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Abstract

We consider the problem (P) of exactly fitting an ellipsoid (centered at 0) to n standard Gaussian
random vectors in R, as n,d — oo with n/d?> — a > 0. This problem is conjectured to undergo a
sharp transition: with high probability, (P) has a solution if o < 1/4, while (P) has no solutions if
a > 1/4. So far, only a trivial bound « > 1/2 is known to imply the absence of solutions, while the
sharpest results on the positive side assume « < 7 (for n > 0 a small constant) to prove that (P)
is solvable. In this work we show a universality property for the minimal fitting error achievable
by ellipsoids: we show that, to leading order, it coincides with the minimal error in a so-called
“Gaussian equivalent” problem, for which the satisfiability transition can be rigorously analyzed.
Our main results follow from this finding, and they are twofold. On the positive side, we prove that
if @ < 1/4, there exists an ellipsoid fitting all the points up to a small error, and that the lengths
of its principal axes are bounded above and below. On the other hand, for a > 1/4, we show that
achieving small fitting error is not possible if the length of the ellipsoid’s shortest axis does not
approach 0 as d — oo (and in particular there does not exist any ellipsoid fit whose shortest axis
length is bounded away from 0 as d — o). To the best of our knowledge, our work is the first
rigorous result characterizing the expected phase transition in ellipsoid fitting at « = 1/4. In a
companion non-rigorous work, the second author and D. Kunisky give a general analysis of ellipsoid
fitting using the replica method of statistical physics, which inspired the present work.

1 Introduction and main results

1.1 The ellipsoid fitting conjecture

We consider the random ellipsoid fitting problem: given n random standard Gaussian vectors in
dimension d, when do they all lie on the boundary of a (centered) ellipsoid? Formally, we define an
ellipsoid fit using the set S; of d x d real symmetric matrices, as follows.

Definition 1.1 (Ellipsoid fit)

Let z1,--- ,z, € R We say that S € S; is an ellipsoid fit for (zp)= if it satisfies:

(1)

®) al, Sz, =d for all p € {1,--- ,n},
| s=o.

In Definition 1.1, the matrix S = 0 defines the ellipsoid ¥ = {z € R? : 27Sx = d}. Geometrically
speaking, the eigenvectors of S give the directions of the principal axes of the ellipsoid, while its

eigenvalues (\;)%_; are related to the lengths (r;)%_; of its principal (semi-)axes by r; = V/d\; 12,
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Scaling — In what follows, we will rather refer to the rescaled quantities 7} = r;/ V/d as the lengths of
the ellipsoid axes, effectively rescaling distances so that the sphere of radius vd (with S = I) has all
(semi-)axes of length 1. In particular, the lengths of the ellipsoid’s longest and shortest axis are then
respectively )\mm(S)*l/z and /\max(S)*l/Q.

We are interested in finding an ellipsoid fit to a set of random points x1, -,z Hig (0,I4). The
question of the existence of such an ellipsoid arose first in [1-3], which conjectured the following (see
e.g. Conjecture 2 in [3] or Conjecture 1.1 in [4]).

Conjecture 1.1 (The ellipsoid fitting conjecture)

Let n,d > 1, and x1,-- - , z, be drawn i.i.d. from N(0,1;). Let

p(n,d) == P[3S € Sy an ellipsoid fit for (z,)};_,]-

For any € > 0, the following holds:

n 1—¢
li — < —— = 1 d) =1 2
imsup 75 < — lim p(n,d) =1, (2)
n 1+¢
Lo : _o
hggggf 22 = dlggop(n, d) =0 (3)

Informally, Conjecture 1.1 predicts a sharp transition for the existence of an ellipsoid fit in the regime
n/d* — a > 0 exactly at a = 1/4.

1.2 Related works

Conjecture 1.1 was first stated and studied in the series of works [1-3], where it arose as being connected
to the decomposition of a (random) data matrix M as M = L + D, with L > 0 being low-rank, and
D a diagonal matrix. Connections to other problems throughout theoretical computer science have
since then been unveiled, such as certifying a lower bound on the discrepancy of a random matrix
using a canonical semidefinite relaxation [2, 4], overcomplete independent component analysis [5], or
Sum-of-Squares lower bound for the Sherrington-Kirkpatrick Hamiltonian [6]. We refer the reader to
the detailed expositions of [4, 7] on the connections of ellipsoid fitting to theoretical computer science

and machine learning.

Interestingly, Conjecture 1.1 arose both from numerical evidence! and the remark that d?/4 is known
to be the statistical dimension (or squared Gaussian width) of ST, the set of positive semidefinite
matrices [8, 9]. As such, if one replaces eq. (1) by

Tr[SG,) =d for all pe {1,--- ,n},

S0, (4)

(PGauss.) : {

in which (G)j,—; are (independent) standard Gaussian matrices, Conjecture 1.1 provably holds for
(PGauss.). The crucial property of (Pgauss.) behind this result is that the affine subspace {S € Sy :
(Tr[SGL] = d)j,— } is randomly oriented, uniformly in all directions. Although this motivation for the
conjecture was known, our work is (to the best of our knowledge) the first mathematically rigorous
approach to leverage the connection between (P) and (Pgauss.)-

Indeed, previous progress on Conjecture 1.1 has mostly focused on proving the existence of a fitting
ellipsoid using an ansatz solution: the first line of eq. (1) defines an affine subspace V' of symmetric
matrices of codimension n, so one can study a well-chosen S* € V| and argue that for small enough n
it satisfies S* > 0 with high probability as d — oo. Various such constructions have been used, and we

!Given (zu)p=1, €q. (1) is a convex problem (it is an example of a semidefinite program, or SDP), which is efficiently
solvable when solutions exist.
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Figure 1: A summary of the current state of the ellipsoid fitting conjecture. In red, we show regions
for which ellipsoid fitting is rigorously known to be unsatisfiable (UNSAT), and in orange regions
which are conjectured to be. Similarly, we show in green regions rigorously known to be satisfiable
(SAT), and in yellow regions which are conjectured to be so. Figure is taken from [7].

summarize in Fig. 1 the current rigorous progress on the ellipsoid fitting conjecture that arose from
these approaches. Presently, the best rigorous results on Conjecture 1.1 are due to the recent works
[11-13] and can be summarized as follows:

Theorem 1.2 ([11-13])

Let n,d > 1, and xy,--- ,z, Lig- N(0,1q). Let p(n,d) == P[3S € Sy an ellipsoid fit for (z,)]_;].

pn=1
There exists a (small) universal constant 7 > 0 such that:

limsupﬁ2 <n= lim p(n,d) =1,

Moreover, if n > d(d + 1)/2, then p(n,d) = 0.

Note that the bound n > d(d+1)/2 in Theorem 1.2 arises from a simple dimension counting argument,
as d(d+1)/2 is the dimension of the space of symmetric matrices: for such values of n, not only does
there not exist a solution to eq. (1), there does not exist any solution even without the constraint
S 0!

Statistical physics approaches: heuristic and rigorous — In this work, we tackle Conjecture 1.1
using techniques inspired by the statistical physics of disordered systems. While analytical methods
developed in this field were originally designed to study models known as spin glasses [14, 15], they
have seen in the past decades a great number of applications in high dimensional statistics, theoretical
computer science, and machine learning. Moreover, despite these techniques often being non-rigorous,
a growing line of mathematics literature has emerged establishing many of their predictions. Notably,
ellipsoid fitting is an example of a semidefinite program (SDP)? with random linear constraints, and
some such SDPs have been previously analyzed with tools of statistical physics [16, 17], although the
methods of these works fall short for analyzing the satisfiability transition in random ellipsoid fitting [7].
We refer the interested reader to the recent book [18] that compiles many (sometimes surprising)
applications of the theory of disordered systems, as well as mathematically rigorous approaches to it.

Notably, in the companion work to our manuscript [7], non-rigorous methods of statistical physics
are employed to provide a detailed picture of the satisfiability transition in random ellipsoid fitting.
Besides predicting a threshold for n ~ d?/4, this work gives analytical formulas for the typical shape
of ellipsoid fits in the satisfiable phase (i.e. the spectral density of S), generalizes these predictions for
non-Gaussian but rotationally-invariant vectors {z,}},_;, and also studies the performance of different
explicit solutions, notably ones used in the previous literature (see Fig. 1). We emphasize that the
present paper is, in contrast, mathematically rigorous.

Inspiration of our approach — Importantly, the non-rigorous analysis of [7] suggests that a quantity
known as the free entropy (or free energy) in statistical physics, is universal: its value is (with high
probability) the same for (P) and a variant of (Pgauss.), as d — oco. Such a universality property

%j.e. a combination of linear equations with a positivity constraint S > 0.



would have major consequences, as the free entropy carries deep information about the structure of
the space of solutions to the problem. Remarkably, similar phenomena have been studied numerically
and theoretically in statistical learning models, in which one can effectively replace an arbitrary (and
possibly complicated) data distribution by its “Gaussian equivalent”. Investigating this Gaussian
equivalence phenomenon is the object of a recent and very active line of work, with consequences on
the theory of empirical risk minimization and beyond [19-27]. Inspired by these works (in particular
[21]) we provide a rigorous proof of the universality conjectured in [7], using an interpolation argument.
We then leverage tools of the theory of random convex programs [8, 9], such as Gordon’s min-max
inequality [28], to sharply characterize the space of solutions to (Pgauss.). Using the aforementioned
universality allows to transfer many of these conclusions to the original problem (P), yielding our main
results.

1.3 Main results

We now state our main results, separating the conjecturally satisfiable (v = n/d? < 1/4) and unsat-
isfiable (o > 1/4) regimes.

Notation — f = 04(g) (respectively f = O4(g)) means that f/g — 0 as d — oo (respectively f/g
is bounded as d — 00). We also use g 2 f to denote f = O4(g). We denote Sy the set of d x d
real symmetric matrices, while S¥1(r) refers to the Euclidean sphere of radius r in R%. For S € Sy,
Sp(S) = {\:}L, is the set of eigenvalues of S. For v € [1,00], ||S|ls, = (3; |\i[")Y/” stands for the
Schatten-y norm. B, (S, ¢) is the Schatten-v ball of radius § centered in S, and B, (d) the ball centered
at S = 0. We denote by ||S|lop = ||S]|s,, the operator norm, and ||S|r = ||S||s, the Frobenius norm.
For a function ¢ : R — R, we write |[¢|1 to denote its Lipschitz constant. Finally, we use a generic
nomenclature C, ¢ > 0 to denote positive constants (not depending on the dimension), that may vary
from line to line. If necessary, we will make explicit the dependency of these constants on parameters of
the problems. Finally, we use in the text the abbreviation “w.h.p.”, short for “with high probability”,
to refer to events that have probability 1 — 04(1) as d — oc.

1.3.1 The satisfiable phase: o < 1/4

Our main result on the “positive” side of the ellipsoid fitting conjecture can be stated as follows.

Theorem 1.3 (Satisfiable regime)

Assume « = limsup(n/d?) < 1/4 and let € [1,4/3). There exist 0 < A\_ < A4, depending only on
«, such that the following holds. Let
,
< 6}.

Vi [a:LZ'xu B 1]

Iy(e) = {S € 8a:Sp(5) € [A-, A4] and izn:
=1

Then for any € > 0, if 21, ,2n & N(0,1), P[Tr(c) # 0] — 1 as n,d — oo.

Let us make a series of remarks on Theorem 1.3. First, one can alternatively formulate its conclusion

as:
1 n T
p-lim  min = Z =0, (5)

d—oo SP(S)C- Al n

Vi [:UL.CS;@“M B 1}

where p-lim denotes limit in probability. Secondly, while our current proof limits the choice of r €
[1,4/3), it might be possible to refine our arguments to reach the same result for any r € [1,2], see
our discussion in Section 1.4. Moreover, note that by standard concentration arguments, we expect
Gaussian points to be close to the sphere S*(v/d), i.e. the ellipsoid defined by S = I;. A detailed



analysis yields, for any r € [1,2]:
1 '
p-lim — Z

d—oo T p=1

: = E[|Z' >0, (6)

/i [Hmuu? . 1]

where Z ~ N(0,2). This follows from classical concentration arguments, see Appendix B for a detailed
derivation. Theorem 1.3 therefore shows that there exists an ellipsoid whose “fitting error” improves
by an arbitrary factor over the one achieved by the unit sphere, as long as @ < 1/4. On the other
hand, we will see that this is not possible for ae > 1/4, strongly suggesting that our results capture the
phenomenon responsible for the conjectured satisfiability transition of ellipsoid fitting. In Section 1.4
we will consider possible future directions that could allow to improve our results to the existence of
fitting ellipsoids with ezactly zero error, i.e. the conjecture of eq. (2).

Finally, we notice that Theorem 1.3 is coherent with the non-rigorous analysis of [7], which predicts
that for any o < 1/4 typical solutions to ellipsoid fitting have spectral density contained in an interval
of the type [A_, A;] depending only on a.

1.3.2 The unsatisfiable phase: o > 1/4

Our main result towards proving the non-existence of fitting ellipsoids for aw > 1/4 is the following.

Theorem 1.4 (Unsatisfiable regime)

Assume « = liminf(n/d?) > 1/4. Let ¢ : R, — R, be a non-decreasing differentiable function,
with ¢(0) = 0, and such that ¢ has a unique global minimum in 0. For any € > 0 and M > 0 we let:

TS
B ) <o

There exists € = e(a, ¢) > 0 such that for all M > 0, if z1,--- , 2, FLd- N(0,1y),

I(e,M) = {S €S8y : Sp(S) C [0, M] and % Xn:gb (\/g
pn=1

lim P[T(e, M) # 0] = 0.

As stated below, a direct corollary of Theorem 1.4 is that, when « > 1/4, ellipsoid fitting admits
(w.h.p.) no solutions with spectrum bounded above as d — oo (i.e. an ellipsoid whose smallest axis
has length bounded away from zero).

Corollary 1.5 (Non-existence of fitting ellipsoids with bounded spectrum)

Let a > 1/4. Let n,d — oo with n/d?> — a > 0, and x1,--- , 2, i N(0,1;). We denote T" the

set of ellipsoid fits for (z,)};;—;. Then, for all ¢ > 0,

lim PES €T : ||S]lop <] =0.
d—ro0

In particular, our results imply that the negative side of the ellipsoid fitting conjecture, i.e. eq. (3),
would follow from either:

H.1 a proof that (for > 1/4 and with high probability) the set of ellipsoid fits is bounded in spectral
norm as d — 090,

or

H.2 a proof that, if S € T is an ellipsoid fit, there exists a (possibly different) ellipsoid fit S e T that
has bounded spectral norm as d — oc.



As a consequence of Corollary 1.5, proving either H.1 or H.2 would yield the negative side of the
ellipsoid fitting conjecture. Notice further that Theorem 1.4 implies the non-existence of bounded
ellipsoid fits even allowing a small “fitting error”, so that it would be sufficient to prove H.2 considering
an ellipsoid S that fits (zu)}i=1 only up to a small enough error € > 0 (in the sense of Theorem 1.4).

1.4 Discussion and consequences

The combination of our two main results (Theorem 1.3 and Theorem 1.4) provides strong evidence
for the original ellipsoid fitting conjecture (Conjecture 1.1). Our conclusions are attained through
the study of a “Gaussian equivalent” problem, which partly motivated Conjecture 1.1. Informally, we
show that an approximate version of the ellipsoid fitting (i.e. by allowing infinitesimally small error)
undergoes a sharp satisfiability transition at o = n/d?> = 1/4. Moreover, we also show in our proof
that in the Gaussian equivalent problem, the satisfiability transition for this “approximate” version
corresponds to the one of the exact fitting problem (i.e. not allowing for any non-zero error). This
strongly suggests that our method is indeed capturing the phenomenon responsible for the ellipsoid
fitting transition.

Our results are an example of a universality phenomenon in high-dimensional stochastic geometry:
we show that the statistical dimension (or the square of the Gaussian width) of the set of positive
semidefinite matrices determines the satisfiability of — a modified version of — random ellipsoid fitting,
even though the affine subset {S € Sy : (2],Szy, = d)j;_1} is not randomly oriented uniformly in all
directions. In general, understanding the conditions under which universality holds in such problems
of high-dimensional random geometry is an important open question. We mention [29], which proves
universality between a model in which the random subspace is given by the kernel of a random i.i.d.
Gaussian matrix, and a second model where the subspace is the kernel of a matrix with independent
elements (not necessarily Gaussian).

1.4.1 Towards Conjecture 1.1

Unfortunately, while our main theorems characterize a satisfiability transition for ellipsoid fitting at the
expected threshold, they do not formally imply Conjecture 1.1. We discuss briefly some improvements
of our results that could potentially allow to bridge this gap.

On the “positive” side of the conjecture (i.e. the regime o = n/d?> < 1/4), Theorem 1.3 shows the
existence of bounded ellipsoids that can achieve arbitrarily small error € (where the error is taken to
0 after d — o0). On the other hand, a proof of eq. (2) would require to invert these limits, and take
€ — 0 before d — oo. In this regard, an important strengthening of Theorem 1.3 would be to obtain
non-asymptotic bounds on P[I',(g) = (], that depend on e.

Another potential for improvement stems from geometrical considerations: denoting V := {S € Sy :
xlSx, = dfor all p € [n]}, one may use Theorem 1.3 to bound the distance of the set I';(¢) to
the affine subspace V. Since Apnin(S) > A_(«) for any S € T',(g), it would suffice to show that
dop(I'r(€), V) < A_(a) to deduce eq. (2), the first part of Conjecture 1.1. We perform in Appendix C
a naive analysis of necessary conditions for this conclusion to follow from Theorem 1.3. Unfortunately,
we find that (among other considerations) these conditions would require a significantly stronger form
of Theorem 1.3, by proving the conclusion for larger values of r € [1,2] and/or a better scaling with
d of the minimal error achievable (i.e. proving the conclusion of Theorem 1.3 for I';(g4) with ¢4 — 0
as d — 00).

Moreover, let us emphasize that a critical difficulty in improving our proof techniques would be
to quantitatively sharpen the universality arguments we carry out, and in particular to strengthen
Proposition 2.1, which shows the universality of the minimal fitting error, or “ground state” energy,
for ellipsoid fitting and a simpler “Gaussian equivalent” problem. While the present form of Propo-
sition 2.1 shows universality of this error up to a o4(1) difference, this estimate would likely have to



be improved in order to carry out the aforementioned approaches. This part of our proof is greatly
inspired by a recent literature on similar universality phenomena [19-27], and we are not aware of
the existence of such universality results at a finer scale (or even predictions/conjectures of conditions
under which they should hold).

Finally, on the “negative” side of the conjecture (i.e. for & > 1/4), as emphasized in Corollary 1.5 and
the discussion thereafter, Theorem 1.4 reduces the second part of Conjecture 1.1 (eq. (3)) to proving
either H.1 or H.2. If such a proof were to become available, our results would imply the regime o > 1/4
of Conjecture 1.1.

1.4.2 Further directions

Our proof method that leverages universality of the minimal fitting error is quite versatile, and we
end our discussion by mentioning a few further directions and generalized results that stem from our
analysis.

The dual program — First, as a semidefinite program, ellipsoid fitting admits a dual formulation,
as written e.g. in [11]. While the limitations of Theorems 1.3 and 1.4, discussed above, prevent us
from directly drawing conclusions on the dual, it might be possible to directly apply to it a similar
universality approach. Such an application might allow to overcome some current limitations of our
results, and we leave this investigation for future work.

Beyond Gaussian vectors — Secondly, while we perform our analysis for z1,--- ,z, ~ N(0,1y),
it is clear from our proof that our results (both Theorems 1.3 and 1.4) hold for any i.i.d. (x,)};_
such that the matrices W), == (zyz], — Ia)/ Vd satisfy a uniform pointwise normality (or uniform

one-dimensional CLT) assumption, as defined in Definition 4.1, and proven for the case of Gaussian
vectors in Lemma 4.8. An interesting example of a non-Gaussian distribution is given by the case of
rotationally-invariant vectors with fluctuating norm, of the form

d
Ty = \/Tuwy,

with 7, and w,, independent, and w,, ~ Unif(S¥~1(v/d)). Letting 7 := limy_,[v/dVar(r1)], [7] conjec-
tures that the ellipsoid fitting transition point for this model is located at n/d?> = a.(r) € (0,1/2),
and gives an exact expression of a.(7) (see Fig. 5 of [7]), showing that ellipsoid fitting becomes harder
as the fluctuations of the norm increase. While pointwise normality may not hold in this setting, it is
conceivable that our proof techniques can be adapted to handle these distributions, by following the
calculations of 7], to obtain results akin to Theorems 1.3 and 1.4. More generally, while it is clear that
some distributions can not satisfy uniform pointwise normality (see the discussion below Lemma 4.8
for examples), a more thorough investigation of the class of distributions of x,’s for which pointwise
normality holds (and thus our proof applies) is, in our opinion, an interesting direction to explore.

A minimal nuclear norm estimator — Let us conclude by mentioning a different approach to a
possible solution of the first part of Conjecture 1.1. It is conjectured in [7] (through non-rigorous
methods) that the minimal nuclear norm solution, i.e.

d
SNy = argmin ||S]|s, = argmin Z |Xi(S)],
SeSy €04 i=1
{xLSzM:d}Zzl {xLS;tu:d}Zzl

satisfies Sy = 0 with high probability for any a < 1/4. Analyzing Sxn, whether through the
techniques of the present paper or with different methods, is another promising approach to prove
eq. (2), the “positive” part of Conjecture 1.1.



1.5 Structure of the paper

In Section 2 we present the proof of our main results. The proof of some intermediate results is
postponed to later sections: in Section 3 we study in detail the “Gaussian equivalent” problem to
random ellipsoid fitting, and in Section 4 we prove a crucial universality property for the minimal
fitting error between ellipsoid fitting and its “Gaussian equivalent”.

2 Proof of the main results

We prove here Theorems 1.3 and 1.4. The core idea of our proof can be sketched as follows:

(1) Using rigorous methods inspired by statistical physics, we prove that a quantity known as the
asymptotic free entropy is universal for the ellipsoid fitting problem of eq. (1) and a variant of
its Gaussian counterpart of eq. (4), for any value of & = n/d?. The main technique we use is
an interpolation method. In a suitable limit (known as the low-temperature limit in statistical
physics), this implies the universality of the minimal “fitting error”.

(11) We study the Gaussian equivalent problem using methods of random convex geometry [8, 9],
leveraging in particular Gordon’s min-max inequality [28]. When a < 1/4 we show that not only
a zero error is achievable, but that one can achieve it by a matrix whose spectrum is contained in
an interval of the type [A_, \;], i.e. the axis of the corresponding ellipsoid have lengths bounded
above and below. On the other hand, for & > 1/4, we prove that not only is the Gaussian
equivalent problem not satisfiable, but one can lower bound the minimal fitting error as long as
the set of candidate matrices is contained in an operator norm ball By, (M) (for any constant
M > 0).

(7i7) We prove that the conclusions of (i7) transfer to the original ellipsoid fitting problem, using the
universality shown in (7).

Our proof of (i) leverages an important line of work on free entropy universality [20-22], and a part
of it closely follows the proof of [21], which we will point out in relevant places. Nevertheless, as our
setting does not satisfy all the hypotheses of this work, and for completeness of our exposition, we
chose to write the whole proof in a self-contained manner.

2.1 Reduction of the problem and Gaussian equivalent

For any 0 < A_ < A4, any function ¢ : R — R and any € > 0 we define the set
1 & z] Sz,
D(6.AAs6) = 15 €802 5p(8) € A As] and -6 <\/& [d _ 1]) <L
pn=1

If one thinks of ¢ as an error (or loss) function, then I'(¢, A_, A1, €) represents the set of matrices with
spectrum in [A_, Ay] that solve (P) up to an approximation error . Notice that for any S € S;:

Vd [xzix“ - 1} — YW, 5] — d_}zm, (8)

with W), = (z 2], — 1a)/ Vd. Moreover, W,, has the same first two moments as a Gaussian matrix.

Formally, we define:
Definition 2.1 (Matrixz ensembles)

Let d > 1. We say that a random symmetric W € S, is generated according to:
o W ~ GOE(d) if Wi; "~ (0, [1 + 655)/d) for i < j.

o W ~ Ellipse(d) if W £ (227 — I,)/Vd for z ~ N(0,1,).




Onme checks easily that Egipse(a)[Wij W] = Eqora)[WijWk] for any i < j and k < [. This remark
and eq. (8) lead to consider the following modified problem, with W), := (z,z], — I4)/vd and b € R:

pn=1

Tp(d, A, Ay, e) = {SeSd Sp(S) C [A_, (] and—Z(b (Tr[W,S] —b) < } (9)

In the rest of the proof we will focus on studying the set I'y of eq. (9) with* b € R, for both Wy ~
Ellipse(d) and W, ~ GOE(d) (which we call the “Gaussian equivalent” problem). At the end of our
proof, we will transfer our conclusions on I'y back to the original solution set I' of eq. (7).

2.2 Universality of the minimal error

We can now state the main result concerning on the universality of the minimal error (or “ground
state energy” in statistical physics jargon). This result is inspired by a rich line of work on universality
of empirical risk minimization [20-22, 24].

Proposition 2.1 (Ground state universality)

Let ¢ : R — R4 and ¢ : R — R two bounded differentiable functions with bounded derivatives,
and assume furthermore ||¢'[|; < co. Let n,d > 1 and n,d — oo with ayd? < n < agd? for some
0 < a; < ag, and B C Sy a closed set such that B C B, (Cp) for some Cy > 0 (not depending on
d). For X1, ---,X,, € S; we define the ground state energy:

GSa({X,}) = dli (Tr[X,,S]) (10)

Then we have:

PIGSa({G})]| = 0. (11)

lim sid.

d—o0 {Wu} < Ellips (d)w[GSd({Wu})} —E

11d

(G} <" GOE(d)

Therefore, for any p > 0 and § > 0:
lim PIGS.((W,}) = p+ 6] < lim PGS.({G,}) > ol
d—o0 d—o0 (12)

lim P[GSq({W,}) < p— 3] < lim PIGS4({G,}) < pl.

A word on the proof — The main proof technique we use is Gaussian interpolation: namely we
define an interpolating U, (t) such that U,(0) = G, and U,(1) = W,,, and show that GSz({U,(t)}) is
constant (up to negligible terms) along the interpolation path. Note that while Proposition 2.1 is very
close to the results of [21], there is a technical difference with the setup of this work: for any fixed
S, the random variable Tr[WS] for W ~ Ellipse(d) is not sub-Gaussian but only sub-exponential. As
a consequence, we can not achieve a good control of the Lipschitz constant of the error (or “energy”
function) of eq. (10) with respect to the Frobenius norm of S, as is required in [21]. We bypass
this difficulty by controlling instead the Lipschitz constant with respect to the operator norm (see
Lemma 4.1), using important empirical process bounds over the operator norm ball (see Lemma 4.3):
this leads to the limitation B C B,,(Cp). Interestingly, improving these bounds would also allow to
relax the limitation r € [1,4/3) in Theorem 1.3, as we discuss after. Having dealt with this difficulty,
the rest of the interpolation argument is very similar to [21]. We show Proposition 2.1 in Section 4,
deferring some arguments to Appendix D.

3GOE(d) stands for Gaussian Orthogonal Ensemble.
4Furthermore, by rescaling S (and up to a change in A_, Ay, ¢) we will reduce to the case b € {—1,0,1}.



2.3 The Gaussian equivalent problem

We now study the Gaussian equivalent problem. We will later transfer our analysis to the original
ellipsoid fitting case using Proposition 2.1. Our results are stated separately for the satisfiable and
unsatisfiable regimes.

Proposition 2.2 (Regular solutions in the satisfiable regime)

Let n,d — oo with n/d? — a < 1/4, and let {G,}7_; "*" GOE(d). Let

Vi={S€S8;:Yuen], Tr[G,S] = 1}.
There exist 0 < A_ < A4 (depending only on «) such that:

lim P(3S € V s.t. Sp(S) € A=, Ay]} = L.
—00

Proposition 2.2 shows that for o < 1/4, there exist with high probability ellipsoids satisfying the
“Gaussian equivalent” to random ellipsoid fitting, and that such solutions might also be assumed to
have their axes’ lengths bounded above and below as d — oco. In the unsatisfiable regime o > 1/4, we
show on the other hand that with high probability there are no solutions to the Gaussian equivalent
problem, even allowing for some error when fitting the random points.

Proposition 2.3 (No approrimate solution in the unsatisfiable regime)

Let n,d — oo with n/d> — a > 1/4, and let {G,}}_, Lig GOE(d). Let b € R and denote
C,Sb)(S) = |Tr(G,S) — b|. Define the affine subspace:

Vi :={S €8s :Yuen], cP(S) =0}
(¢) Assume that b # 0. Then there exist ¢ = ¢(a,b) > 0 and n = n(«,b) € (0,1) such that
Jim P{YS = 0 #{u € [n] - CP(S) > ct >nn} = 1.
— 00
(1) Assume that b = 0. Then there exist ¢ = ¢(a) > 0 and n = n(a) € (0,1) such that, with
probability 1 — 04(1), the following holds for all 7 > 0:

sup ISIlF < Vd.
S0

#{p€n]: C,SO (S)>cr}<nn

Propositions 2.2 and 2.3 are proven in Section 3. Our proof follows a standard approach in random
geometry problems involving Gaussian distributions, by leveraging Gordon’s min-max inequality [28]
and its sharpness in convex settings [30, 31]. It strengthens for our setting the results obtained
for general random convex programs in [8, 9] (using either Gordon’s inequality or tools of integral
geometry).

2.4 The satisfiable regime: proof of Theorem 1.3

Propositions 2.1 and 2.2 have the following consequence, taking B := {S : A_I; = S < A\;1;}, with
(A_, A\4) given by Proposition 2.2.
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Corollary 2.4

Let n,d — oo with n/d> — o < 1/4, and Wy, -, W, "< Ellipse(d). There exist A_, Ay > 0
depending only on « such that the following holds. If we have ¢ : R — R with ||¢|co, [|¢']|cc < 00
and such that ¢(0) = 0, then

-lim min W S]—1 0.
e Sp(SICI Ay] 7 Z (T ) =

The proof of Corollary 2.4 is immediate by combining Propositions 2.1 and 2.2. We can furthermore
relax some of the assumptions on ¢ in Corollary 2.4, as we now show.

Lemma 2.5

Corollary 2.4 holds for ¢(x) = |z|", for any 1 <r < 4/3.

Note that the limitation r < 4/3 is a consequence of a limitation on the control of an empirical process
that is done in Lemma 4.3 (see also the discussion in Section 4.1).

Proof of Lemma 2.5 Let us first assume that r > 1, so that ¢(z) = |z|" is continuously differentiable
inz=0. Let ¢ >0 and A > 0, and let us denote ug : Ry — [0,1] a C* function such that us(z) =1
if v < Aanduy(x) =0ifx > A+ 1. We denote ¢p4(2) = |z|"ua(]z]). Then ¢4 is bounded, with
bounded derivative. Moreover, we have for any x € R:

2" = ga(@) + []"(1 = uwal|z])) < pa(@) + [ T{]x| > A}

By Corollary 2.4, under an event of probability 1 —o04(1) we can fix S with Sp(S) € [A_, A;] and such
that 3771 ¢a(Tr[W,S8]—1) < ne/2. We pick v > 1 such that yr < 4/3, and condition on the 1—o04(1)
probability event, thanks to Lemma 4.3:

max »  |[Te(W,R)"" < Cn (13)
1Bllop=1 =3

We have, with probability 1 — og4(1):

1 n
meW S| —1|" < g EZ ITe[W,S] — 1" 1{|Tx[W,.S] — 1| > A},

pn=1 u=1

(a) r(1=7)

%%-FA Z|TrWS]—1|W

pn=1
b) ¢ Ar(d—oyr—1 ,
<+ C(y,m,0)A707),

We used in (a) the following inequality, for a positive random variable X, ¢ > 0, and any v > 1:
E[X1{X >t}] =tE ﬁ(n {): > 1” < tIVE[X7).
In (b) we used eq. (13) and |a + b|" < 2"~ 1(|a|” + |b]"). We pick
A ( e )1/[7"(1—“/)} '
2C(y, 7, )
We have then, with probability 1 — o4(1):

Tr| 1" <
sl 25 D11 2

11



which ends the proof.

We now tackle the case » = 1. For n > 0, we let v, : Ry — [0,1] a C* function such that v,(z) = 1
for x > n and v, (x) = 0 for x < n/2. A transposition of the argument above shows that Corollary 2.4
applies to ¢y(x) = |z|v,(|z]), which is continuously differentiable everywhere. Notice that for any
z € R:

] = ¢y () + [2[(1 = vy(|2]) < dy() + 2| I{|z] <n} < ¢y(2) + 1.
So, for any S € S;:
CY WS~ 1< Y oy(THW,S] — 1) + (14)
p=1 p=1

Fixing now any ¢ > 0, and letting n = €/2, we get from Corollary 2.4 applied to ¢, that with
probability 1 — 04(1):

[N Q)

1 n
i - Tr[W,S] —1) <
Sp(S)Igfx{l,A+]nl;¢"( r[W,S]—1) <

Combining this result with eq. (14), we get that with probability 1 — o4(1):

1 n
min — Te|W,S| — 1| <e,
Sp(S)C[A— ] ng' Wus] =11 <

which ends the proof. O

Proof of Theorem 1.3 — Notice that Lemma 2.5 precisely shows that, for ¢(z) = |z|” and € > 0,
the set I'1 of eq. (9) is non-empty with high probability. We now use the following remark (recall the
definition of I" in eq. (7)):

Lemma 2.6

For any (x,);i_ and A—, Ay,e > 0,7 > 1,if S € T'1(|-|", A-, Ay, €), then Ser(- ", X, N €'), with

ds , A , Ap , e

L S D - SR —
Vit TS T A 4d 2 T N a2 S T d 2y

Since X, < Ay /A, &’ <e/(A2)", and X > A_/(2)A4) for d large enough, combining Lemmas 2.5 and
2.6 imply that for any r € [1,4/3) and € > 0:

P[F(‘ : |Taa7 b,S) 7é 0] —d—so00 17

for some 0 < a < b depending only on «, which ends the proof of Theorem 1.3. [
Proof of Lemma 2.6 Let S € I'(]-]",A_, Ay, ¢). Defining S = dS/(v/d+Tr[S]), we have by eq. (8):

TSz " d "
Va2t gl o () s, — 1),
‘ 7 Va+ Te[S] [Te[SW,,] — 1]
1 T
Smlﬁ[SW#J—ll :
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2.5 The unsatisfiable regime: proof of Theorem 1.4

Propositions 2.1 and 2.3 have the following corollary.
Corollary 2.7

Let n,d — oo with n/d?> — a > 1/4, and Wy,--- , W, Lig- Ellipse(d). Let ¢ : Ry — Ry be a
non-decreasing differentiable function, with ¢(0) = 0, and such that ¢ has a unique global minimum
in 0. Then:

(i) Let b € {—1,1}. There exists € = e(c, ¢) > 0 such that for all M > 0:

lim [P (|Te[W,S] —b =1.
ELE | B 2 AITYS] =0 2

(1) Let b= 0. For all 7 > 0, there exists ¢ = &(7, «, ¢) > 0 such that for all M > 0:

dlggo]? So(d I?CH[%)M §¢ |Tr[W,S]]) > e| =1.
IS[lF>7vd

Proof of Corollary 2.7 Note that we can assume that ¢ is bounded with bounded derivative and
¢'(0) = 0: if not it is always possible to lower bound ¢ by such a function. = — ¢(|z|) is then a
bounded function on R with bounded derivative. We start with (7). By Proposition 2.3, there exist
CasMa > 0 such that

dli_)rrololP’{VS =0 : #{peln : |Tr(G,S) — bl <ca} < (1 —nq)n} =1.
Conditioning on this event, we have
N CE EUIESIRIS!
20 =
Using Proposition 2.1 with B = {S : Sp(S) C [0, M]} we reach that, for all M > 0, with probability

1—04(1):

— b)) >
(Sl)%f[o M n Z ATHWS] = b) nad>(ca)

We now turn to (i7). Again by Proposmon 2.3, we fix ¢4, 7o > 0 such that for all 7 > 0:

lim P sup IS|p < ZVdy =1.
S0 2

d—00 -
#{peln]: [Tr(GuS)|>car}<nan

Stated differently:
lim P{VS = 0: |||l < g\/& or #{p € n] : |Te(G,S)| > cat} > nan} = 1.
—r 00

Conditioning on this event and since ¢ is non-decreasing on R :

inf 3" G TH[G,S])) = ngad(car).

IS|p>rvadh =t
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Using Proposition 2.1 with B = {S : 0 < S < MI; and ||S||r > 7V/d} we reach that, for all 7, M,
with probability 1 — og4(1):

1
f T >*a (e )
Sp(sl)ré[OM]n;qé T[W,S) 2 Snad(car)

ISllp>7vd

which ends the proof. U

We now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4 — Let M > 0. As in the proof of Corollary 2.7, we can assume without loss
of generality that ¢ has bounded derivative: if it does not, it is always possible to lower bound ¢ by
such a function.

Let § € (0,1), and S with Sp(S) C [0, M] and |Tr[S] — d| > §v/d. Notice that, defining S’ =
VdS/|d — Tx[S]| = 0, we have with b := sign(d — Tr[S]) € {£1}:

.TULSZL’u —d

Te[S'W,] — b= 2”2
r[S'W,] —b TS —d

and so since ¢ is non-decreasing;:

TSz

o (Va7 ~ 1)) = (01T (W,S) ~ b).

Moreover, Sp(S’) C [0, M/4]. Since this argument is valid for any S with Sp(S) C [0, M] we get:

L Z o(va

|Tx[S]—d|>6+/d

x qu
— 1) > mi Tr| —
)2 i 25 AT 51 =00

Using Corollary 2.7 applied to  — ¢(dx) there exists therefore ¢ = c¢(a,d,¢) > 0 such that with
probability 1 — o4(1):

x Sxﬂ

Gl Z ¢ ( 1D > c(a,d,9). (15)

|Tr[S]—d|>6vd

Let now S € Sy with Sp(S) C [0, M] and |Tr[S] — d| < 6v/d. Then:

Te[W,S] = vd (xLS““ - 1) L 4=Tis]

d Vd
[-|<é
so that
Z<f>< xS:Up 1D> Z¢|T (WuSI) = ll¢'llocd.  (16)
Sp(S chlr[bM n 4 a Sp(H)IC%M] " r )
TS di<5va |Tr[S]—d|<6v/d

Notice that since § < 1, for large enough d we have |Tr[S] — d| < 6v/d = Tr[S] > d/2. If moreover
S > 0, by Cauchy-Schwarz we have ||S||r > Tr[S]/v/d > v/d/2. This implies:

Sp(3)elb ﬁZWTr > oo OM*ZWTYWSJI) (17)

melS]—di<svd " Siesvin

14



Using Corollary 2.7 we can obtain € = e(«, ¢) > 0 such that, with probability 1 — 04(1), we have:

72d> Te[W,.S])) = (18)

Sp(S )C[o M)

HSHFZ\fﬂ

Combining eq. (15) with all three equations (16),(17),(18), we get that for any ¢ > 0, with probability
1-— Od(1>:

Sp(S) C[O M n Z ¢ ( { a 1}) > minc(a, §, ), e(, ) — 6[|¢]|oc)-

Taking d := min (1, e(a, ¢)/(2]|¢'||)) > 0 ends the proof. O

3 The Gaussian equivalent problem

3.1 The satisfiable regime: proof of Proposition 2.2
3.1.1 Gordon’s min-max theorem

We will use the Gaussian min-max theorem of Gordon [28], as stated in [30, 31]:

Proposition 3.1 (Gaussian min-max theorem [28, 30, 31])

Let n,p > 1, W € R™P an i.i.d. standard normal matrix, and g € R, h € RP two independent
vectors with i.i.d. A/(0,1) coordinates. Let S,,S, be two compact subsets respectively of R? and
R™ and let ¢ : S, x S, — R a continuous function. We define the two optimization problems:

C(W) = minmax{u"Wuv+ ¢(v,u)},

vESy UES,
Clg,h) = min mage {[ull2hTo + [[o]l2g7 + (v, w)}
VESy UES,,
Then:

(1) For all t € R, one has
P[C(W) < 1] < 2P[C(g, h) < 1].

(1) Assume that S,,S, are convex and that 1) is convex-concave on S, x S,. Then for all t € R:

P[C(W) > #] < 2P[C(g, h) > 1.

3.1.2 Gordon’s min-max inequality and random geometry

We first introduce the notion of Gaussian width of a convex cone.
Definition 3.1 (Gaussian width)

For p > 1, and a closed convex cone K C RP, we define its Gaussian width as

w(K)=E max (g,z),

for g ~ N(0,1,).

We show now a general result leveraging Gordon’s min-max inequality to prove the existence of a
solution to a general type of random geometry problem. Such applications are classical, and we show
here that one can assume furthermore that the solution is bounded.
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Lemma 3.2

Let n,p > 1, and (g,);— N N(0,I,). We define V = {x € RP : Vu € [n], (gu,z) = 1}. Let
K C RP be a closed convex cone, with Gaussian width w(K). Assume that there exists ¢ € (0,1)
such that n < (1 — ¢) w(K)? as n — oo. Then:

2
lim IP’{EI:U EKNV st |l < ﬁ} _1 (19)

n—oo

Proof of Lemma 3.2 Let us denote, for A > 0:
P, (A)=P{3z € KNV st. |z|2 < A},

and define G € R"*P as the Gaussian matrix with g, as its u-th row. By elementary compactness and
duality arguments, we have:

1-P,(A) = IP’[ Hélg |Gz — 1,2 > O} = IP’[ Hél[l(l ||I>\I|l|a)<(1{—)\T1n + \TGz} > 0},
lellz<A lelasa

for G € R"*P with i.i.d. N(0,1) elements. By dominated convergence we have then

_ — i AT T
1—P,(A) %g%]?[ H %1%1%14 H{\Iﬁ?}él{ AT, + ATGzx} > n}. (20)
z|]2<

Note that in eq. (20), both z and X\ belong to a convex and compact set (since K is closed and convex),

and ¥ (x,\) = —AT1,, is clearly convex-concave. We can thus apply item (iz) of Proposition 3.1:
_ ; i _\T T T
1— Py(A) <2 %%P[%%Agnggl{ AT, + [ Mlag™e + ] sATh} > n], (21)
Tl2>

with g ~ N(0,1,) and h ~ N(0,1,,). We then control the right-hand-side of the last equation, using
that K is a cone:

i —AT1 Al2gT ATh} = mi h—1 T
min | max {=ATln + [Alag™e + Jlzfl2AThy = min max{0, |[[zllsh = 1nll2 + g7},
[[zll2<A llz]l2<A

= max {0, min [[[l]2h — 1a]z + 7] |,
lell2<A

_ , B : T
= max {O,UIGI[%IIIL‘] [lvh — 1,2 + v min_ g ] } (22)

)

Note that ¢ — max,cgnsp—1[¢gTz] is 1-Lipschitz, and in particular concentrates on its average, which
by definition is the Gaussian width w(K). We use the classical result (see e.g. Theorem 3.25 of [32]):

Theorem 3.3
Let X1, , X, <" A(0,1). Let f: R® — R a Lipschitz function. Then for all ¢ > 0:

2
Plf( X1, -, Xp) —Ef(Xy,-, Xp) > 1] gexp{ - m}

Therefore, for § € (0,w(K)), we have®:

: T _ —62/2
IP’{ xe}r{rlr%lp_l[g z] > —w(K) + 5} <e . (23)

5G4 4 i T4 T
Since g = —g, min, ¢ grgp—1[¢7x] = —max,cgrgr—1[97 2]
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From egs. (21),(22) and (23) we have:

1= Py(4) < 2 lim P| max {0, min, [Ilvh = Lallz + v(~w(K) + 8)] } > n| + 2772 (24)
ve

n—0

)

Recall that we assumed n < (1 — ¢)w(K)? and n — oo. Therefore, for n > ng(e,d) large enough we

can assume n < (1 —¢/2) [w(K) — 6]?. Let v* = v*(¢) = \/(4 — ¢) /¢ such that:
€ * *
(1= ) Exanon[@X = 1% = (v,
Thus, for A = v*(e), we have from eq. (24):

1— P,(v*) < 27172"%?’[11151)( {0, [l0"h = Lall2 + v* (—w(K) +8)] } > 0] + 2772 (25)

By the law of large numbers we have (£> denotes convergence in probability):

1 v
—||[v*h — 1,]]2 B /E[(v* X — 1)2 .
Vn tn \/1—7 J1-5

*

In particular, with probability 1 — 0,(1), we have

[v*h — 1y l2 + 0" (—w(K) 4+ 6) < v*v/n l(l — 5) R (1 - 6) _1/2] <0.

Therefore, we have by eq. (25):
1—P,(v*) <op(l)+ 2e9°/2,

Taking the limit n — oo and then § — oo finishes the proof® (notice that v* < 2/4/2). O

3.1.3 The cone of positive matrices with bounded condition number

We study here the Gaussian width of the convex cone of positive semidefinite matrices with bounded
condition number. We start with a classical result on the Gaussian width of S} [8, 9], we refer the
reader to Proposition 10.2 of [9] for a proof.

Proposition 3.4 (Gaussian width of Sj)

The Gaussian width of S:{ satisfies:

d(d+1)

d(d+1)
. acry,

—1<w(8y) < 1

In particular, notice that w(S;]) ~ d/2 as d — oo. We generalize this result by asking that the
matrices have bounded condition number.
Lemma 3.5 (Gaussian width of PSD matrices with bounded condition number)

For any x > 1, define K, :== {S € Sj : Amax(S) < KAmin(S)}. Then K, is a closed convex cone,
and its Gaussian width satisfies

lim inf w
d—o00

= f(r),

where K — f(k) € [0,1] is non-decreasing, with lim,_,~ f(xk) = 1.

SRecall that § < w(K) but w(K) — 0o as n — oo by hypothesis.
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Proof of Lemma 3.5 The fact that K is a closed convex cone is easy to verify. Moreover, for any
rk < k' we have K,, C K,; C S8F, and w(S]) ~ d/2 by Proposition 3.4, so k — f(x) € [0,1], and f is
non-decreasing. To finish the proof, we show that f(k) — 1 as kK — oo. We let k > 1. To identify Sy
with R441/2 we use the matrix flattening function, for M € Sy:

vec(M) = ((V2Map)1<a<b<d, (Maa)i—,) € RUTD/2, (26)
= ((2 - 5ab)1/2Mab)a§b'

It is an isometry ({(vec(M),vec(N)) = Tr[M N]), and if Z ~ GOE(d) then the entries of vec(Z) satisfy
vee(2)g L N(0,2/d). We thus reach:

1
w(K,) =E mmax 2Tr[ZS]} ,
ISlIE=2d

in which Z ~ GOE(d), cf. Definition 2.1. Letting z; > --- > 24 be the eigenvalues of Z, by Wigner’s

theorem [33] (1/d) Y, d., weakly converges as d — 0o (a.8.) to osc (dr) = (2m)~1V4 — 221{|z| < 2}dz.
Moreover, we have (taking S having same eigenvectors as Z):

A1 > Ag>0
doa?<ad
>\1§I€/\d

w(K ) >E max {; i )\zzz} . (27)

Let us now sketch the end of the proof. We define

(k) = ’
Jinr 2 0w (do) + % 25 o (do) (28)
AF = (k) [Zi]l{zi > 2651+ %]l{z,- < 2&71}]

Let € > 0. Since one can show that z; — 2 a.s. as d — oo [33], with high probability we have A} <
k(1 4 €)A4. Moreover, one checks easily that d=' ¢ [A]? 2 2 as d — oo. Letting p; == \7/v/1 ¥ ¢,
we can therefore use {y;} to lower bound w(K,) as d — oo, with k. := k(1 4 ¢). This yields that, for
any € > 0:

2k—1 2
2w(K, 1 f,i— 205 (dz) + 2 f x 0g.c.(dx)
f(ke) = liminf (Kr.) > —— [ — } (29)
d=o0 d 1 +e f2/~c*1 $2 US-C~(dx) + ﬁ f_2 Os.c. (dx)

Taking the limits kK — oo and € — 0 in eq. (29) yields lim,_,o f(x) > 1, which ends the proof. O

3.1.4 Proof of Proposition 2.2

We can now complete the proof of Proposition 2.2. Recall that
V={Se8; :Vueln], Tr[G,S] = 1}.

Since o = n/d? < 1/4, by Lemma 3.5, we can find k = x(a) and € = ¢(a) such that n < (1 —¢)w(K,)?
for n large enough. Therefore, by Lemma 3.2 there exists A = A(a) > 0 such that:

dlim IP{E!S €V st. S=0 and Tr[S? < Ad and Apax(S) < ﬁAmin(S)} =1 (30)
—00

"Notice that we replaced ||S||% = 2d by ||S||% < 2d since w.h.p. one can always find S € K, such that Tr[SZ] > 0
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Notice that H = n~1/2 1 Gy ~ GOE(d), and thus P[||H||op < 3] =1 — 04(1) [34]. Conditioning
on this event, let S € V. Then Tr[HS] Vv/n = y/ad, and thus by duality of || - ||op and || - ||s,:

e[ s]| > Yo,

Tr|S| >
S| .

HHllop

The proof of Proposition 2.2 is then ended by noticing that:

S >0,
Tr[S?] < A(a)d,
)\max( ) <k a))\mln( )

SP(S) - [)‘*7)‘+] < (
Tr[S] > B(«a)d,

for some 0 < A_ < Ay depending only on a. [

3.2 The unsatisfiable regime: proof of Proposition 2.3

We will show the following general result on the unsatisfiability of approximate versions of a general
class of random geometry problems.

Proposition 3.6

Let b € R, p,n — 0o, K C RP a closed convex cone, with Gaussian width w(K), (a,))— M- (0,1p),

pn=1
and denote C,Sb) (z) = |ajx — b| the p-th “constraint”. We denote

Vy:={z eR? :Vu e [n], C(z) =0}
a randomly-oriented affine subspace. Then we have the following:
(¢) Assume that b # 0. Then

(a) If there exists € > 0 such that n < (1 —¢)w(K)? as n — oo, then P[V, N K # 0] —, 00 1.
(b) If there exists ¢ > 0 such that n > (1+¢)w(K)? as n — oo, then there exist ¢ = ¢(g,b) > 0
and n = n(e,b) € (0,1) such that

JLH;OIP{V:L’ eK : #pen: Cl(tb)(z:) >ch >nnp =1

(17) Assume that b = 0. Note that 1} is a linear subspace, and V) N K is a closed convex cone.

(a) Assume that n < (1—¢)w(K)? for some ¢ > 0. Then as n — oo, P[VoNnKNSP~L #£ (] — 1.

(b) Assume that n > (1 + &) w(K)? for some ¢ > 0. Then there exist ¢ = c(g,b) > 0 and
n =n(e,b) € (0,1) such that, with probability 1 —o0,(1), the following holds for all 7 > 0:

<.
mas lell2 < 7

#{p€(n] :Cl(to) (z)>cT}<nn

It is clear that Proposition 3.6 ends the proof of Proposition 2.3. Indeed, seen as an element of
RAE+D/2 0\ /d]2G, i N(0,144+1)/2), see the canonical embedding in eq. (26). By Proposition 3.4,
we have w(S])? = d?/4 + o(d?), and thus we can apply Proposition 3.6 with p = d(d + 1)/2. The
difference v/d in normalization in point (ii) of Proposition 2.3 comes from the additional Vd factor
that arises when relating G, to a standard Gaussian.

We now focus on proving Proposition 3.6.

19



3.2.1 Proof of Proposition 3.6

We first show (i), assuming b # 0. Results of [8, 9] show that V;, N K # () with high probability if
n < (1—e€)w(K)? (see e.g. Theorem 8.1 of [9]), i.e. point (a). While the converse is also shown in these
works for n > (1 + &)w(K)?, here we wish to prove the stronger statement (b). Assume therefore that
n > (14 ¢)w(K)?2. By the union bound, for all ¢ > 0 and 5 € (0, 1):

P(3z e K: #{p€en] : Cﬁb)(x) > c} < nn)

=PEx € K,35Cn] : |S| > (1 —n)n and Yu € S, Clsb)(x) <c¢)

< Z P(3z e K : Vue s, c}f)(x) <e¢),

SCln]
IS|>(1=n)n
®) n . T (1=n)n
< Z f P(Ezr e K : H{aux—b}uzl lloo <€),
k<nn
®) € ) T (1—n)n
< expinn logﬁ P(3z € K : [{ajz — b}, 1" [[oo < ©). (31)

We used that a, are i.i.d. in (a), and the bound ¥ (%) < (en/k)* in (b). We now make use of the
following lemma (proven later on).

Lemma 3.7

Recall that n > (1 + ¢)w(K)?2. There exist c1,c > 0 and 79 € (0,1) depending only on ¢ such that
for any n € (0,m9):

P(3z € K : [{ax — b}glz_ln)nﬂoo < ¢ -b) < 2exp{—nca}.

Applying Lemma 3.7 in eq. (31), we can consider n = n(e, b) € (0,1/2) small enough, such that n < 7y
and nlog(e/n) < co/2. This yields then that

PEzx e K: #{pu<cn] : Cl(f)(;v) > c1 b} <mn) < 2exp{—nce/2} — 0,

and ends the proof. We now prove (ii) of Proposition 3.6, assuming b = 0. (a) is here a simple
consequence of the usual Gordon’s “escape through a mesh” theorem [28], so we focus on (b), assuming
n > (14 ¢e)w(K)?2. Note that since K is a cone, we have for all ¢ > 0, n € (0,1):

sup ]2
zeK
#{pe€n) :C£0>(z)>c}<nn
=sup{v>0:3xc KNS’ ! st. #{uc[n] : C/SO)(x) > c/v} < nn}. (32)

We now use the following counterpart to Lemma 3.7 in the case b = 0, also proven later:

Lemma 3.8

Recall that n > (1 + &)w(K)?2. There exist c1,ca > 0 and 79 € (0,1) depending only on ¢ such that
for any n € (0,m9):

P(z e KNS ¢ [{afa} 5" oo < 1) < 2exp{—nca}.

Repeating the same reasoning as in the b # 0 case, we can then find ¢ = ¢(¢) > 0and n = n(e) € (0,1/2)
such that with probability 1 — o,(1):

Vee KNSP™: #{uen : C&O)(:U) > c} > nn.
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Plugging this in eq. (32) yields that with probability 1 — o0,(1), for all 7 > 0:

<
max 2 <7,

#{p€(n] :Cfto) (z)>cr}<nn
which ends the proof. [

We now prove the two Lemmas 3.7 and 3.8.

3.2.2 Proofs of Lemma 3.7 and 3.8
Proof of Lemma 3.7 Note that for all t > 0 and n € (0,1):

1—
P (Hx e K ¢ [{ale — b} < t) =Pz e K : |Gz — bl < 1], (33)
with m :=n(1 —n), G € R™*P an i.i.d. N(0,1) matrix, and 1,, the all-ones vector. We thus have:

Pz € K : |{alz —b}\"" [l < 1)
@ Jim P € K ¢ [lof2 < A and [[Go — byl < 1],
—00
2 Jim P min |Gz — bl <], (34)
A rzeK
lefl2<A

where (a) follows from dominated convergence, and (b) uses that the minimum is now over a compact
set since K is closed. Since || - || and || - |1 are dual norms, we have for all z € K:

|Gz — bl ||c0 = max [—bATL,, + A\TGz].
AER™
Al <1

We can now use the Gaussian min-max inequality (Proposition 3.1), which, together with eq. (34),
implies:

(a)

P(3z € K : [[{alz — 0} "l < 1) < lim 2Plya(g,h) < 1) < 2P[y(g,h) <1].

Here we defined:
— _pA\T T T
(g, h) = nf max [=bATLy + [[Allgz + [l]|2hTA] (35)
Al <1
and 74 is defined by restricting the infimum to ||z|2 < A. Moreover, g ~ N(0,1,), h ~ N(0,1,,,). The
inequality (a) holds since (g, h) < v4(g,h) for all A > 0. To conclude the proof, it therefore suffices
to show:

P[’y(g, h) < Clb] < QGXP{*TLCQ}, (36)

for ¢1, co small enough (depending on €,b). We use again that ¢ — max,cxnsp—1[g72] is 1-Lipschitz,
and in particular concentrates on the Gaussian width by Theorem 3.3. Using that ¢ is distributed as
—g, this implies that for any u > 0:

P in [gTa] < —w(K)—up <e /2
{7 <l - uf <
Since w(K) < y/n/(1 + €) by hypothesis, we can fix § = §(e) > 0 and 19 = n9(¢) > 0 such that for n

large enough we have for n < no: w(K) + dv/m < /m/(1+¢/2) (recall that m = (1 —n)n). Thus,
since K is a cone, and using the max-min inequality, we have with probability at least 1 — e~ n(1-m0)5/2,

> —bA\T T\ — .
2(g. 1) ‘ggﬁgi}i[ DAL, + v (ATA — [Alla(w(K) + 6v/m))] (37)
1>
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Let us now assume that b > 0, and let X ~ N (0,1), and D := E[|X|] = \/2/7. We pick 0 = o(¢) €
(0,1) (its choice will be constrained later on), and define A. by:

E[X?1{X < A.}] = o(e). (38)

Finally, we define \* = A*(h) € R™ by

1
It is a simple exercise based on Hoeffding’s and Bernstein’s inequalities [34] to check that for any u > 0
(recall that m = (1 —n)n > (1 —no(e))n):

PIA*L <1 > 1 —exp{-Cin},

P lhT)\* -5 = < exp{—Cynmin(u?,u)},

mD? —
P[IT A" > —Cy] < exp{—Csn},

2
P[HA*H%— > j;j] < exp{~Cyn min(u?, u)},

for some positive constants (C,)3_, all depending on ¢. In particular, the first three lines of eq. (40)
imply that for all v € (0, 1), with probability at least 1 — 3 exp{—C(g)nu?}:

hT\* 1 > o(e)?/D —u €

IV w(K) + ovim =~ o@D raV ' 2 (41)

in which we used that w(K) + §v/m < /m(1 +¢/2)71/2 and m/n < 1. We can choose o(¢) € (0,1)
sufficiently close to 1, and u(e) € (0, 1) sufficiently close to 0 such that the right-hand side of eq. (41)
is greater than 1. Combining it with the last equation of eq. (40) and the lower bound of eq. (37), we
get that (with new constants c;, ca depending on ¢), with probability at least 1 — 2 exp{—ca(e)n}:

A <1 and

v(g,h) > be(e),
which implies eq. (36) and ends the proof. The case b < 0 is treated similarly, constraining h, > —A.
rather than h, < A. in eq. (39). O

Proof of Lemma 3.8 Let t > 0. Repeating the same arguments as in the proof of Lemma 3.7 one
obtains that

-1 . (1-nm)n
Pz e KNS [{afah, "o <1) <2P| min 1&@ {[[All2gTz + hTA} <t
1<1

::'Y(g?h)

Again, we can fix no(e) > 0 and d(¢) > 0 such that for n < ny and n large enough we have w(K) +
5yv/m < /m[l +¢/2]7'/2. By the max-min inequality and the concentration of the Gaussian width,

this implies that with probability at least 1 — e—n(1-m0)5%,
o) = ma WA= [Al2(w(K) + 6ym)] (42)
Al <1

Defining again D := 1/2/7 so that D = E[|X|] for X ~ A (0,1), we now define A\* as:

*x . 1
)\,u — mh#
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We have the counterpart to eq. (40) for this case: for any v > 0 and 7 > 0,
PlIN]|1 <1+ 7] > 1 — exp{—Cnr?},

1
P [hT)\* ) < —u] < exp{—Cynmin(u?,u)},

1
— > Z] < exp{—Csnmin(u?,u)},

P{Ix°13 -
for some (Cy)3_; depending on . We can fix u = u(e) > 0 such that

/ D—2
D_l—u— 1;:5‘/2:: 2C1(€) >O,

since the limit as u — 0 of the left-hand side is strictly positive. Letting 7 = 1, we finally get that
with probability at least 1 — 3 exp(—ca(e)n) we can lower bound (using A = A\*/2 such that ||A||; < 1)

Dt—u 1 [u 1
h) > - K)+46
g, h) 2 — 5\t W) + Vvm),
Dl '—u 1 [u+D2
=2 2\ 1+¢/2”
> 61(6)
This ends the proof. O

4 Universality: proof of Proposition 2.1

This section is devoted to the proof of Proposition 2.1. We first show in Section 4.1 a critical result
on the Lipschitz constant of the “error” function appearing in eq. (10). This requires controlling a
random process on the operator norm sphere, which is also useful in the proof of Theorem 1.3, see
Section 2.4. We leverage this control to show in Section 4.2 a general result on the universality of a
quantity known as the asymptotic free entropy of the model, both for matrices arising from ellipsoid
fitting and its Gaussian equivalent. This result follows from an interpolation argument. Finally, we
apply these results in the so-called “low-temperature” limit in Section 4.3 to deduce Proposition 2.1.
As we mentioned, while we can not directly apply the results of [21], parts of Sections 4.2 and 4.3.2
closely follows their approach. We defer to Appendix D some technicalities, as well as some parts of
the proof that more directly follow the arguments of [21].

4.1 Lipschitz constant of the energy function, and bounding random processes

We show here the following result on the behavior of the error (or “energy”) function, under both
models X, ~ Ellipse(d) and X,, ~ GOE(d).
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Lemma 4.1 (Lipschitz constant of the energy)

Let n,d > 1 and n,d — oo with a1d? < n < asd? for some 0 < o1 < as. Let ¢ : R — R, such that
|0/ |oc < 00, and X7, -+, X,, € Sy be generated i.i.d. according to either GOE(d) or Ellipse(d). For
S € S84, we define the energy:

1

Ex,)(8) = 55 3 o[Tr(X,8),
pn=1

Then the following holds for some C' > 0 (depending only on «):

Egx 1(S1) — Erx 1(8
Pl sup |Eix,3(51) — Eyx,(S2)]

<Ol¢|oo| =1 — 267
S1,52€8, [S1 = S2[lop I#lo0

In other words, the energy function has a bounded Lipschitz constant (as d — oo) with respect to the
operator norm. Note that this is strictly stronger than what a naive use of the triangular inequality
and of the duality || - ||op <> || - ||s, yields:

|B1x,1(51) = Bix, 1 (92)] _ 4]l <
< Tr| X,
151 — S2HOp A ,;:1 | #|

since Tr|X,| > d for X, ~ GOE(d), and Tr|X,| > V/d for X, ~ Ellipse(d). Instead, the proof of
Lemma 4.1 is based on the following bounds for random processes, for which we separate the GOE(d)
and Ellipse(d) setting. Lemma 4.2 is a consequence of elementary concentration results, and is proven
in Appendix D.1, while Lemma 4.3 is proven in the following.

Lemma 4.2 (Bounding random processes, GOE(d) setting)

Let (Gu)ji— Lig: GOE(d). Let r € [1,2]. We assume that n > ayd?, for some a1 > 0. There exists

C = C(ay) > 0 such that for all ¢ > 0:

" 1/r
IP’[ max (Z |Tr[GMSHT) > (C+t)nt/"| <exp (—nt2/2) :

2 __
I5I%=a \ /=

Lemma 4.3 (Bounding random processes, Ellipse(d) setting)

Let Wy, --- , W, be drawn i.i.d. from Ellipse(d). Let r € [1,4/3]. We assume that a1d? < n < asd?,
for some 0 < a1 < ag. There are constants C7,Cy > 0 (that might depend on a7, ap) such that for
allt > 0:

n

P[ ax [Tr(W9)[" = n(Cr + t)} < 2exp {_C’z min(nt%,n%%t%)} .
ISlop=1 2

Proof of Lemma 4.1 We finish here the proof, assuming Lemmas 4.2 and 4.3. By the mean value
theorem and the duality | - |[op < || - [|sy:

|Ex,)(S1) — Ex,; (S2)] < (VsE(x,}(5), 51 — S2)

)

sup

SESy

< 181 = S2llop sup [[VsEix,;(9)lls; -
SESy
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Again using the duality || - [[op <> || - [|sy:

IVsEx,3(9)ls, = p@ [T (XS
S1
1
= swp Z Tr[ X, R]¢'[Tr(X,.9)],
I Bllop=1 =1
< 19l Z
< ' Tr[ X, R]|.
d? ||R||0p71# ]
Using Lemmas 4.2 and 4.3 in the case » = 1, we reach the sought statement. Il

Remark I — Note that a naive argument using that Tr[I¥,S] is a sub-exponential random variable
yields Lemma 4.3 for r = 1, which is already enough to deduce Lemma 4.1. However, Lemma 4.3
is also used later in the proof of Theorem 1.3, see Section 2.4. Since Tr[W,S] is the sum of many
independent random variables, we can leverage its two-tailed behavior (by Bernstein’s inequality) to
prove Lemma 4.3 for all » < 4/3, yielding the limitation < 4/3 in Theorem 1.3. It is possible that a
finer analysis could lead to a proof of Lemma 4.3 for the case 4/3 < r < 2, which would in turn imply
Theorem 1.3 for r < 2.

Remark II — We give an informal argument as to why we can not hope to extend Lemma 4.2 nor
4.3 for 7 > 2. Indeed, in the GOE(d) setting, the choice S = VdG,,/||G | r (for some u € [n]) yields
that the objective function is at least v/d||G | > v/n. In the Ellipse(d) setting, assume that r > 2.
If 1/¢+ 1/r =1, then by the dualities ¥ <> ¢4 and || - [|op <> || - || 51:

1/r
n n
max Z | Tr(W,.S5)|" = max Z AWy, (44)
||S||0P:1 l"zl ||>‘||€1:1 l":l
S1
Let us lower bound the right-hand side of eq. (44). Let 8 € (0,1), p = fn, and Ay = --- =\, =
p~ 4> N\py1 =--- =\, =0. Then ||\||, = 1. Moreover,
1 p
— pl=Vag-1/2 | 2 Z Tpal -
P
S1 Sl

By classical results of concentration of Wishart matrices [34], we know that since p < d? then

3/2
2 20/%
p VP B

1

p
.
Zum

where 2 might hide constants that depend on . We then reach:

z 51/2_1/‘]711_1/(1.

S1
Since r > 2, one has 1/2 — 1/¢q < 0. Letting § going to 0, this shows that any bound of the type
n

> AWy

p=1

< C(a)n~a
S1

max
IAllq=1

can not hold.
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Proof of Lemma 4.3 Throughout this proof, constants might depend on a1, as. Let us define, for
any S € Sg:
Y(S) = Te(W.9)[",
p=1 (45)
X(S) =Y(S)—-EY(9).

For a set E C Sy, anorm || - || on Sy, and a value € > 0, an e-net of E is a set A C E such that every
point of F is at distance at most € from A (for the distance induced by || - ||). We define the covering
number N (E, || - ||, €) as the smallest possible cardinality of an e-net of E. We fix ¢ € (0, 1). It follows
from classical covering number bounds [32] that if T :={S € S; : [|S|lop = 1}, then

d(d+1 3
0B N (T |- lopn ) < A0 D 105 2, (46)
Let us fix N an e-net of T' for || - [|op, of minimal cardinality. If we let S* := arg max g, —; Y'(5), and

So € N with ||S* — Spllop < €, then we have by Minkowski’s inequality (recall » > 1):

I{Tr WS T} i e = I{ T [WSol i [l < I{Te[W(So = S} ll-
<e max |{Te[WuST}i -

lIS]lop=
This implies
n 1 n
(W, S| < —— Te(W,,.9)|". 47
||§ﬁi§1M:1\ (W,.9)] _(1_€)Tglg]>v<l;\ (W,.9)] (47)

We combine the covering number upper bound of eq. (46) and the relation of eq. (47) with the following
lemma, proven later on, which bounds the deviation probability of the process for a given S.

Lemma 4.4 (Tail bound at a fized point)
With the notations of eq. (45), we have, for any S € T

(i) E[Y(S)] < Cin.

(7i) For all t > 0:
P[X(S) = nt] < 2exp {_02 min(nt?, nt%,n%r%t%)} .

Note that the above constants may depend on r.

Picking € = 1/2 and performing a union bound over N, we reach using eqs. (46),(47) and Lemma 4.4:

Plsup Y (S) > n(Cy +t)] < 2exp {an — Cymin(nt?, nt%,n%"‘%t%)} :
SeT

We thus have for any ¢ > 1:

exp {an — ant%} if t < nl_%,
Plsup Y (S) > n(Cy +1)] <2 L -
SeT exp {an - C’gn3+?t?} ift>n"7.

Note that n'/4t1/" > p since r < 4/3. Therefore, for (new) constants C1,Cy we have for all ¢ > 0:
2 1 1 1
Plsup Y (S) > n(C1 +t)] < 2exp {—Cg min(nt?,n1+?t?)} ,
SeT

which ends the proof. O

We now tackle Lemma 4.4.
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[la

Proof of Lemma 4.4 We start with (7). One has E[Y(S)] = nE[|Tr(W1.5)|"]. Let Z := Tr(W1.5)
(27Sz — Tr[S])/Vd, with x ~ N(0,14). Since ||S|lop = 1, we have by Hanson-Wright’s inequality [34

P[|Z] > t] < 2exp{ — C'min (H?\\;’\/gﬂ}’

< 2exp {—C min (tQ, \/gt)} , (48)

where C' > 0 is an absolute constant, and we used that ||S||r < v/d||S||op- Separating the sub-Gaussian
and the sub-exponential parts of the tail we have, we have for all p > 1:

Bl|Z17) =p [ duwr ' BZ) > ],
0

Vd 00
<2p / duyuP~1 e=Cv* —|—/ duwuP™t eC\/au] )
0 Vd

<2p

/ dyw?~le C¥ 4 e*Cd/ du (u + \/g)p*l ecﬁul ,
0 0

(z) 5 1

Y

I'(p/2) + e Cd max(1, 2p_2) /

- du [uP™! + d(p_l)/2] e‘cﬁu]
0

§2p[r(p/Q) +e—0dmax(1,2p—2)( L(p) d(p—2)/2) |

201/2 Crdr/? + C

We used in (a) that (a + b)® < max(1,2%"1)(a® + b%) for all a,b,x > 0. Using Minkowski’s inequality,
we reach that for all p > 1:

Cad
B2 < Cry/p+ Coe™ (L + d7v), (49)

for some positive constants (C,)3_; independent of p and d. Informally, the sub-Gaussian tail domi-
nates the first moments of Z since the sub-exponential tail only kicks in at the scale O(v/d). Eq. (49)

implies claim (i) of Lemma 4.4 by taking p = r (since the second term goes to 0 as d — oo for any
fixed p).

We turn to (i7). We make use of classical tail bounds for sub-Weibull random variables, recalled in
Lemma A.1. Denoting Z, = Tr(W,S), we have X(S5) = >7_1{|Z.]" — E[|Z,|"]}. We decompose
X (S) in two parts, i.e. X(S5) = X1(5) + X2(5), with

Xy(8) = [min(|Z,], V)"~ E{min(|Z,], Vd)'}],
el (50)
Xo(8) =3 (12" = 11| 2] > Va} —E{[|Z,]" = d7)1{|Z,] > Va}}).

Il
—

I

We will successively bound X;(S5), X2(S). To lighten the notations, we do not write their dependency
on S in what follows. Observe that (Z,)),_; are i.i.d. random variables, and that they satisfy the tail
bound of eq. (48).

Bounding X; — Denoting T}, := min(|Z,|, V/d), we have P[T,, > t] < 2exp{—C5t?} by the tail bound
of eq. (48). Moreover, E[T}]] < E[|Z,|"] < Cy (depending only on r) by eq. (49). Therefore, for every
t > C1, we have

2/r

P(IT] — E[T7)| > f] = PIT] > E[T7] +1] < 2¢~C2(+EMDY" < go=Cat®/”
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This implies that P[|T}; — E[T}}]| > t] < 2¢=C" for all t > 0 and some (new) constant C' > 0,
depending only on . We can thus apply (i) of Lemma A.1 for ¢ = 2/r € [1,2] and a; = 1/n (so
llal|3 = lalld. = n~1), which yields that for all £ > 0

>t| <2exp {—Cn min(tQ,tZ/T)} . (51)

1
n

P[|X1| > ni] —P[

> {17 - BTy}

Bounding X3 — We proceed similarly, using (i) of Lemma A.1. Letting
Uy = d"P(|Z,]" = d'P11{| Z,,| > vV},

then U, > 0, and moreover, by the Cauchy-Schwarz inequality:

E[U,) < d'/? VEIZulPr Pl Z,] > v,

)

for some C7,Cy > 0 depending only on r, using the moments and tail bound of egs. (48) and (49).
Repeating the argument used on 7}, above (using this time the second part of the tail of eq. (48)), we
then reach that for all ¢ > 0:

P||U,, — E[U,]] > 1] < 2e7°"".

We can then apply (ii) of Lemma A.1 with ¢ = 1/r € [1/2,1] to reach:

P Xz| > nt] = Pll > td"/?| < 2exp {—Cmin(ndrtQ,d1/2(nt)1/7")} ,
n

> {Uu —E[U]}
pn=1

< 2exp {—C’ min(n1+r/2t2, n1/4+1/rt1/r)} , (52)

using that a1 d? < n < asd?.

We conclude the proof of Lemma 4.4 by combining egs. (51) and eq. (52), along with the union bound
P[|X| > nt] < P[|X1]| > nt/2] + P[| X2| > nt/2]. O

4.2 Free entropy universality for matrix models

In this section we state and prove a general universality theorem for the asymptotic free entropy in
a large class of matrix models, under a “uniform one-dimensional central limit theorem” assumption
(or pointwise normality). We first need to define such an assumption.

Definition 4.1 (Uniform pointwise normality)

Let d > 1, and p a probability distribution on §;. We say that p satisfies a one-dimensional CLT
with respect to the set Ag C Sy if:

(1) The mean and covariance of p are matching the GOE(d) distribution, i.e. for W ~ p and
G ~ GOE(d), we have E[W] = E[G] = 0 and for all i < j and k < I: E[W;;Wy| = E[G;;Gr] =
Gidj1(1 + Oijut) /d.

(7i) For any bounded Lipschitz function ¢, we have:

lim sup [Ew~,[o(Tr[WS))] - Eg~con) @ (TGS])]| = 0. (53)

d—o0 SeAy

We can now state the universality theorem for the free entropy. Its proof is in great part an adaptation
of the proof arguments for Theorem 1 and Lemma 1 in [21] (see also [20, 22, 24]). We sketch the ideas
of its proof in the following, deferring some technicalities and adaptations of the arguments of [21] to
appendices.
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Theorem 4.5 (Free entropy universality for matrix models)

Let n,d > 1 and n,d — oo with ayd? < n < asd? for some 0 < aq < ag. We are given:
(i) Py a probability distribution on Sy, such that supp(Py) € Ba(Cov/d), for a constant Cy > 0.
(ii) ¢ : R — Ry a bounded differentiable function with bounded derivative.
(iii) A series of symmetric convex sets Ay such that supp(FPy) C Ay.
)

(iv) p a probability distribution on Sy, which satisfies a one-dimensional CLT with respect to Aq4
as per Definition 4.1.

For Wy,--- W, € §; we define the free entropy:

n

Fa({w,}) = dlzlog/Po(dS) exp{ Z (Tr[W,S]) } (54)

Then for any bounded differentiable function ¢ with bounded Lipschitz derivative we have

Jm (B SR -

{G } Y GOE(d) [Fd<{Gu})]’ = 0. (55)

Remark I — One could straightforwardly weaken the hypothesis supp(Py) C A in Theorem 4.5 to the
weaker condition d=2log Py(A€) — —oco as d — oo.

Remark IT — Note that our setup differs slightly from the one of [21], as we consider distributions
Py with possibly continuous support, and (more importantly) for a fixed S € Sy, the projections
{Tr[W,S1},—1 are not sub-Gaussian when W), ~ Ellipse(d), but only sub-exponential. Nevertheless,
we will see that the approach of [21] can in large part be adapted to prove Theorem 4.5, thanks to
the results we showed in Section 4.1.

Sketch of proof of Theorem 4.5 — Since supp(FPy) C Ay, the integral in eq. (54) can be restricted
to S € Ag. We make use of an interpolation argument to show the universality of the free entropy.
We define, for ¢t € [0,7/2] and p € [n]:
Uu(t) = cos(t)W, +sin(t)G,,
- AU, (t (56)
= 3“t( ) = —sin(t)W, + cos(t)G .

Note that {U,}},_; are still i.i.d., and are smooth functions of ¢. Moreover, if W, was also a GOE(d)
matrix, then U,(t),U,(t) would be independent GOE(d) matrices. By the fundamental theorem of

calculus:
(a) /2
</
0

where (a) follows by dominated convergence since ¥[F;(U(t))] is continuously differentiable on [0, 7 /2],
and the triangular inequality. We will deduce Theorem 4.5 if we can show the following two lemmas:

gIVIEUR))]

o dt, (57

/2 )
EG[FuW)] — E¥[Fu(G |—’ [ 5 EuR@ @)

Lemma 4.6 (Domination)
Under the hypotheses of Theorem 4.5:

w/2
/ sup |E
0 d>1

dt < oc.

OY[Fa(U(1))]
ot
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Lemma 4.7 (Pointwise limit)

Under the hypotheses of Theorem 4.5, for any ¢ € (0,7/2):

Lo g OEAU(D)]
d—oo ot

=0.

Indeed, plugging Lemmas 4.6 and 4.7 in eq. (57) and taking the d — oo limit using dominated
convergence ends the proof of Theorem 4.5. We therefore focus on proving these two lemmas in the
following.

As it will be useful, we state the result of the elementary computation of the derivative:

6¢[F¢g(§f(t))] (58)
WIEAU())] = S Po(dS) e 220 #OS) (Th[ ST, (1)] of (Tr[U, (1) S)))
- d? ,; [ Py(dS) e 220 AT (0)S]) '
Because {G,, W} are i.i.d. we get further:
g QVFU®)] (59)

ot

= —CE|¢/[Fa(U (1))

[ Py(dS) e 22 AU (0)S)) (Tr[sﬁl(t)} ¢ (Tr[U; (t)S])) ]
2 '

[ Py(dS) e 220 AT (H)S))

Note that if W, was also a GOE(d) matrix, for any ¢, U,(t) and U, (t) would be independent GOE(d)
matrices. The main idea behind the interpolation is that the matrix W, will only appear through
some one-dimensional projection with a matrix S. We will then use Definition 4.1 to argue that one
can effectively replace W, by a GOE(d) matrix, which by the argument above would mean that we can
consider the case of independent GOE(d) matrices U, (t) and ﬁ#(t). In this case, the RHS of eq. (59)
would be 0, since there is only a single term involving Uy (t), which has zero mean: this crucial idea is
the intuition behind Lemma 4.7.

The details of the proofs of Lemmas 4.6 and 4.7 are fairly technical and substantially follow the ones
of their counterparts in [21]. For this reason, we defer them to Appendix D.2.

4.3 Proof of Proposition 2.1

4.3.1 Consequences of universality for ellipsoid fitting

We investigate here the consequences of Theorem 4.5 for the ellipsoid fitting problem. It follows by
the Berry-Esseen central limit theorem [35] that the distribution Ellipse(d) satisfies uniform pointwise
normality on a large set of matrices (in the sense of Definition 4.1).

Lemma 4.8 (One-dimensional CLT for the ellipse problem)
Let d > 1 and W ~ Ellipse(d). Fix any n € (0,1/2) Let Aq = {S € Sg : Tr[|S|*] < d*/?>~"}. Then

Ay is convex and symmetric, and the law of W satisfies a one-dimensional CLT with respect to Ay,
in the sense of Definition 4.1.

Remark — This lemma makes crucial use of the Gaussian nature of the vectors, and more specifically it
relies on their rotation invariance and the first moments of their norm, as is clear from the proof. On the
other hand, for vectors sampled from other distributions, such as z ~ Unif({+1}%) or 2 ~ Unif(S?~1),
it is easy to see that Lemma 4.8 can not hold: indeed, S = I is such that Tr[SW] = 0 deterministically,
while Tr[SG] = Tr[G] ~ N(0,2) for G ~ GOE(d). This is consistent, as in the example of these two
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distributions there always exists an ellipsoid fit, which is the sphere itself, and therefore Theorem 1.3
can not possibly hold.

Proof of Lemma 4.8 Note that Ay is a centered ball for the S3-norm, and is therefore convex and
symmetric. The proof of the first and second moments condition of Definition 4.1 is immediate via a
simple calculation. We focus on proving condition (ii) of Definition 4.1. Fix S € Ay, with eigenvalues
(\)%,. With W ~ Ellipse(d) and G ~ GOE(d), let

X =Tr[SW],
{Y = Tr[SG].

It is trivial to see that Y ~ N(0,2Tr[S?]/d), so that Y 4 g2 4 Nz for z £ N(0,2). Moreover,

d
a 1 2
x4 SN2,
a2 =

with z; RN (0,1). We use the Berry-Esseen central limit theorem, and in particular the formulation
of Chapter 11 of [35] — itself a simple consequence of the Lindeberg exchange method.
Lemma 4.9 (Corollary 11.59 of [35])

There exists a universal constant C' > 0 such that the following holds. Let p > 1 and X1,---, X,
and Y1, -+, Y, be independent random variables, such that E[X;] = E[Y;] and E[X?] = E[Y;?] for all
i € [p]. Let ¢ : R — R a Lipschitz function with Lipschitz constant ||¢|/z. Then

, » » 1/3
‘E@ (ZXL) -Ep (Z Y) <Cligle lz (Bl +E’Y;’3)] :
i=1 =1 =1
Lemma 4.9 yields:
TellS|3 1/3
Ee(X) - Eo(v)] < Clgll [B il ]] ,

with B = E[|22 — 1|3] 4 2%/2E|z|? for z ~ N(0,1). Using the definition of A4, we reach:

1 Tsp]?
sup [Ep(X) — Ep(Y)] < Cllelly sup |—= < CllgllLd - 0.
SeAy seA, |Vd d
This ends the proof. O

We can now state the main result of this section, a corollary of Theorem 4.5 and Lemma 4.8.

Corollary 4.10 (Universality for ellipsoid fitting)

Let n,d > 1 and n,d — oo with a1d? < n < asd? for some 0 < a3 < . Let Py be a probability
distribution such that supp(FPy) C Bop(Cp) for some constant Cp > 0. Let ¢ : R — R, a bounded
differentiable function with bounded derivative. For Xi,--- , X,, € §; we define the free entropy:

1 n
Fal{X,}) = 5 log [ PufdS)exp { = 3 o (Tr{x,.8) }.
pn=1
Then for any 1 such that ||?]|ec, [|¢||0cs [|¥ ||z < 00 We have

(B e SHEWD) = B s g PEGADI = 0 (60)
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We notice that the only requirement for Corollary 4.10 to hold is supp(Py) € Bp(Cv/d) N B3(d®/?77)
for some C' > 0 and 7 > 0, a weaker requirement than supp(FPy) C Bop(Cp).
Proof of Corollary 4.10 Since B,,(Co) C Ba(CoV/d), hypothesis (i) of Theorem 4.5 is satisfied.
Condition (ii) is satisfied by hypothesis. Since Bop(Co) C B3(Cod'/3) C B3(d'/?7") for any n €
(0,1/6), condition (iii) of Theorem 4.5 is satisfied with Aq = Bs(d'/>~"). Finally, Lemma 4.8 verifies
condition (iv) for this choice of A4. All in all we can apply Theorem 4.5, from which the conclusion
follows. g

4.3.2 Proof of Proposition 2.1

We are now ready to prove Proposition 2.1, taking a “small-temperature” limit. Such arguments are
classical in rigorous statistical mechanics, see e.g. Appendix A of [21]. Notice that the restriction
B C B,(Cp) will be critical because we proved an upper bound on the Lipschitz constant of the
energy for the operator norm, cf. Lemma 4.1. Recall the definition of the energy function:

1 n
Eix,1(9) = CTZ O[Tr(X,.S)]

We fix n € (0,1), and A;, € B a minimal n-net of B for || - ||op. Since B C Boyp(Cp) and dim(Sy) =
d(d+1)/2, it follows by standard covering number upper bounds [32, 34] that

K
log ;| = 10 (B, | lop ) < 108 (Bop(Ch) |- o 3 ) < d*log (61)

for some K > 0 depending on Cy. Recall the definition of GS4({X,}) in eq. (10). We define:

GSa(n,{Xu}) = Sie%,, Eix,3(9).

We will show the two lemmas:
Lemma 4.11

For any 1 > 0 and any 1 such that [|¢)||ec, [|¥||cc, ||| < o0:

11d

lim [E Lid. Y[GSa(n, {W,})] —

doo | {W,.} "5 Ellipse(d) Y[GSa(n, {Gu})]| =

E
{G.} "~ "GOE(d)

Lemma 4.12

Let Xq1,---, X, k- p, with p € {GOE(d), Ellipse(d)}. Then, with probability at least 1 — 2e~":

GSa(n, {Xu}) — GSa({ X, D] < Cll¢]loc - 0-

These results are proven in the following, let us first see how they end the proof of Proposition 2.1.
We fix n € (0,1). We have

[EY[GSa({W,.})] = EP[GSa({Gu})]| < [E[GSa(n, {W,})] — EP[GSa(n, {Gu})]]

+lllle D> EIGSa(n, {Xu}) — GSa({X,})I-
Xe{w,a}

The first term goes to 0 as d — oo by Lemma 4.11. Finally, using Lemma 4.12 and the Cauchy-Schwarz
inequality, we have:

E|GSa(n, {Xu}) = GSa({X,})] < 6*"/2\/215\@311(777 {Xu}) = GSa({ XD + Cll¢lloom,
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(a)
< da|glloce™™2 4+ C||¢' || s,

using in (a) that |E(5)| < af|¢||c. Letting d — oo, we get

Jim [EQ[GSa({W,})] = E¢[GSa({Gub)]] < Cli¢'lloo 191z - n-

Taking the limit  — 0 ends the proof of eq. (11). The claim of eq. (12) can be obtained easily
by picking 1 approximating an indicator function, see e.g. Section A.1.3 of [21] for a detail of this
argument. [

Proof of Lemma 4.11 We define, for g > 0:

Filn 5.(X,)) = ztoe ey 3 oo { =536 (M) |

SeN, u=1

Using Corollary 4.10 with Py being the uniform distribution over A, we have, for any 5 > 0:
T [B4{Fa(n, 5, (W, })] — Bo[Faln, 5, {G,} )] = 0. (62)
Moreover, for any fixed d,n, we have GS4(n, {X,}) = limg_,o Fu(n, 3,{X,}). Thus:

(GSa(n, {X,}) = Faln, B, {X,})| < 4“’3Fd<n’;;{Xu}>‘ds

Defining the “Gibbs” measure for S € N;:

exp {5 Yoy ¢ (Tr[X,5)) |

Ps(S) = - —,
Nsren, &b { =B 0 ¢ (Te[X,.8)) }
it is easy to check that
aFd(%S {X } 1
0s ’ ‘_ s2d? SZ Ps(5) log Ps(S) +log [y
eNy
(a) 1
S S22 log [ AV],
(®) 1 K
< 710g—
S n

where (a) follows from the fact that, the uniform distribution over N,y maximizes the entropy, and (b)
is eq. (61). Plugging the result back in eq. (63) we get:

|GSa(n, {X,}) — Fu 77757{X“}‘<1°g( ) s

1 ( )

- 64

s gl (64)
Combining egs. (62) and (64) we get, for any 8 > 0:

lim sup [E[GSq(n, {W})] — E¥[GSa(n, {Gu})]]

d—o0

< [¢llLlimsup Y E[GSa(n, {X,}) — Fa(n, B,{ X},
d=oo yerw,g}

2 )
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Taking the limit 8 — oo ends the proof of Lemma 4.11. O

Proof of Lemma 4.12 Note that GS4(n, {X,}) > GSs({X,}) since NV;, C B. The other side of this
inequality is a direct consequence of Lemma 4.1. Indeed, assuming that E(S) is C||¢'||c-Lipschitz
with respect to the operator norm, let us fix S* € B such that E(S*) = GSg({X,}) (since B is closed
and bounded it is compact, therefore this minimizer exists). Letting S € A, such that |S*—S|lop < 7,
we have

GSa({Xu}) = E(57),
> E(S) - |E(S") — E(5)],
> GSa(n, {Xu}) = Cll¢llo -,

which ends the proof. O
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A A classical concentration inequality

We will make use of the following elementary concentration inequality, a generalization of Bernstein’s
inequality for v, tails [23, 36, 37].

Lemma A.1 (Tail of sum of independent sub-Weibull random variables [23] —)

Let g € (0,2], and Wy, --- , W, be i.i.d. centered random variables satisfying P[|W;| > t] < 2=,

(i) If ¢ € [1,2], then for all a € R™ and all ¢ > 0:

2t
>t <2 —cmin | —,
{ ] = Cmm(\aug HaHZ*>}’

where ¢* € [2,400] with 1/¢+1/¢* = 1.

Zau

(13) If ¢ € [1/2,1], then for all t > 0

1 n
Pl 2 W
pu=1

> t] < 2exp{ cqgmin(nt?, (nt)? )}

This lemma is stated in [23], see Lemmas 3.6 and 3.7 — and eq. (3.7) — and is a consequence of the
same result for symmetric Weibull random variables [37].

B Fitting error of the sphere

We show here eq. (6). By Bernstein’s inequality [34], we have for all p € [n] and u > 0:

[EAR
Pll——— —1

As a consequence, if X, = Vd(||z,||?/d — 1), then® || X, ||y, < C. Let Y, = |X,|" — E[|X,]-

>u

< 2exp (—Cdmin(u,u2)) .

By the central limit theorem, X, LN N(0,2) as d — co. One shows easily that (e.g. for £ = 2):

sup E[| X, [*T¢] < o0,
a>1

and thus (since r < 2) |X,|" is uniformly integrable as d — oco. This implies (cf. Theorem 3.5 of [38])
that E|X,|” — E|Z|" with Z ~ N(0,2). Notice that E[|Z|"] = 2"T([r + 1]/2)/y/7.

Let ¢ :== 1/r € [1/2,1]. Since || X[y, < C, we have [|[X,|"[ly, < C, and thus [[Y,[ly, < C’'. We can
then use Lemma A.1, and we get:

{2

Combining the above, we get that for any € > 0, we have with probability 1 — 04(1):

lnxun L

8Where for q € [1,00), we defined the Orlicz norm of a random variable X as || X||y, = inf{t > 0 : Eexp(|X|?/t?) < 2}.
In particular if || X||4;, < co then X is said to be a sub-ezponential random variable. We refer to [34] for more details on
these classical definitions.

i (X, — X,

> ] < 2exp{—cr min(ntQ,(nt)l/T)}.

EflZ"] <E[Z]"+e
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C Towards exact ellipsoid fitting

We show here the following proposition.
Proposition C.1 (From approximate to exact ellipsoid fitting)

Let n,d — oo with n/d> — a € (0,1/2). Let {X, =1 be symmetric random matrices, and
H,, =Tr[X,X,]. Assume that:

(1) With probability 1 — 04(1), |[H ™ |op < Cn~2 for some C = C(a) >0

(73) There exists A_ > 0 (depending only on «) such that

p-lim min — Z ITr(X,S) — 1> = (65)

n—oo S=A_1Iy \f

Then, with probability 1 — o4(1) there exists S = 0 such that Tr[X,S] =1 for all p € [n].

Let us emphasize that given our current proof of Theorem 1.3 (cf. Section 2.4), if the assumptions of
Proposition C.1 hold for X, ~ Ellipse(d) and o < 1/4, then the first part of Conjecture 1.1 will hold.

However, the proof of Proposition C.1 is rather naive, as it crudely bounds the operator norm distance
of the minimizer of eq. (65) to a subspace V' (the affine subspace of solutions to the linear constraints
Tr[X,,S] = 1) by its distance in Frobenius norm. For these reasons, the assumptions of Proposition C.1
may be far from being optimal.

Remark I — Note that the condition () is clearly satisfied if X, Ligt GOE(d) and « € (0,1/2), since

H is then distributed as a Wishart matrix. On the other hand, while we expect it to hold as well

for X, Lid " Ellipse(d), this condition is (to the best of our knowledge) not known unless « is small
enough interestingly, this was one of the limitations in the recent works [11-13] that proved that
ellipsoid fitting is feasible for a sufficiently small.

Remark IT — Note that it is sufficient for eq. (65) to hold that there exists r € [1,2] such that:

1
pim i, 2 S 108, 17 =
At the moment, our proof of Theorem 1.3 (cf. Lemma 2.5) only implies (for » < 4/3) a similar
statement with a prefactor 1/n rather than the required 1/ n"/%. It would thus need to be improved
to show that eq. (65) holds for the ellipsoid fitting setting.

Proof of Proposition C.1 Let V = {S € S; : Tr[X,S] = 1, Vu € [n]} be the affine space of
solutions to the constraints. Let ¢ > 0, and S - A_I; such that

\FZ|TrXS)—1]2<£

Note that for all M € Sy, if ||[M||op < A_, then S + M > 0. In particular, |[M|p < A_ = S+ M > 0.
In order to conclude it thus suffices to show that dp(S,V) < A_. The following lemma is an elementary
geometrical result:

Lemma C.2 (Fuclidean distance to an affine subspace —)

Let d > 1and 1 < r < d two integers. Let (ay, by)5_; € (RTxR)", with (ax);_; linearly independent.
We define G := {x € R? : aJz + by =0, Vk € [r]}. Then, for any y € R%:

da(y, G)2 =oTH o,

in which vy, := aly + by, and Hyr = (ay, ap) is the Gram matrix of the {ay}.
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We now condition on the event of condition (7). For any e > 0, applying Lemma C.2 yields (with
probability 1 — 04(1)):

dp(S,V)? < Cla)e,
so that picking ¢ < A2 /C(«) implies the result. O

D Additional proofs for Proposition 2.1

D.1 Proof of Lemma 4.2

The lemma is a direct corollary of the following elementary result.
Proposition D.1 (Bounding a Gaussian process on the sphere)

Let n,p > 1. Let G € R™*P with Gy Lig (0,1). There is A > 0 such that for all 6 > 0 and r > 1:

52
IP’{”niaX |Gz|l, > [A(V/n + /D) + 63/n] n™ (1/r= 1/20)} <exp{ n2 }
a—1
Proof of Proposition D.1 Notice that G — max| |, ||Gx||; is Lipschitz:
max [[Grefy — max [[Gozll| < max [[(Gy = Ga)zllr,
llzlla=1 |zll2= l[zlla=1
() ma: (7 L0
< G2V max ||(Gp — Go)xl|2,

[|l]l2=1
< nmax(%—%,O)HGl o GZHF)

where we used Hoélder’s inequality in the form ||y, < nr2 llyl|2 for r < 2, and for r > 2 the fact that
llyll» < [lyll2, alongside with ||G|lop < ||G||F. By Theorem 3.3 we reach:

52
[Hnﬁax |Gz HTZIE:”nIlIaX |G|, +5nmax<1/“/2>]<exp{ . }

The proof is complete if we can show that Emax),,—1 |Gz, = O(nmax(/r=1/20)) . ((/n + /p). This
follows by the same inequality as above:

E max, |G|, < nmax(; 3.0 max, |Gz||2.

llzll2= llzll2=
The bound E max|,,—1 [|Gz|]2 = O(v/n + /p) is well-known, see e.g. [34]. O

D.2 Proof of Theorem 4.5
As we have seen, it suffices to prove Lemmas 4.6 and 4.7. We introduce some additional notations.
e For any i € [n], we denote

[ R(dS) e vt M09
J Po(dS)e > () OTE(U (1))

(66)

We do not write explicitly the ¢ dependency of this average as it will be clear from context.

e For any u, we denote [,y the expectation conditioned on {G, W}, i.e. the expectation over
{Gv, Wi}y (2p)- Note that this notation is different from [21], for which E(,) was the expectation
with respect to (G, W,). On the other hand, we denote without parenthesis the expectation with
respect to these variables: e.g. E(q is conditioned on {G1, W1}, but Eg, w, is the expectation
w.r.t. Gi, Wh.
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D.2.1 Proof of Lemma 4.6

We fix ¢t € (0,7/2), and we start from eq. (59), which we can rewrite using eq. (66) as:

g VO —;Elw[Fd(U(tm

(e OS) (T[S0 (1) ¢’<“[U1(t)sp)>1]

<e—¢<Tr[U1<t>sn>1

Since |1 ||loo < 00 and n/d? < ag, using the triangular inequality the proof of Lemma 4.6 is complete
if one can show the following bound, which will also be useful afterwards:

Lemma D.2

There exists a universal constant C' > 0 such that:

<6_¢(Tr[U15]) ‘Tr[Sﬁl] ¢'(Tr[U15]) ’>

sup sup sup  Ew, g, L<c.
d>1 t€(0,m/2) {Wu,Gru} "y <e—¢<Tr[U15])>

1

Proof of Lemma D.2 Note that

(emomitns) ’TI“[Sﬁl] ¢'(Tr[U 15])‘>1
<e_¢(Tr[U1S])>

]EWLGI
1
<6—¢(TY[U1S})‘Tr[Sﬁl(t)]Dl]

<e—¢[Tr<Uls)]>

< ”QSIHOOEWLGl [
1
< el |/ B, i [ (| [STL (0] |- (67)

in which we used the positivity and boundedness of ¢ in the last inequality. To control the last term
in eq. (67) we write:

—

By [([TelsT@]) | © (Bawm,

Y ({me. (mistiR)) ),

TS (1)])

L (Lo}, g
< V2Cy, (69)

where (a) uses that (-); is independent of {W3,G1}, (b) is from the Cauchy-Schwarz inequality, in (c)
we use the hypothesis on the first two moments of p matching the ones of GOE(d), and in (d) that
supp(Po) C Ba(C'Vd). m

D.2.2 Proof of Lemma 4.7

We fix t € (0,7/2) for the rest of the proof, and we write U, U for U(t),U(t). We follow the ideas of
Appendix A.3 of [21], and start again from eq. (59):

< as(ly + 1), (70)

|IE OU[F4(U ()]
ot
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with:

)

[ Po(dS) e~ 2 #(T{UvS]) (Tr[Sf]l]d(T&“[UlS]))]

I = |]E[{¢’[Fd(U)] — ¢/[Fd(U(1))]} [ Ry(dS) e~ L ATI0S)
0 € v

Y

J Po(dS) = 20 AT 0eSD (Ty([ ST ' (T [0, S]) ]

I,= ‘E[W[Fd(U(l))] [ Ry(dS) e — 3 #(Tx[U,S])
0

with U obtained from U by setting U, = 0. We show successively I; — 0 and I — 0. Since ¢’ is
assumed to be Lipschitz, we have:

[ Py(dS)e™ 2vm #(Tr[US))
[ Py(dS)e™ 2ovmz ATHUS]) |

log <6—¢<Tr[Uls]>>

|¢’[Fd(U)] _ T/JI[Fd(U(l))” < ‘w;l!Lip o

< ¥ lluip

I
1
< _ ||1!1/\|Lip log <€—¢>(Tr[U1$])>

< ¥ ||L1p||¢>||oo

)

1

Therefore,

. J Po(dS) e~ 2 210D (Ty( ST ' (T [0 S]) )
Il < Od <2> X E‘ ‘ (71)

[ Py(dS)e” >, o(Tx[U, 8])

The second term in eq. (71) is bounded by Lemma D.2, uniformly in ¢. Therefore, we reach that
I > 0asd— oco.

We now tackle I. Note that since UW) is independent of Uy, we can rewrite it as:

<e—¢(TY[U15]) (Tr[S(}ﬂ ¢'(Tr[Uy S])) >1
<e_¢(Tr[U15])>1 H

Y

Iy = |E(1) [¢,[Fd(U(l))]EG1:W1

e~ ¢(MUS) (Tr{STH] ¢/ (Th[U7 S]) )
< 1Y |loo Eq, .w . 72
s < e [ Fe—em) ] > (72)
1
We focus on bounding the right-hand side of eq. (72). We will show the following lemma:
Lemma D.3
Uniformly over all ¢ € [0,7/2] and {W},, G, }},_5, and under the hypotheses of Theorem 4.5:
e~ #MUS) (Tr[STH] ¢/ (Th[U7 5)) )
lim { Ec, w, ~0. (73)
d—oo <e_¢(Tr[Uls})> .
1

One directly concludes that I — 0 from using the dominated convergence theorem in eq. (72) (the
pointwise limit is given by Lemma D.3 and the domination hypothesis by Lemma D.2). This ends the
proof of Lemma 4.7.

We thus focus on the proof of Lemma D.3. Following [21], the sketch of the proof is the following:

(7) Show that the denominator appearing in eq. (73) can be moved to the numerator by using the
expansion of 1/x in power series around 1. This transforms the quantity to control to a sum of
terms of the type (Eq, w, [f(S1,---,Sk)])1, with Si,---, Sy independent samples under (-);.
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(77) Extend the one-dimensional CLT of Definition 4.1 to k-dimensional projections of G and W
(with & = Oy4(1)), and to square-integrable locally-Lipschitz functions. This allows to apply it
to the terms appearing in (4), and write (uniformly in Sy, .- ,S) that Eq, w, [f(S1, -, Sk)] =~

EG1,51 [f(S1,---,Sk)], with G; an independent GOE(d) matrix.

(7i7) For the case of Gaussian matrices, as explained above we have Uy independent of U;. Using the
form of the function f that appears in eq. (73) this implies that Ec & [f(S1,-++,Sk)] =0 and
concludes the proof.

Let us perform this strategy in detail. The following lemma is proven in Section D.3.

Lemma D.4 (Polynomial approzimation to the fraction —)

For all 0 > 0, there exists a real polynomial @) (depending only on ¢) such that for all d > 1, all
t € (0,7/2) and all {W,,, G, }}_:

e~ d(Tx[U15)) (Tr[Sﬁl] ¢/(TI[U1S]))
I
1

< ‘EG17W1{<6—¢(Tr[U1S]) (Tr[Sﬁl] gb’(Tr[UlS]))>1Q(<e’¢m[U15D>l)H +6.

We fix 6 > 0, and denote Q(X) = Zﬁ(zo ap X" the polynomial of Lemma D.4. Therefore, uniformly in
d, t, and {W,,G,}:

o—(Tx[U1S]) (Tr[Sﬁl] ¢’(Tr[U1S]))
‘<EG1,W1 l <€7¢(T&[U13])> ] >1
1

< i jan| (B, w, { e Lamo ATV (Tx[ 307 ¢ (Tx [ 50))) SRR (74)
k=0

with {S,}*_, i.i.d. samples from (-);. We then extend the one-dimensional CLT of Definition 4.1 to
finite-dimensional projections, similarly to Lemmas 29 and 30 of [21]. The proof of this lemma is
deferred to Section D.3.

Lemma D.5 (Extension of the CLT to finite-dimensional projections —)

Let R > 1 an integer, and G ~ GOE(d), independent of everything else. Let ¢ : R2% — R a locally
Lipschitz function such that for both X € {W,G}:

2
sup  sup sup <JEx,G {@({Tr(XSa) 5:1,{Tr(GSa)}aR:1) ]> < 0. (75)
d=1 {W,,Gu}r_y t€(0,7/2) 1

It is understood there that {Sg} NS (-)1. Then

lim sup sup <‘EW,G o({Tr(WS,)}, {Tr(GS,)})
d—00 {Wn,Gu}p_y te(0,m/2)

—Eg o p({Tr(G52)} (TGS ), = 0.

We wish to apply Lemma D.5 to eq. (74), i.e. to

PUTH(W180)}, {TH(G15)]) 1= ¢ Zams ST ({01 ! ({01 0)) ).
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¢ is locally Lipschitz by our hypotheses on ¢. Moreover, note that for X € {W, G}, and {5%} €
supp(Fp) (using that W has the same two first moments as G):

Ex o ({Tr(X5,)} {Tr(GS0))) | < 200/|2Tx[S3)/d < 20316/ < oc.

This allows to apply Lemma D.5 in eq. (74), and to reach that, uniformly in {WM,GM}Z:2 and
t € (0,7/2) we have:

e—¢(Tr[U1SD (TI‘[S(?l] (Zﬁ/(TI‘[UlS]))
<EG1,W1 [ <e,¢(Tr[U15])>1 ‘| >1

lim sup
d—o0

K
<0+ 3 laflimsup (|Eq,w, o({Tr(WiSa)} {T(G15)D) )
k=0 —00

K
<3+ 3 laftimsup ([B, & o({Tr(G18)} {THGISD)),
k=0 —00

K
+ Z |ag| lim sup <‘EGI,W1 e({Tr(W1Sa)}, {Tr(G1Sa)})
k=0

d—o0

~Eqg, g, pUTH(C1S)} TGS )

Qs ké ol timsu | (B, 5 { Saco OBASED (Ty[ S04 ] ¢/ (TeVi o)) ),

I

where we used Lemma D.5 in (a), and with V; = cos(t)G1 +sin(t)Gy, and V; = —sin(t)Gy + cos(t)G1.

Since G1,Gy are gaussians, so are V7 and Vi, and one verifies easily that they are independent since
their covariance is zero. Therefore, we have:

Eg, & {e” Zomo 208D (Te[SyTh] ¢/ (T (V20 )}

=Ey {6_ ZZ:O ¢(TI"[V15a])< [ET/ITT[SOXZ]} ¢/(Tr[‘/15,0]))} _o.
=0

Thus, we reach, for any § > 0:

limsup sup sup <.

e~ O(NIS) (Ty[STH] o (Te{U 51)
<EG1,W1 [
d—oo te(0,7/2) {WwGu}Zzz

<€f¢(Tr[Uls}>>l

)

Letting § — 0 finishes the proof of Lemma D.3. [

D.3 Additional proofs
D.3.1 Proof of Lemma D.4
We use the power expansion of x — 1/x around z = 1, defining, for M > 1:

M

Qur) =X (-2, Rue) =1~ Que).

k=0

We make use of Lemma 27 of [21]:
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Lemma D.6 (/21])
For any integer M > 1 we have

e Forall x # 0, Ry(z) = (1 — )M+ /x.

2

e ©+— Ry (z)” is convex on (0, 1].

e For any s € (0,1) and 1 > 0, there exists M > 1 such that SUPye(s,1] | Ry (t)] <.

Since e 19lle < ¢=¢ < 1, we have that for all n > 0 there exists M, > 1 such that for all M > M, all

matrices {W),, Gy }j—, all t € (0,7/2):

‘RM(<6—¢(Tr[SU1])>1)’ <. (76)
Thus, since 1/x = Qpr(x) + Ry (2):
e~ #MUS) (Tr[STH] ¢/ (Th[U7 5]) )
Eg,w,
‘< l <€—¢(Tr[UlsD>l ] >1
< (B o (s i) ou( (=) )] |
+ (B, [TV (Te[STH] ¢/ (Tr[5])) Rs (< A )
2 B, 555 (15T 00D (o=, )] |
+ 1(Ecyw; [e- | (Te[ST] o (e[U1)) ] )
‘<EGl,W1 {eﬂi’(Tr[UlS]) <Tr[5[71] ¢/(Tr[U1S]))QM<< Tr[UlSD>1)} >1‘
+ 1[0 lloo (B, wa | Te[ST] )1,
b

< |(Ben [e= ™D (Te{ST1] ¢/ (2x[U25)) ) Qar ({50 ] |+ Ol

using eq. (76) in (a), and the Cauchy-Schwarz inequality (cf. the proof of Lemma D.2) in (b). We
emphasize that this bound is uniform in ¢t and {W,,,G,}. Choosing n = §/(C||¢||s) ends the proof
of Lemma D 4.

—
Nas

IN

—~
=

D.4 Proof of Lemma D.5

We first prove that the conclusion of Lemma D.5 holds uniformly over all Sy,---,Sg € Ay when the
function ¢ is assumed to be continuous with compact support:

Lemma D.7
Let R € N*, and G ~ GOE(d), independent of everything else. Let ¢ : R? — R be Lipschitz and
compactly supported. Recall that W ~ p, a measure who is assumed to satisfy a one-dimensional

CLT with respect to a set Ay C Sy, see Definition 4.1. We assume that Ay is convex and symmetric.
Then:

lim sup[Ewe o({T(WS,)}. {Tr(GS4)})

d—00 Gy ,... Sp€Ay

- B o ({Tr(@S0)} {Tr(G5.)}) | = 0.
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Proof of Lemma D.7 Recall that we use the matrix flattening function of eq. (26). Let us denote:

" - (vec(Sl) 0 vec(S2) 0 -+ vec(SH) 0 > c Rild+1)x2R
0 vec(S1) 0 vec(S2) .- 0 vec(SF) ’
v = (vee(W)T,vec(G)T)T € RUHD), (77)
h = (vec(G)T,vec(@)T)T € RIUHD).
Using these notations, we have:
({Te(W S}y ATe(GSa)}, ) = HTv € B2, .

({Te(GSa) Ly {Tr(GSa)}E,) = HTh e B2,

We add a small Gaussian noise to help us deal with characteristic functions later on. Let 6 > 0, and
Z ~ N(0,8%I3R). For all Sy,---, Sk we have:
E(H™v) — E@(HTh)| < [E@(H™v) — Ep(H v+ Z)| + [E p(HTh) — Ep(Hh + Z)|
+Ep(Hv+2Z)-EpH"h+ Z)],
< 2elLE[Z]l2 + [Ep(HTv + Z) = Eo(HTh + Z)],
< CRY2| |6+ [E@(HTv + Z) —E@(HTh + Z)|. (79)

We now control the last term of eq. (79). For X € R?% a random variable, we define its characteristic
function as ¢x (u) == Ee~™'X. We have then

1 / (t)/ itTu—guuH2¢ ( )d dt = 71 E (t) 7Ht;5)§”2 dt
(2m)2R R2R80 RQRe x(u)dudt = (2707 F X RZRLp e ,
=Ep(X + 2).
Coming back to eq. (79) we get:
Ep(Hw+ Z) —Ep(HTh+ Z)|
< 7 o PO [ @ ) — e ()
= (27T)2R R2R ¥ R2R HTv HTh )
lellz — & 2
< (Qﬁ)ﬁz /RZRe 7 Il |PrTo(u) — dprp(w)|du. (80)
Here |||, = [ |¢(t)|dt. We will show that for any u € R?%:
lim — sup  |puro(u) — dmrn(u)| = 0. (81)

d=00 5, SpEAq
Combining eq. (81) with the dominated convergence theorem applied in eq. (80), we get:

lim sup |E@(Hv+Z)-Ee(H"h+ Z)| =0.
d%oosl’...ﬂs’ReAd

Plugging this back into eq. (79), we get that for any § > 0:

limsup sup |Ep(HTv) —E(HTh)| < CRY?|¢| Ld.
d—oo Si,,SREAg

Letting & — 0 ends the proof of Lemma D.7. There remains to prove eq. (81). Let u = (u(),u®) e
R2: with v, 4w e RE, and let us fix S1,---, S € Ag. We have

|prTo(u) — drrn(u)
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‘Ee—zza LT WS~ ) ulI Tr[GSa] Ee—idn_u uSDTe[GSa] =i 3 ulP Tr[GS,]

© B exp { - iTr[Wiugl)Sa” ~Eexp] _iTr[@iugl)Sa”
a=1 a=1

9

, (82)

using in (a) that G is independent of W,G. We can assume that u) # 0, otherwise the result of
eq. (81) is clear. Since Ay is symmetric and convex we have

A

H Zu S € A,
1

Hu
Therefore, letting @, (z) = e~ "% we have by eq. (82):
|brro(u) = drra(w)| = [E@u(Tr[SW]) — E @u(Tr[SG))| (83)
Moreover,
I gillult gy

|ou(@) — @uly)] = | < lullxly — =],

so that ||oullz < ||ulli. We can then therefore apply the one-dimensional CLT of Definition 4.1 in
eq. (83), and we get that

sup  |dgro(u) — drrn(w)| < sup |E oy (Tr[SW]) — E oy (Tr[SG])| =40 0.
S1,,SRrEAY SeAy

This ends the proof of eq. (81). O

We then deduce the full statement of Lemma D.5 by a truncation argument.

End of the proof of Lemma D.5 ¢ is now only assumed to be locally Lipschitz and square
integrable, in the sense of eq. (75). We take the same notations as in the proof of Lemma D.7, see in
particular eq. (77), so that

Ew.c o ({Tr(WSa)}, {Tr(GSa)}) = Bg ¢ 0 ({Tr(GS0)}, {Tr(GSa)})
=Ep(H™) —E@(HTh).

Let B > 0, and let us denote up : Ry — [0,1] a C*> function such that up(x) = 1 if + < B and
ug(x) = 0if z > B+ 1. We denote pp(z) := ¢(z)up(]|z]]). One can then check easily that ¢p is
Lipschitz (because ¢ is locally-Lipschitz), and compactly supported. Moreover, we have:

([E@(HTv) = E@(HTh)|)

<([Epp(H™v) —Epp(HW))1+ > (Elp(HT2)|(1 —up(|H z|))):- (84)
z€{hv}

We now control the different terms in eq. (84) successively. Notice that

(Eop(H™v) —E@p(HTh)[)1 <  sup  [Epp(HTv) —E@p(HTh),
S1,,SREA,

so that by Lemma D.7:

lim  sup sup ([E@p(H™) —E@p(HTh)[)1 =0. (85)
d—ro0 {Wy, Gu} 2 t€(0,7/2)

We now tackle the remaining terms in eq. (84). Let z € {h,v}. Using the Cauchy-Schwarz inequality
twice we get:

(Ee(HT2)|(1 —up([|[HTz[)1 < (E|p(HT2)[1{[|HTz]2 = B})1,
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IN

(Ealp(HT2)2) V2P {||HT2||2 > B}Y?),,
(Elp(HT2)2))0? - (PAIH 22 > B} (86)

IN

The first term in eq. (86) is bounded by the square integrability assumption, cf. eq. (75). To bound
the second term, we use Markov’s inequality:

1
(PAH 2]z 2 B})1 < 55(E- 1HT23)1-

From eq. (78) and the matching of the first two moments of p with GOE(d), we have:
2 A 2
B |73 = & > (s3]
a=1

Thus, we get:

AR [ TrS? ARC,
(PA{l[HTz[]2 > B} < B2< y > < B20'
1

All in all, we get:

sup swp sup (Elp(HT2)|(1— up(|HT=)) < T

(87)
d>1{W,,Gu}r_, te(0,7/2) b

Combining eqs. (85) and eq. (87) into eq. (84), and taking B — oo after d — oo, we conclude the
proof of Lemma D.5. O
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