW ᵀ/k is now full rank, and it smallest
eigenvalue, also denoted ζmin, converges a.s. as k →∞ to (1−√α)2. We know (see the beginning
of the current proof of the eigenvector correlation) that we can rewrite S(1,2)

k (λ) as the trace of a
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p× p matrix:

S
(1,2)
k (λ) =

1

k
Tr

[((
Γ

(0)
k

)ᵀ
− λIk

)−1 (
Γ

(0)
k − λIk

)−1
(
WW ᵀ

k

)3
]
,

≥ ζ3
min

1

k
Tr

[((
Γ

(0)
k

)ᵀ
− λIk

)−1 (
Γ

(0)
k − λIk

)−1
]
,

≥ ζ3
min

1

k
Tr

[(
Γ

(0)
k − λIk

)−2
]
,

in which the last inequality comes from Tr [AAᵀ] ≥ Tr [A2] for any positive square matrix A.
Once again, taking the limit k →∞, and then the limit λ→ λmax, this yields

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) ≥

(
1− α1/2

)6
> 0. (302)

– Finally, we treat theα = 1 case. In this case, we can not use easy bounds as in the two previous cases
as the support of the Marchenko-Pastur distribution touches 0. However, recall that everything is
explicit here : ρ∆ is given by eq. (261), g−1

ν (s) is given by eq. (277) and Lemma G.2 gives all the
T (r) and T (r,q) in terms of g−1

ν and ρ∆. We can moreover use what we proved in Theorem G.2:

∂sg
−1
ν (sedge) =

1

s2
− α

∫
ρ∆(dt)

t2

(1 + tsedge)2
= 0.

This can be used to simplify the term ∂sT
(1)(s) and the term

∫
ρ∆(dt) t2

(1+ts)2 . Some heavy but
straightforward algebra yields from these relations that the following limit is �nite, and is given by:

lim
s→sedge

T (1,2)(s) ∂sg
−1
ν (s) = h(sedge),

with

h(s) =
h1(s)2 × h2(s)

4s6
,

h1(s) = −∆ +
√

∆2 + s2 − 2∆(2s+ 1)s+ s,

h2(s) = 3∆− 3
√

∆2 + s2 − 2∆(2s+ 1)s+ s(4s− 3),

It is then very simple algebra (solving quadratic equations and using ∆ > 1) to see that there is
no real negative solution to h(s) = 0, and that h(s) > 0 for all s ∈ (−∞, 0). This implies that
h(sedge) > 0, which ends the proof.

�

All together, this ends the proof of Theorem G.3.

G.3.3 Proof of Theorem G.4 and Corollary G.2

Proof of Theorem G.4

Proof. The proof is very similar to the proof of Theorem G.2, and we will only point out the main di�erences.
The proof of (i) is exactly the same as the proof of the point (i) of Theorem G.2, once one notices that for
∆ ≤ ∆pos(β), the support of ρβ,∆ is a subset of R−. We thus turn to the proof of (ii). Again, the spectrum of
Γuvp , given by eq. (265) is, up to 0 eigenvalues, the same as the spectrum of Γuvk , de�ned as follows:

Γuvk ≡
1

∆

1

k
W ᵀ

(
1

1 + ∆

yᵀy

p
− β Ip

)
W ∈ Rk×k. (303)
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We drop for simplicity the uv exponents in these matrices. Once again, we can apply the Silverstein equation
of Theorem G.5 and the same arguments that we used in the proof of Theorem G.2 completely transpose here.
One notices that, by the classical Marchenko-Pastur results [51], the spectral distribution of yᵀy/(p∆(1 +
∆))− (β/∆) Ip converges almost surely and in law to ρβ,∆, before repeating the exact arguments of the proof
of Theorem G.2. This ends the proof of Thm. G.4. �

Proof of Corollary G.2

Proof. Let α, β > 0. We note:

• By Theorem G.4, we know that if ∆ = ∆pos(β), then λmax ≤ 0.

• It is trivial by the form of Γp, see eq. (265), that as ∆→ +∞, λmax → 0.

Let zedge = − 1
sedge

+ α
∫
ρβ,∆(dt) t

1+sedget
. Then we know that λmax = zedge if α ≤ 1 and λmax =

max(0, zedge) if α > 1. In particular, by the remark above, zedge ≤ 0 for ∆ ≤ ∆pos(β) and zedge → 0+

as ∆→∞. It is easy to see that zedge is a continuous and derivable function of ∆, so that if we show the two
following facts for any ∆ ≥ ∆pos(β):

dzedge

d∆
= 0⇔ ∆ = ∆c(α, β) =

√
β(1 + α) (304)

zedge(∆c(α, β)) = 1, (305)

this would end the proof as zedge would necessarily have a unique local maximum, located in ∆c(α, β), in
which we have λmax = 1. We thus prove eq. (304) and eq. (305) in the following.

Proof of eq. (304): By the chain rule,

dzedge

d∆
=
∂zedge

∂∆
+
∂sedge

∂∆

∂zedge

∂sedge
,

=
∂zedge

∂∆
,

by the very de�nition of sedge, c.f. Theorem G.4, since zedge = g−1
ν (sedge). Given the explicit form of ρβ,∆, c.f.

eq. (268), one can compute zedge as a function of sedge. Its expression is cumbersome, but nevertheless explicit
(we write s instead of sedge to avoid too heavy expressions):

zedge =
−α∆(∆ + 1) + α

√
∆2(∆ + 1)2 + s2 (β2 − 2β∆(2∆ + 1) + ∆2)− 2∆(∆ + 1)s(β −∆)

2s2(βs−∆)

+
2(α− 1)βs2 + αs(β −∆) + 2∆s

2s2(βs−∆)
.

From this expression, it is simple analysis to verify that the only sedge ∈ (−z1(β,∆)−1, 0) that satis�es
∂zedge

∂∆ = 0 is sedge = −1, and only if ∆ >
√
β. Recall that sedge is de�ned as the solution to:

α

∫
ρβ,∆(dt)

(
sedget

1 + sedget

)2

= 1.

Inserting sedge = −1 into this equation and using the explicit form of ρβ,∆ of eq. (268) and that ∆ >
√
β, this

reduces to:

αβ

∆2 − β = 1,

which is equivalent to ∆ = ∆c(α, β) =
√
β(1 + α).
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Proof of eq. (305): Given the computation above, we know that for ∆ = ∆c(α, β) we have sedge = −1.
Given eq. (268), it is straightforward to compute:

zedge(∆c(α, β)) = −1 + α

∫
ρ∆c(α,β)(dt)

t

1− t ,

= 1.

�

G.4 A note on non-linear activation functions

We consider here a non-linear activation function, in the spiked Wigner model or the spiked Wishart model.
In these models, the spectral method with a non-linear activation function consists in taking the largest
eigenvalue and the corresponding eigenvector of the matrix Γuup (for the spiked Wigner model) or Γuvp (for the
spiked Wishart model). These matrices are given by:

Γuup =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(
Y√
p
− a1M

)
,

Γuvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(

1

a+ ∆
d

Y ᵀY

p
− dβIp

)

In these equations, a, b, c are coe�cients that depend on the non-linearity. In the linear case, c = 0 and
a = b = 1. Let us now assume for instance a non-linearity such that a, b 6= 0 and c = 0. Both Γuvp and Γuup
can be represented as

Γp =

[
(a− b)Ip + b

WW ᵀ

k

]
M, (306)

in which M is a symmetric (non necessarily positive or negative) matrix, independent of W . In order to
perform the same analysis we made in the case of a linear activation function, we need in particular to be
able to characterize the bulk of such matrices. Although this might be doable with more re�ned techniques,
this does not seem to come as a direct consequence of the analysis of Silverstein and Bai [51, 54]. Indeed, one
cannot write that the eigenvalues of Γp are identical, up to 0 eigenvalues, to the ones of a matrix of the type

1

k
W ᵀM ′W,

which are the types of matrices covered by the analysis of Bai and Silverstein. Moreover, it is not immediate
to use results of free probability [56] in this context. Indeed, Γp in eq. (306) is the product of two matrices
that are asymptotically free, but M is not positive, which prevents a priori the use of the classical results on
the S-transform of a product of two asymptotically free matrices. Writing Γp as the sum of (a − b)M and
b(WW ᵀ)M/k does not yield any obvious results either, as these two matrices are not asymptotically free. For
this reason, and although there might exist techniques to study the bulk of the matrix of eq. (306) and the
transition in its largest eigenvalue, this is left for future work.

H Phase diagrams of the Wishart model

Despite we illustrated the main part mostly with the Wigner model, in this section we present phase diagrams
for the Wishart model. We show in particular a heat map of MMSEv as a function of the noise to signal
ratio ∆/ρ2

v for linear, sign and relu activation functions in Fig. 7. The white dashed line marks the critical
threshold ∆c, given in the Wishart model by eq. (F.2), while the the dotted line shows the critical threshold
of reconstruction for PCA. Besides we show also the mean squared error as a function of the noise variance
for larger values of α in Fig. 8. The MMSEv has been obtained solving the state evolution equations eq. (165),
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that show as well an unique stable �xed point for the large range of values that we studied, initializing with
either informative or random conditions. Finally we illustrate the LAMP algorithm for the linear activation
in the Wishart model with α = β = 1, and compare it to classical PCA and AMP algorithms. We show the
comparison in Fig. 9 and we added their corresponding state evolutions.

Figure 7: Spiked Wishart model: MMSEv on the spike as a function of noise to signal ratio ∆/ρ2
v , and

generative prior (4) with compression ratio α for linear (left), sign (center), and relu (right) activations at β = 1.
Dashed white lines mark the phase transitions ∆c, matched by both the AMP and LAMP algorithms. Dotted
white line marks the phase transition of canonical PCA.
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Figure 8: Spiked Wishart model: MMSEv as a function of noise ∆ for a wide range of compression ratios
α = 0, 1, 10, 100, 1000, for linear (left), sign (center), and relu (right) activations, at β = 1.
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Figure 9: Spiked Wishart model: Comparison between PCA, LAMP and AMP for the linear activation at β = 1
and compression ratio α = 1. Lines correspond to the theoretical asymptotic performance of PCA (red line),
LAMP (green line) and AMP (blue line). Dots correspond to simulations of PCA (red squares), LAMP (green
crosses) and AMP (blue points) for k = 104, σ2 = 1.
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