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Current progress in artificial intelligence is centered around so-called large language models that
consist of neural networks processing long sequences of high-dimensional vectors called tokens. Sta-
tistical physics provides powerful tools to study the functioning of learning with neural networks
and has played a recognized role in the development of modern machine learning. The statistical
physics approach relies on simplified and analytically tractable models of data. However, simple
tractable models for long sequences of high-dimensional tokens are largely underexplored. Inspired
by the crucial role models such as the single-layer teacher-student perceptron (aka generalized linear
regression) played in the theory of fully connected neural networks, in this paper, we introduce
and study the bilinear sequence regression (BSR) as one of the most basic models for sequences
of tokens. We note that modern architectures naturally subsume the BSR model due to the skip
connections. Building on recent methodological progress, we compute the Bayes-optimal general-
ization error for the model in the limit of long sequences of high-dimensional tokens, and provide
a message-passing algorithm that matches this performance. We quantify the improvement that
optimal learning brings with respect to vectorizing the sequence of tokens and learning via simple
linear regression. We also unveil surprising properties of the gradient descent algorithms in the BSR
model.

I. INTRODUCTION

A. Motivation

a. Deep learning and the statistical physics approach to understand it. We are witnessing unprecedented
progress in artificial intelligence, largely thanks to advances in learning with large multi-layer neural net-
works, commonly referred to as deep learning [1]. Milestones such as the classification of images from the
ImageNet dataset [2, 3] or super-human performance in the game of Go [4] used deep neural networks based
on combinations of fully connected and convolutional layers that map rather high-dimensional vectors into
vectors of (in general) different, but still high, dimension. While deep learning is undeniably successful
in practical tasks, the underlying theoretical mechanisms behind its functioning remain covered with open
questions. This led to an abundance of theoretical works aiming to explain the behaviour of deep neural
networks that are observed in practice, such as the lack of overfitting in over-parameterized neural networks,
the principles thanks to which gradient-based training dynamics reach configurations with good general-
ization performance while many other configurations of equally good training loss exist and lead to bad
generalization, or theoretically-grounded principles leading to the choice of the best-performing architecture,
algorithms and hyper-parameters, for a given dataset and task. A subfield of the theory of deep learning
stems from statistical physics, a scientific field that is particularly well suited to come up with models that
are solvable in the high-dimensional limit, and to provide insights into the above questions [5]. This line of
work was initiated decades ago, with e.g. [6–10], and regained broad interest in the last decade with a number
of influential works, e.g. [11–18]. One of the instrumental models in this line of work is the teacher-student
model where one investigates whether a neural network can learn from data that were generated by a teacher
neural network whose weights are not known to the student neural network. This teacher-student setting
was introduced in [9] and used broadly, including in most of the above-cited works.
b. Sequence modelling takes the lead. The landscape of research in deep learning reshaped considerably

with the rise of transformer architectures [19] and subsequent large language models (LLMs), sometimes
also called foundation models, such as the GPT family [20–22], leading to the well-known chatbot ChatGPT
by OpenAI [22, 23] that took the field of AI and the whole high-tech industry by a storm. Transformers
are types of deep neural networks that stand behind this progress. They are composed of combinations of
fully-connected layers and, crucially, so-called attention layers. While a fully-connected layer maps vectors
into vectors, an attention layer maps sequences of vectors (called tokens) into a sequence of vectors (tokens).
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In language modelling, a token would typically be associated with a word, and each such token is mapped
(embedded) into a relatively high-dimensional (typically around a 1000-dimensional) vector. The sequence
then corresponds to a text composed of words/tokens and is also long, corresponding to the number of words
in a text. It is fair to say that the impressive performance of current LLMs was not anticipated by many.
The functioning of LLMs is surrounded by even more theoretical open questions – including the emergence
of capabilities [24], the neural scaling laws [25], or in-context learning [26].
In our opinion, the most fundamental theoretical question underlying transformers is:

Why is it advantageous to present the data as long sequences of high-dimensional tokens?

More specifically, why is it advantageous for network architecture to act differently in token-space and
embedding-space? Indeed, if one vectorized the data into a single large vector and used a fully-connected
architecture, the universal approximation theorem [27, 28] would still imply that a generic set of functions
can be represented this way. There must be a computational advantage in presenting the data as sequences of
tokens that the transformer architecture exploits. This advantage may be related to the underlying structure
of the data, the reduction of the number of trainable parameters or the flexibility with respect to sequence
length. However, the precise reasons are not understood and the advantage with respect to learning from
the vectorized data is not quantified theoretically.
One can anticipate that also in this context of learning from sequences of tokens, the statistical physics

approach, based on simplified models that capture some of the intriguing properties and behaviours, will
help to clarify some of the key questions surrounding LLMs, transformers, and learning with attention
layers. Indeed, works in this direction started appearing in the past couple of years. From those we are
aware of, several build interesting simplified models and then investigate the training of the corresponding
toy-transformer architecture numerically or phenomenologically [29–31]. Others study the propagation of a
signal through a trained transformer [32, 33]. So far, only a handful of works have been able to analyze the
training of a toy transformer analytically. Concerning works that analyze the training of a neural network
for data consisting of sequences of tokens, [34] analyzes an attention layer learning Gaussian data generated
by a model where the sequence length L is large, but the token dimension d is small. Authors of [35] analyze
minimizers of the training loss and corresponding phase transitions for a teacher-student-like data model
where the token dimension d is large, but the length of the sequence is small L = O(1). Finally, the authors
of [36] consider a very interesting case of in-context learning linear regression where both the token dimension
d and the sequence length L (corresponding to the number of samples given in each context in [36]) are large,
but they analyze only a linear attention layer, which can be seen as a special case of ridge regression, limiting
the generalizability of their approach to address a broader set of questions. In practical settings, such as the
GPT architectures, both the length of the sequence L and the embedding dimension d are large, typically
in thousands [37]. It is thus critical to build a theoretically-analysable model, where the thermodynamic (or
high-dimensional) limit corresponds to both the length L and the embedding dimension d going to infinity.

Another motivation of this paper stems from the following lines. While complex non-linear neural networks
perform extremely well in practice, the deep learning revolution has exposed many fundamental questions
even in basic statistical methods like linear regression. Indeed, describing training procedures in non-convex
optimization problems is highly non-trivial even in simple single-layer neural networks with non-linear out-
puts, such as in the dynamics of gradient descent for phase retrieval problems [38, 39]. Another example of
a phenomenon that can be understood already in linear regression (or its slight variations) is double-descent
[40], which has fundamentally changed our understanding of overfitting and the bias-variance trade-off, while
it has been theoretically explained within the framework of linear regression [40, 41]. It is clear from these
examples that such basic models as linear regression have been extremely useful in clarifying the properties
of modern deep learning. Therefore, the question arises:

What is the basic model, analogous to perceptron or generalized linear regression, for sequences of tokens?

In this paper we introduce such a model, and initiate its study, thus providing a rich theoretical playground
to tackle questions about learning from long sequences of high-dimensional data.
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B. Definition of the bilinear sequence regression model

Motivated by the above questions, the present paper introduces a prototypical analytically solvable model
for supervised learning from long sequences of high-dimensional tokens, which we name the Bilinear Sequence
Regression (BSR) model. We consider a supervised regression task on a dataset of n input/output pairs
Dn = {(Xµ, yµ)}nµ=1 with Xµ ∈ RL×d being the inputs consisting of a sequence of length L of d-dimensional
tokens, and y ∈ R are the labels. We focus here on regression, as opposed to the more common next-
token prediction, because a lot of theoretical studies of neural networks focused on linear regression; we are
thus able to leverage the insights gained in the linear regression literature. Following the statistical physics
studies of the teacher-student setting to analyze learning with fully-connected neural networks, we draw each
component of the input data Xµ

ij independently from a Gaussian distribution of zero mean and unit variance.

The labels are then generated through the following (teacher) model

yµ ∼ Pout

(
· | 1√

dLr

L,d∑
a,i=1

Xµ
ai

r∑
γ=1

U∗
iγV

∗
γa

)
, (1)

where U∗ ∈ Rd×r, V ∗ ∈ RL×r, and their components are taken i.i.d. from a standard Gaussian, and Pout

is a probabilistic scalar output channel. The parameter r will be called the width of the model. Given the
dataset Dn, the task is then to learn a function f : X ∈ RL×d → y ∈ R and obtain a good performance on a
test set.
We consider a Bayesian setting, in which the learner knows the architecture of eq. (1), i.e. the form of Pout

and the distributions of U∗, V ∗. In this context the main task is to recover the values of U∗ and V ∗. It is
well-known that the optimal performance for this task is reached by the so-called Bayes-optimal estimator,
which corresponds to the mean of the posterior distribution, as we will describe in more details in Section II.
We think of the inputs Xµ ∈ RL×d as sequences of tokens and the outputs yµ as labels. As a concrete

example, each row of Xµ can be thought of as a vector embedding of a word, so that Xµ represents a text
in some language, and yµ may be a sentiment score associated with the text, categorising its meaning, for
example, as uplifting or depressing. As said above, data in the form of sequences of tokens is ubiquitous in
modern machine learning, including natural language datasets (where tokens are words and sequences are
phrases) or biological datasets (where tokens are amino acids and sequences are proteins), yet our understand-
ing of the performance of learning algorithms on such data is scarce. In this sense, the model (1) provides
a benchmark dataset where the inputs Xµ are unstructured (random) and the function from X ∈ RL×d to
y ∈ R is parametrized by ground-truth latent variables U∗ and V ∗ in a bilinear form way which is among
the simplest functional forms one can posit when inputs Xµ are sequences of tokens. In this paper, we show
that (1) is a useful toy model for supervised learning over sequential data in a similar way as the teacher-
student perceptron for non-sequential data, which is widely studied in the statistical physics literature. The
key question, then, is how neural networks learn on such a dataset in order to be able to predict labels on
previously unseen inputs. Additionally, how does the performance depend on the architecture of the network
and the used algorithm?
In the present paper we address the following questions:

(Q1) What is the performance of the Bayes-optimal estimator learning from a given number of samples n
of data generated by the model (1) in the limit of d and L large, proportionally to each other? We
consider the full range of possible values for the width parameter r, with a specific focus on the regimes
where r is either proportional to d and L, or remains of order O(1), as L, d→ ∞.

(Q2) Can this Bayes-optimal performance be reached by efficient algorithms, and which ones?

(Q3) Does the Bayes-optimal performance present sharp thresholds (phase transitions) in performance as a
function of the number of samples? If yes, at which sample complexities?

(Q4) How does the Bayes-optimal performance compare to the performance of linear regression on the vec-
torized data?

(Q5) What is the performance of gradient descent minimizing a loss that uses an ansatz for the function
from X to y that matches (1), and how does it depend on the parameters of the model, the learning
rate and the initialization of the algorithm? Unlike in linear regression where the most natural loss
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is convex, the bilinear nature of the present model leads to a non-convex optimization problem with
multiple minima. It is a hard endeavour to understand the behaviour of gradient descent in such cases.
This question is hence addressed numerically.

The present paper answers all these questions. In particular, (Q1) is answered analytically in Sec. II C, (Q2)
via the GAMP-RIE algorithm in Sec. IID, (Q3) in the discussion of Sec. III B, (Q4) in Sec. III C and Figs. 1-2,
and (Q5) numerically in Sec. IV.
The numerical code used to produce all presented experiments is available at https://github.com/

SPOC-group/bilinear-sequence-regression.

C. Bilinear sequence regression as the backbone of a transformer

We will now motivate the form of the bilinear sequence regression model (1) as the bare backbone of a
prototypical transformer architecture designed for a supervised regression task, i.e. where the output is a
continuous scalar. Let us first describe the key components of such architectures. This part can also serve
to readers not familiar with these types of neural networks, to get a concise account of their key ingredients.
We consider the following prototypical architecture for a transformer that acts on sequences of tokens

Xµ ∈ RL×d and maps them to scalar labels yµ. A toy model for a transformer would typically include
a first linear embedding layer, followed by an attention layer, followed by two fully connected layers with
omnipresent skip connections, followed by a final linear readout. Written mathematically, the embedding
layer implements the linear mapping

fembedding : RL×d → RL×d′
s.t. Zaγ := [fembedding(X)]aγ =

d∑
i=1

XaiUiγ , (2)

with learnable weights U ∈ Rd×d′
. We remark that the embedding layer usually serves to reduce the dimen-

sionality, i.e. d′ < d. This is because, in language data, d would correspond to the size of the dictionary,
which is typically much larger than the embedding dimension. The attention layer with a skip connection
implements the mapping

fattention : RL×d′ → RL×d′
s.t. Z ′

aγ := [fattention(Z)]aγ = Zaγ +

L∑
b=1

Aab(Z)

 d′∑
j=1

Zbj(wV )jγ

 , (3)

where wV ∈ Rd′×d′
is a learnable matrix called value, and the dot-product attention is defined as

Aab(X) = softmax

 d′∑
i=1

 d′∑
γ=1

Zaγ(wQ)γi

 d′∑
γ=1

Zbγ(wK)γi

 , (4)

where wQ, wK ∈ Rd′×d′
are the learnable query and key matrices, and the softmax function maps rows of

matrices into rows of normalised probabilities as

softmax(Mab) :=
eMab∑L
c=1 e

Mac

. (5)

The subsequent one-hidden-layer fully connected network with a skip connection across the non-linearity
implements the following mapping:

fMLP : RL×d′ → RL×d′
s.t. Z ′′

aγ := fMLP(Z
′)aγ = Z ′

aγ + σ

 d′∑
j=1

Z ′
aj(wF )jγ

 , (6)

where wF ∈ Rr×d′
is a learnable matrix of weights, and MLP stands for multi-layer perceptron. Finally, for

regression tasks the natural last mapping is a readout

freadout : RL×d′ → R s.t. y = freadout(Z
′′) =

L∑
a=1

d′∑
γ=1

Z ′′
aγVγa, (7)

https://github.com/SPOC-group/bilinear-sequence-regression
https://github.com/SPOC-group/bilinear-sequence-regression


5

where V ∈ Rd′×L is a learnable matrix
A realization that is key to motivate the bilinear sequence regression model (1) is that the skip-only part

of this transformer architecture (essentially setting σ = 0 and A = 0 in eqs. (3) and (6)) reduces to

y =

L,d∑
a,i=1

Xai

d′∑
γ=1

UiγVγa . (8)

We are now considering how this transformer architecture aims to learn from the data produced by the
BSR model (1). Notice that if we set the width of the embedding layer d′ to be the width of the BSR model
d′ = r, the skip-only part gives an architecture that matches the bilinear sequence regression model (1) (with
Pout(y|y′) = δ(y − y′) a noiseless output channel, which will be our main focus when applying our results).
We think of the skip-only part as the bare backbone of the architecture, i.e. the transformer stripped of the
attention and fully connected layers. We stress that the skip-only part thus acts as a student model that
matches the architecture of the teacher (1).
The case where d′ ̸= r is also of interest, particularly when d′ > r, which corresponds to the student

model (8) being overparameterized relative to the target (teacher) function (1). A detailed analysis of this
very rich setting is deferred to future work, as we focus here on the more easily analyzable Bayes-optimal
case d′ = r.
We also note that transformers such as the ones considered in [19, 20] actually possess more features

than the ones presented above: e.g. they use attention and MLP layers multiple times, they use positional
encoding to represent the ordering of the sequences, and the attention layer has multiple so-called “heads”,
meaning the size of the value matrix wV is (d′/h)× (d′/h), with h the number of heads and the outputs Z ′

are concatenated together from all the heads to get back to dimension d′. The architecture presented above
should be thought of as simplified.
As a matter of fact, the above rationale is valid for any model with skip connections (not only a transformer)

designed to process sequences of tokens. The BSR would be the backbone of more general sequence models
with skip connections designed for regression.

D. Related works

As far as we know, the bilinear sequence regression model (or BSR) (1) was not yet studied in the context of
sequence modelling, neither as a model for synthetic data nor as an analytically tractable model for learning.
It was, however, studied in the literature under the umbrella of matrix sensing [42–44] in the context of
signal processing where U∗ and V ∗ represent a hidden signal that is to be recovered. In matrix sensing
each input matrix Xµ ∈ RL×d is seen as a random linear projection operator, and the task becomes to
retrieve the (sometimes sparse) signals U∗, V ∗ from the projections. The well-known line of work represented
by [42, 43] proposes and analyses an algorithm based on a convex relaxation of the problem, where the
nuclear norm (defined as the sum of singular values) of the matrix S∗ = U∗V ∗/

√
r is minimized. Similarly

to other convex relaxations, this algorithm, however, reaches suboptimal performance with respect to the
Bayes-optimal estimator. Another line of work considered the matrix sensing problem solved via gradient
descent in an over-parameterized setting: their findings suggested that gradient descent with infinitesimal
initialization could have implicit regularization towards the minimum nuclear norm [45, 46].
The Bayes-optimal performance for matrix sensing, which is an instance of model (1), was addressed

in [44] using approximate message-passing algorithms and their state evolution. Their results provide an
exact characterization of the Bayes-optimal performance in the low-width limit where L, d→ ∞ with L/d =
O(1), n/d = O(1) and crucially the width remains of order r = O(1). The paper [44] also claims to provide
an asymptotically exact characterization of the case where the width r is extensive, i.e. r/d = O(1), but
this claim is based on incorrect assumptions, as was later found in the closely related problem of extensive-
rank (the width parameter r plays the role of the rank) matrix factorization in the line of work [47–53].
The characterization of the Bayes-optimal performance for the extensive width r/d = O(1) thus remained
open: this is the first main technical contribution of the present paper, together with the proposition of
an approximate message passing algorithm that reaches, in the studied cases, the optimal performance in
polynomial time.
Another model studied in the literature that is technically related to ours would correspond to the width

r = 1, with each sample Xµ being a symmetric matrix and U = V T . Such a model has been studied both
for random labels y [54–56] and with labels generated by a teacher model [57].
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On a technical level, our work builds upon the works [50, 58]. More specifically, we extend the recent
analysis of [58], that treats a model that can technically be seen as a symmetric version of the BSR, where
one imposes U = V T , andXai is a symmetric matrix. Our derivation further relies on the optimal performance
in the denoising of extensive-rank non-symmetric matrices [50].

II. MAIN TECHNICAL RESULTS

A. Generalized bilinear sequence regression model

From a technical point of view, it will be advantageous to think about the BSR model (1) in a slightly
more general way. We consider the model

yµ ∼ Pout(·|hµ) with hµ =
1√
Ld

L,d∑
a,i=1

Xµ
aiS

∗
ia , (9)

where S∗ ∈ Rd×L is an unknown weight matrix, Xµ ∈ RL×d for µ = 1, . . . , n are input sequences composed
by L tokens, each a vector in dimension d, and yµ ∈ R for µ = 1, . . . , n are the associated scalar labels.
We assume the data to be Gaussian, i.e. Xµ

ai ∼ N (0, 1) independently for each value of (µ, a, i). We believe
that this assumption can be relaxed within the context of Gaussian universality results (see e.g. [59, 60])
without altering the main points of our analysis: we will pursue this generalization in future works. The
labels yµ are generated through a possibly probabilistic output channel Pout, conditioned on the value of the
scalar pre-activations hµ.
The BSR model of eq. (1) corresponds to the specific case of factorised Gaussian prior on S∗, i.e.

S∗
ia =

1√
r

r∑
γ=1

U∗
iγV

∗
γa , (10)

with U∗ ∈ Rd×r, V ∗ ∈ Rr×L matrices of i.i.d. standard Gaussian entries. This distribution introduces
non-trivial dependencies between each entry of S∗, coupling the token and embedding dimensions.
We will consider the model (9) in the high-dimensional setting, where L, d→ ∞ with fixed ratio L = Θ(d).

In particular, we define

β :=
max(L, d)

min(L, d)
≥ 1,

which remains finite as L, d → ∞. β measures the aspect ratio of the matrices Xµ and S∗, irrespective of
which among L and d is bigger. In general, the scaling for the number of samples n in the high-dimensional
limit, i.e. the number of samples needed to at least partially retrieve the signal S∗, depends on the choice of
its distribution (and it usually scales with the total amount of unknowns included in S∗).
The main novel results of this paper relate to the so-called extensive-width limit where the width r is also

proportional to the dimensionality. We thus define a width-related parameter

ρ :=
r

min(d, L)

that will remain finite in the high-dimensional limit of the model. Note that the rank of the matrix S∗ is
constrained to be at most r, and generically, when the width r is extensive, the rank of the matrix S∗ is also
extensive. We will thus call the corresponding limit the extensive-width or extensive-rank case. For ρ→ ∞,
we expect by the central limit theorem that the distribution of S∗ approaches the one of a matrix with i.i.d.
standard Gaussian entries. In the regime where r scales linearly with d, L, we will see that the correct sample
scale to observe non-trivial retrieval of the ground-truth signal is n = O(dL). We define α as

α :=
n

dL

with α > 0 finite in the high-dimensional limit. The low-width limit where ρ is small down to the width
r = O(1) is considered for comparison in section II E, building on the result of [44].



7

We stress that our main technical results apply to a much wider class of distributions for S∗ (priors), more
specifically rotationally invariant distributions P0, as long they admit a well-defined limiting spectral density
in the high-dimensional limit. Without loss of generality we assume that P0 is normalised as

Q∗ := lim
d,L→∞

ES∼P0

1

dL

L,d∑
a,i=1

(S∗
ia)

2 = 1 . (11)

In informal terms, this ensures that the entries of S∗ ∼ P0 are on average of order O(1) in the high-
dimensional limit. Rotational invariance means that P0(S) = P0(O1SO2) for any pair of rotation matrices
O1, O2 in dimensions respectively d, L, while having a well defined limiting (symmetrised) spectral density
means that

lim
d,L→∞

1

2min(d, L)

min(d,L)∑
i=1

[δ(x− σi(S)) + δ(x+ σi(S))] = µS(x) , (12)

for some density µS(x), where σi(S) are the singular values of S/ 4
√
dL (the normalisation ensures that σi(S)

remains of order O(1) in the high-dimensional limit).

B. Bayes-optimal estimation

We are interested in predicting the information-theoretical limits for retrieving the hidden parameters S∗

from a typical dataset Dn = {(Xµ, yµ}nµ=1. To achieve this goal, we will study the Bayes Optimal (BO)
estimator and its performance. We are interested in two performance metrics. The first one is the averaged
test error (also called generalization error), which is the error obtained when predicting the label on a
newly-sampled (X, y) data pair, and is defined as

Egen(Ŝ) := E(X,y)ES∗ED|S∗

(
y − Pout

(
1√
Ld

∑
ai

XaiŜ(D)⊤ai

))2

, (13)

where Ŝ is a generic estimator (a function mapping the dataset D to a candidate set of weights Ŝ(D)) and by
Pout(x) we mean the (possibly random) output of the output channel conditioned on x. Our second metric is
the averaged estimation error, which is the discrepancy between the estimated weights and the true weights,
and is defined as

Eest(Ŝ) :=
1

dL
ES∗ED|S∗ ||S∗ − Ŝ(D)||2 . (14)

The BO estimator w.r.t. either one of the two performance metrics is defined as the estimator function
Ŝ : D → Ŝ(D) minimising the respective metric. It is a very classical result that the BO estimator w.r.t. the
test error is given by

ŜBO,gen(D) = ES∼P (S|D)E(X,y)|S [yX] , (15)

where (X, y) is a newly sampled input-output pair conditioned on a set of weights S, and P (S|D) is the
posterior distribution, i.e. the probability that a candidate signal S has been used to generate the dataset
D, which can be expressed (through Bayes’ theorem) using the prior distribution and the output channel:

P (S|D) ∝ P0(S)
∏
µ

Pout

(
yµ
∣∣∣∣ 1√
Ld

∑
ai

XaiS
⊤
ai

)
. (16)

The BO estimator w.r.t. the estimation error instead equals the posterior mean, i.e.

ŜBO,est(D) = ES∼P (S|D)[S] . (17)

Both these expressions are standard (see for example [61]) and can be recovered by taking the derivative

w.r.t. the estimator Ŝ in the errors’ definitions and setting it equal to zero.
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We remark that for generic Pout the two BO estimators may differ. However, in the case of Gaussian
inputs X and Gaussian label noise (i.e. Gaussian output channel Pout(·|h) = N(h,∆), which includes
noiseless observations), one can show that

Egen(Ŝ) = Eest(Ŝ) + ∆ , (18)

meaning that the estimation and test BO estimators coincide, and that the respective values of the errors
differ only by a constant additive shift quantifying the amount of label noise. In the following we will focus on
this special case, and for this reason we here restrict our analysis to the BO estimator w.r.t. the estimation
error. Finally, we remark that the BO estimation error is also called Minimal Mean Square Error (MMSE)
in the literature.
We recall that the estimation error of any estimator Ŝ is given by

Eest(Ŝ) =
1

dL
ES∗ED|S∗ ||S∗ − Ŝ(D)||2 = 1 + q(Ŝ)− 2m(Ŝ) (19)

where we defined (using conventions originating in statistical physics [62]) the average “magnetisation” m(Ŝ)

and “overlap” q(Ŝ) of the estimator Ŝ as

m(Ŝ) :=
1

dL
ES∗ED|S∗ Tr((S∗)T Ŝ(D)) and q(Ŝ) :=

1

dL
ES∗ED|S∗ Tr(ŜT (D)Ŝ(D)) , (20)

and used that the prior is normalised to have self-overlap Q∗ = 1, see eq. (11). For the BO estimator,
Nishimori’s identities [62] imply mBO = qBO, from which we obtain

MMSE = Eest(ŜBO) = 1− qBO , (21)

and moreover qBO reduces to the overlap between two independent samples of the posterior distribution
P (S|D), i.e.

qBO =
1

dL
EDES1,S2∼P (S|D) Tr(S

T
1 S2) . (22)

We stress that in the case of a generic non-Gaussian Pout, the BO test error can differ from the BO estimation
error. Yet, it can still be computed as a function of the same order parameter qBO, which is the quantity for
which we provide a precise asymptotic analytical treatment in the following sections.
Finally, we notice that the estimation error for the Gibbs sampler of the posterior, i.e. the expected

estimation error of a uniform sample of the posterior, satisfies

ES∗ED|S∗ES∼P (S|D)
1

dL
||S∗ − S||2 = 1− 2

1

dL
ES∗ED|S∗ES∼P (S|D) Tr((S

∗)TS)

+
1

dL
ES∗ED|S∗ES∼P (S|D) Tr(S

TS)

= 1− 2mBO +
1

dL
ES∗ED|S∗ES∼P (S|D) Tr(S

TS)

= 2(1− qBO) ,

(23)

where in the last step we use Nishimori’s identities, stating that a sample from the posterior is statistically
equivalent to the ground-truth. Notice the crucial difference between the BO estimator and a sample of the
posterior: in the overlap term q(S), the BO estimator uses the overlap between two independent samples of
the posterior, while the Gibbs sampler uses the self-overlap of a single sample of the posterior. This implies
that the estimation error of the Gibbs sampler, on average, is twice the BO estimation error.

C. Optimal error for extensive-width BSR

In this section, we present our novel results concerning the asymptotic characterisation of the BO estimator
and of the associated optimal estimation error in the high-dimensional limit for all output channels. These
results provide the answer to (Q1) posed in the introduction. We start with the general case of arbitrary
rotationally-invariant priors on S, and follow up with the results for the extensive-width BSR model as a
consequence.
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Result 1 (MMSE for generalized BSR). Consider any rotationally invariant prior P0(S) such that the em-

pirical symmetrised singular value density of S = S/ 4
√
dL with S ∼ P0 converges to a well defined probability

distribution for d → ∞ with β = max(L,d)
min(L,d) ≥ 1 finite. Call µ̂Y the symmetrised singular value density of

Y = S +
√
δZ where Z is a matrix of i.i.d. Gaussian entries N(0, 1/ 4

√
dL) and δ > 0. Define the sample

ratio as α = n/(dL).
Then limd→∞ MMSE = 1− q where (q, q̂) ∈ R2 are a solution to the non-linear system of equations

q = 1− 1

q̂
+

2

β3/2q̂2
−
∫
dx µ̂Y (x)

[
(β − 1)2

2x2
+

2π2

3
µ̂Y (x)

2

]
,

q̂ =
α

q

∫
Dz dy

(∂zIout(z, y; q))
2

Iout(z, y; q)
,

(24)

where

Iout(z, y; q) :=

∫
dhdĥ

2π
Pout

(
y|h
)
exp

(
− 1− q

2
ĥ2 + (

√
qz + h)iĥ

)
. (25)

The integral over y is intended over the image of Pout. The dashed integral is regularized as specified in [50,
Appendix A]. In the case where eq. (24) admits multiple solutions, one should pick the one maximising an
associated free entropy, whose expression we provide in Appendix B, see eq. (B49). Notice that for Gaussian
output channels Pout(·|h) = N(h,∆), the equation for q̂ simplifies to

q̂ =
α

∆+ 1− q
. (26)

Result 1 can be obtained by performing a non-rigorous (hence the phrasing “Result” rather than theorem)
but exact computation based on replica theory, detailed in Appendix B. One writes the partition function
associated to the posterior distribution, computes it through replica theory and obtains a saddle-point char-
acterisation for the overlap order parameter, i.e. eq. (24). The main technical novelty in Result 1 is that for
rotationally-invariant priors with extensive rank, a standard factorisation passage of the computation fails
(contrary to what has been claimed by [44], where the authors’ analysis is not correct in the extensive-rank
regime, see the references cited in the introduction on the matter). However, we can now overcome this
difficulty by adapting recent results for Bayes optimal extensive-rank matrix denoising [48, 50].
The main difficulty in solving (24) is the computation of µ̂Y (x), which for generic rotationally-invariant

priors is a priori non-trivial. For the factorised Gaussian prior on S, corresponding to the BSR model, this
difficulty can be overcome. Details on how to compute efficiently µ̂Y (x) in this specific case can be found in
[50, Section 3.3 and Appendix F], adapting previous work by [63]. The explicit formula for the MMSE for
the BSR model is then as follows.

Result 2 (MMSE for the bilinear sequence regression model, consequence of Result 1). For the bilinear
sequence regression model, MMSE = 1− q where q satisfies (24). The spectral density µ̂Y (x) to use in (24)
is characterised as follows. Define the Stieltjes transform of µ̂Y (x) as

gY (z) :=

∫
dx

µ̂Y (x)

z − x
. (27)

Then,

gY (z) = zgY 2(z2) , (28)

where gY 2 is the Stieltjes transform of the asymptotic spectral density of Y Y T (if d ≤ L) or of Y TY (if

(d > L). Moreover, gY 2(z2) is the root with largest imaginary part of the quartic polynomial
∑4

a=0 akX
k,

where

a0 = −ψ3

a1 = ψ(ζ(ψ − ϕ) + ψ(η(ϕ− ψ) + ψz2))

a2 = −ζ2(ϕ− ψ)2 + ζ(η(ϕ− ψ)2 + ψz2(2ϕ− ψ))− ηψ2z2ϕ

a3 = −ζz2ϕ(2ζψ − 2ζϕ− 2ηψ + 2ηϕ+ ψz2)

a4 = ζz4ϕ2(η − ζ) ,

(29)
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where ϕ = ρ/β, ψ = ρ, η = (1 + δ)
√
β and ζ =

√
β. Finally, the symmetrised singular value density can be

recovered as

µ̂Y (x) =
1

π
lim

ϵ→0+
Im gY (x− iϵ) . (30)

Notice that whenever ρ < 1, the symmetrised singular value density of S has a delta contribution at the
origin with mass (1− ρ), while the non-trivial bulks of the distribution (positively and negatively supported)
each have mass ρ/2. Moreover, while the asymptotic spectral distribution of S is singular due to the delta

peak, the one of its noisy version Y = S +
√
δZ can be shown to possess a smooth density for all values of

δ > 0 [64].
Finally, in the limit of large β ≫ 1 (i.e. when L ≫ d or L ≪ d) and of factorised Gaussian priors (see

eq. (10)), we are able to simplify Result 1 significantly, bypassing the computation of the non-trivial limiting
spectral density. We present this result in Appendix C 4.

D. Message-passing algorithm

For general rotationally-invariant priors P0, we are also able to derive an algorithm that, in the high-
dimensional limit, achieves the MMSE (unless computationally hard phases arise, which we have not observed
in the present problem, see the discussion in the remainder of the section), giving an efficient implementation
of the posterior mean, an often intractable problem. This provides the answer to question (Q2) posed in the
introduction. The algorithm we present is a variant of the well-known Generalised Approximate Message
Passing (GAMP) algorithm [65], with an additional matrix denoising step, similarly to the algorithm designed
in [58].

Result 3 (GAMP-RIE for rotationally invariant priors). Consider the same setting as in Result 1. Define:

• gout as

gout(y, ω, V ) :=
1

V

∫
dz(z − ω)e−

(z−ω)2

2V Pout(y|z)∫
dze−

(z−ω)2

2V Pout(y|z)
, (31)

which reduces to gout(y, ω, V ) = (y − ω)/(∆ + V ) for the Gaussian label noise output channel with
variance ∆ (i.e. Pout(·|h) = N (h,∆)).

• fRIE(·, δ) as the BO rectangular matrix Gaussian denoiser [50, Result 1, 2] with noise-to-signal ratio
δ, and MMSEdenoising(δ) the corresponding MMSE. Explicitly, if R = UΛV is the singular value de-
composition of a matrix R, with Λ = diag(λ1, . . . , λt) the denoiser acts on each separate singular value
as

fRIE (R = UΛV, δ) = Udiag

(
λi −

2δ√
β

[
β − 1

2λi
+−
∫
dx
µ̂Y (x)

λi − x

])
i=1,...,t

V , (32)

with µ̂Y as defined in Result 1, and

MMSEdenoising(δ) = δ − δ2√
β

[
(β − 1)2

β
−
∫
dx
µ̂Y (x)

x2
+

4π2

3β
−
∫
dxµ̂Y (x)

3

]
, (33)

is the associated BO mean square error. The dashed integral is regularized as specified in [50, Appendix
A].

Then, Algorithm 1 achieves at convergence an overlap q = 1
dLES∗ED|S∗ Tr(ŜT (D)Ŝ(D)) satisfying (24) in

the high-dimensional limit. For the specific case of the BSR model, we can analytically compute the spectral
density µ̂Y , as detailed in Result 2.

Let us now justify the last claim of Result 3, concerning the performance achieved by Algorithm 1. It
builds on the connection between approximate-message-passing algorithms and replica theory, which is a well-
established result in the theory of generalised linear models [62]. This connection stems from the fact that
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Algorithm 1: GAMP-RIE for the BSR model with extensive width.

Result: An estimator ŜAMP

Input: Dataset {(Xµ, yµ)}nµ=1;

Initialize St=0 ∼ P0, set St=0 = St=0/
4
√
dL and ct=0 = 1, ωt=0 = 1× [1, . . . , 1]T ∈ RN , Vt=0 = 1 ;

Rescale X̃ = X/
4
√
Ld ;

while not converging do

• Estimation of the variance and mean of Tr(ST
t X̃

µ);

Vt = ct and ωµ
t = Tr(ST

t X̃
µ)− gout(y

µ, ωµ
t−1, Vt−1)Vt ;

• Variance and mean of S estimated from the channel observations;

At =
α

n

n∑
µ=1

gout(y
µ, ωµ

t , Vt)
2 and Rt = St +

1

At

√
dL

n∑
µ=1

gout(y
µ, ωµ

t , Vt)X̃
µ ;

• Update of the estimation of S⋆ with the prior information;

St+1 = fRIE

(
Rt,

1

At

)
and ct+1 = MMSEdenoising

(
1

At

)
;

t = t+ 1;

end

Rescale ŜAMP =
4
√
LdSt .

AMP algorithms can be tracked in high-dimension by an iterative update equation for the order parameters,
such as the overlap q and its conjugate parameter q̂, called state evolution [66]. One can show that the state
evolution equations for Algorithm 1 are

q̂t =
α

qt

∫
Dz dy

(∂zIout(z, y; qt))
2

Iout(z, y; qt)
,

qt+1 = 1− 1

q̂t
+

2

β3/2q̂2t

∫
dx µ̂Y t

(x)

[
(β − 1)2

2x2
+

2π2

3
µ̂Y t

(x)2
]
= 1−MMSEdenoising

(
1

q̂t

)
,

(34)

where Y t = S +
√
1/q̂t Z, the last equality is justified in (B46) and

qt = Tr(ST
∗ St) . (35)

This is just a particular iterative scheme for (24), justifying our claim that Algorithm 1 satisfies (24) at
convergence.
To derive the state evolution equation (34), one can follow directly [62, Sections 6.3 and 6.4] (see also

[58] for a symmetric version of the same GAMP-RIE algorithm). One considers the relaxed-BP algorithm
[62, Algorithm 1] with the substitution fa → fRIE and fv → MMSEdenoising – notice that in [62] these
functions are applied coordinate-wise on Rt, while here they are applied directly to the full matrix, as in
[62] they consider factorised distributions P0. Then, one can follow independently [62, Section 6.3.2] to
derive the GAMP-RIE algorithm (our Algorithm 1) as an asymptotic approximation of the r-BP algorithm,
and [62, Section 6.4.1] to derive the state evolution equations for the GAMP-RIE algorithm from the r-BP
algorithm. Both derivations can be followed step-by-step with the mentioned substitutions. The first of the
state evolution equations is then found directly. For the second state evolution equation, one notices that

Rt
d
= S∗ +

1

At
Z (36)

in distribution, where S∗ is the ground-truth and Z is an i.i.d. Gaussian noise (both normalised to have
O(1) singular values). Thus, St+1 is the BO estimate of S∗, and the associated MSE satisfies ct+1 =

MMSEdenoising(1/At) = 1 − qt+1, where qt+1 is the overlap between the iterate Ŝt+1 and the ground-truth
S∗, leading to the second, non-trivial, state evolution equation.

We stress that, depending on the choice of prior and output channel, Algorithm 1 may not achieve the
BO performance when initialised at zero overlap with the ground-truth. This is usually referred to as a
computational-to-statistical gap [62, 65, 66], denoting a region where we have MMSE < 1 (i.e. the BO
estimator retrieves some information about the ground truth), while the AMP algorithm is stuck at a larger,
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possibly trivial MMSE. This can happen if among the solutions of (24) there are multiple local maximisers
of the associated free entropy (B49). In that case, GAMP-RIE will find the local maximiser with smallest
value q, while the BO performance will be given by the global maximiser. A gap arises if the local maximiser
with smallest value q is not the global maximiser.

For our case study, i.e. the BSR model with Gaussian label noise, we do not observe any such gap. In
Appendix A we verify that the free entropy (B49) has a unique local maximum, and that our solver of (24)
finds that maximum, for a selection of values of β, ρ, α. While not an analytical justification, our observations
do not provide any hint to the existence of such a computational-to-statistical gap, allowing us to conjecture
that no hard phase is present for this specific choice of prior. Other rotationally-invariant priors may still
however exhibit computational gaps, but we leave such a study for future work.
We provide numerical experiments on the GAMP-RIE algorithm in Section IIIA, Figure 3. Notice that

to improve the convergence of the algorithm we used a damped version, where the iteration for the variance
and mean of Tr(ST

t X̃
µ), i.e. Vt and ωt, becomes (e.g. for V ) Vt = (1− γ)ct + γVt−1 for some damping factor

0 < γ < 1. We also needed to fine tune the scale of the initialisation ct=0 = ζ, ωt=0 = ζ × [1, . . . , 1]T ∈
RN , Vt=0 = ζ to ζ ≈ 20 to obtain satisfactory results. We discuss how we tuned γ, ζ in Appendix A.

E. MMSE in the low-width case

We recall here the results of [44] for the MMSE in the low-width case with our notations. In Appendix B
we re-derive the result of [44] in the more general case of correlated low-width priors. In Appendix C 3 we
also derive the large β limit of this result.

Previous result 4 (MMSE for low-width BSR model [44]). Consider the factorised Gaussian prior on S
(10) in the low-width high-dimensional limit, i.e. d→ ∞ with β = max(d, L)/min(d, L) fixed and r = O(1).
Define the sample ratio as

ᾱ =
n

r(d+ L)
=

β

ρ(1 + β)
α , (37)

Then, MMSE = 1− q, where q is a solution to the non-linear system of equations

q = g1g2 ,

g1 =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + 1)
,

g2 =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + β)
,

q̂ =
ᾱ

q

∫
Dz dy

(∂zIout(z, y; q))
2

Iout(z, y; q)
,

(38)

with the same Iout as in Result 1.

Notice importantly that the result depends on the number of samples n and the width r only through the
ratio ᾱ. Consequently, the dependence of the MMSE on the width r is very simple. Compared to this, the
MMSE in the extensive width regime depends on the widths in a richer way.
Notice that Result 1 (for the extensive-width case) and Previous Result 4 (for finite width) apply to different

scalings for the number of samples n. In particular one can see that non-zero overlap in the low-width case
happens on a sample scale n = O(rd), much smaller than the scale n = O(d2) in the rotationally-invariant,
extensive-width case.
Previous Result 4 is derived in the strictly intensive width regime r = O(1). The extension to all sub-

extensive widths r ≪ d may be technically non-trivial, see [67–69] for related discussion in another model,
but it turns out that Previous Result 4 can be recovered as the limit ρ→ 0 (recall r = ρmin(d, L)) of Result
1 (with an appropriately rescaled sample ratio), see Figure 1.
We also note here that optimal algorithms based on message-passing for low-width priors have also been

derived and discussed in [44].
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III. CONSEQUENCES OF MAIN RESULTS

In this section we study the Bayes Optimal test error, i.e. the minimum theoretically-achievable test error,
for the BSR model and Gaussian label noise, as a function of the parameters β = max(d, L)/min(d, L)
(the sequence length to embedding dimension ratio), ρ = r/min(d, L) (the width ratio, note that a lower ρ
corresponds to a more structured prior), α = n/(dL) (the number of samples ratio) and ∆ (the label noise).
We identify the corresponding phase transitions in the performance, thus answering question (Q3) from the
introduction.
We will also compare the BO estimator to some other baseline algorithms. Importantly, in Section III C,

we compare with the linear regression on the vectorized sequence of tokens, thus quantifying the advantage
of an estimator specializing in sequences of tokens over basic linear regression, which answers question (Q4)
from the introduction.

A. General phenomenology of the Bayes-optimal performance

Figure 1 and 2 show the BO test error as a function of the sample complexity α, for several values of β
and width ρ, and in the noiseless setting ∆ = 0. We observe that lower values of ρ and larger values of β (i.e.
larger structure in the prior) lead to lower test error. We also observe that the BO estimator can achieve
zero test error at a finite value αBO < 1, defining a threshold called the strong recovery threshold that we
discuss in detail in Section III B.
We provide analogous data for ∆ > 0 in Appendix A. The overall phenomenology is similar, with the

important difference that we observe no strong recovery at finite α, and the test error in the noisy case to be
a continuous and differentiable function of the parameters.
In Figure 1, right column, we highlight the convergence of the extensive-width test error to the low-width

result for ρ → 0, after appropriately rescaling the sample ratio α to ᾱ = β
ρ(1+β)α. We observe quantitative

differences from the low-width result for width ratios as low as 0.05, stressing the fact that the extensive
width analysis is relevant in finite-size applications, where ρ may be small, but not strictly vanishing.
Figure 3 shows numerical experiments on GAMP-RIE with max(d, L) = 100 for β = 1, 2, ρ = 0.2, 1 and

∆ = 0, 0.1, comparing it with the MMSE obtained by solving (24). We observe a very nice agreement already
at these moderate system sizes.
Result 2, combined with Previous Result 4, provide the full picture for the Bayes-optimal test error in the

BSR model, completely solving Question (Q1). Additionally, Figure 1 and 2 showcase the phenomenology
for the noiseless observation channel. We have also answered positively to Question (Q2), as the GAMP-RIE
algorithm efficiently achieves the BO error in the high-dimensional limit.

B. Strong and weak recovery thresholds

In the noiseless output channel we can provide an explicit characterisation of the strong recovery threshold,
i.e. the value of αBO such that for all α > αBO, zero test error is achieved.

Result 5 (BO strong recovery threshold). Consider the same setting as in Result 1, and specify it to the BSR
model (10) and noiseless output channel. Then, in the high dimensional limit, the strong recovery threshold
satisfies

αBO =

{
ρ
β (1 + β − ρ) 0 < ρ < 1 ,

1 ρ ≥ 1 .
(39)

The derivation of the threshold is performed in Appendix C 2, and involves expanding Result 1 in the limit
q → 1− and q̂ → +∞. We recall that for non-zero label noise ∆, the strong recovery threshold is at infinity.
For comparison, the strong recovery threshold in the low-width limit equals limρ→0 αBO = 0, and in the

more appropriate low-width sample scaling

lim
ρ→0

ᾱBO = lim
ρ→0

β

ρ(1 + β)
αBO = 1 , (40)
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FIG. 1. Bayes Optimal test error for the BSR model with noiseless output channel (∆ = 0) as a function of the
sample ratio α = n/(dL) (left column) and of the low-width sample ratio ᾱ = n/[r(d + L)] (right column). We plot
a different value of the aspect ratio β = max(d, L)/min(d, L) = 1, 5,+∞ for each row from top to bottom, and in
each panel compare several values of the width ratio ρ = r/min(d, L) = 0.05, 0.1, 0.2, 0.5, 1, 2 (colored solid lines). In
the left column, we also plot for comparison the performance of optimally-regularised linear regression (in this case,
λ → 0+) on the vectorized data (it does not depend on ρ and β) in the black dashed line, which corresponds also to
the BO error for ρ → ∞. We observe that the BO test error is always better than the linear regression test error,
and that it gets better and better as ρ decreases: the more structure in the distribution of the signal, i.e. the lower
the width, the better one can estimate it. We also observe that the BO test error vanishes at a finite value of α, the
so-called strong recovery threshold, and that this threshold is smaller than one for ρ < 1. In this regime, there are
values of α for which the BO estimator achieves zero test error, while the linear regression estimator has a non-zero
test error. The middle and bottom panel show the same overall phenomenology as β increases from 1 to infinity. The
right column shows the same curves as a function of the low-width sample ratio ᾱ = n/[r(d+L)], comparing with the
already known low-width BO test error (solid black line) [44]. We observe a clear convergence to the low-width error
curve as ρ → 0, but we highlight that, for e.g. at β = 1, the test error of the BO estimator is still quantitatively better
than its low-width counterpart already at ρ = 0.05. Notice also that for ρ → 0 the BO estimator has a weak recovery
threshold at ᾱweak = (1 +∆)

√
β/(1 + β), i.e. below it has the same performance as the zero estimator Ŝzero(D) = 0.

As soon as ρ > 0, the weak recovery threshold disappears, allowing for better-than-trivial performance at all values
of ᾱ. The weak recovery threshold is marked by a vertical black marker: notice that for β → ∞ the weak recovery
threshold is at zero.
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FIG. 2. Bayes Optimal test error for the BSR model with noiseless output channel (∆ = 0) as a function of the
sample ratio α = n/(dL). We plot a different value of the width ratio ρ = r/min(d, L) = 0.05, 0.5, 1, 2 in each panel,
and several values of the aspect ratio β = max(d, L)/min(d, L) = 1, 5,+∞ (colored solid lines) in all panels. The black
dashed line is the performance of optimally-regularised linear regression on the vectorized data. Again we observe
that the more structured signals (larger β and smaller ρ), the better the achieved test errors.
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FIG. 3. Comparison between the BO test error and the test error of GAMP-RIE (Algorithm 1) for two choices of
the aspect ratio β = max(d, L)/min(d, L) = 1, 2 and the width ratio ρ = r/min(d, L) = 0.2, 1 both in the noiseless
∆ = 0 (left) and noisy ∆ = 0.1 (right) case. Solid lines are the theoretical prediction from (24). The crosses represent
numerical experiments for the test error measured after iterating GAMP-RIE until convergence, on instances of size
min(d, L) = 100, with initialisation from the prior distribution. Each point is a run over a single realisation of the
data and ground truth.
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which can be derived either by taking the limit of (39), or independently by taking Previous Result 4, and
solving the corresponding equations, as we do in Appendix C 1.
We remark that the strong recovery threshold can be guessed (but not properly justified) also through a

counting argument where we compare the number of observations with the number of degrees of freedom.
The spectrum of S∗ accounts for a number O(d) of degrees of freedom. The singular vectors of S⋆ are a set
of r orthonormal vectors in dimension d, and one in dimension L. It is known that the set of 1 ≤ r ≤ d
orthonormal vectors in dimension d, as a manifold (called the Stiefel manifold), has dimension [70]

dim(r, d) = dr − r(r + 1)

2
. (41)

Thus, by a dimensional argument the number of samples needed to learn such bases for r ≤ min(d, L) (i.e.
ρ ≤ 1) should equal

n = dr − r(r + 1)

2
+ Lr − r(r + 1)

2
+O(d) = (d+ L)r − r(r + 1) +O(d) ∼ ρ

β
(1 + β − ρ) dL . (42)

This counting argument recovers the analytically derived threshold (39), and hints to the fact that this
threshold will be universal to a larger subset of rotationally invariant priors with rank constraint, not limited
to the BSR model for which our derivation of (39) holds.
We now turn to the weak recovery threshold. Recall that αweak is the largest α such that the performance

of the BO estimator is the same as the performance of randomly sampling the prior. In the extensive-width
case the weak recovery threshold αweak is trivial. In other words, αweak = 0 for ρ > 0, and for any α > 0
non-trivial recovery is achieved. Instead, in the low-width case, a non-trivial weak recovery threshold arises
(also for positive label noise ∆) at

ᾱweak = (1 +∆)

√
β

1 + β
. (43)

We derive this threshold in Appendix C 1.
This section gives a clear answer to Question (Q3). For noiseless output channels, the BO test error has

a sharp threshold, corresponding to a second-order phase transition, between a region of positive error (at
a small number of samples) and a region of zero error (at a large number of samples). Result 5 pinpoints
the sample-complexity α of the transition analytically. This, together with previous results for the low-width
case, provides a full picture of the transition in the noiseless BSR model.

C. Comparison with linear regression on the vectorized data

As a crucial baseline motivating this work, we consider here the performance of linear regression performed
on the vectorized input data. In the context of learning sequences of tokens, this amounts to flattening the
data matrix Xij ∈ RL×d into an Ld-dimensional vector, thus losing the semantic separation between token
space and embedding space. The performance of such a procedure is quantified below.
Comparing this baseline to the Bayes-optimal performance of the BSR model quantifies the gain one can

get when performing learning using a specialized sequence model as opposed to vectorizing the data and using
fully connected neural networks (of which linear regression is the simplest example), effectively discarding
some prior information.

Previous result 6 (Performance of ridge regression for Gaussian output channels and arbitrary priors).
Consider the ridge regression estimator

Ŝridge(D) = argmin
S

[
1

2

∑
µ

(
yµ − (Ld)−1/2 Tr(STXµ)

)2
+
λ

2
Tr(STS)

]
, (44)

and a dataset D generated by (9) with Gaussian label output channel with variance ∆, and arbitrary prior
P0 normalised such that Q∗ = 1. Define the sample ratio as α = n/(dL). Then, the optimal value of the
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regularisation is λopt = ∆, and the mean square estimation error of the optimally-regularised ridge regression
estimator equals (in the large-dimensional limit)

MSEridge
α,∆ =

1 + α+∆−
√
(α+∆+ 1)2 − 4α

2
, (45)

which reduces to MSEridge
α,∆=0 = max(1− α, 0) in the noiseless case.

The analysis of empirical risk minimisers (ERMs) for convex losses, and in particular for ridge regression, is
standard, see [17] for example for a very generic derivation. We only point out here that the prior, arbitrarily
complicated and with extensive width, enters this performance only through its second moment Q∗ = 1 due
to the choice of ℓ2 regularisation. This can also be seen directly by the explicit solution of the ridge regression
problem, which notably depends only on the second-order statistics of the data and labels.
Figure 1 shows the BO test error as a function of α for several values of β and ρ, and compares with the

performance of linear regression (which is independent on ρ and β in the scaling we chose). We see that in all
cases, larger values of β and smaller ρ lead to more significant gains in using the prior-aware BO estimator
compared with the simple ridge estimator, both in noiseless (∆ = 0) and noisy (∆ > 0, see Appendix A)
cases.
Notice that in the noiseless case we see that MSEridge

α,∆=0 = 0 at α = 1, recovering the trivial fact that
an invertible linear system of p equations in p unknowns has a unique solution. More generally, the strong
recovery threshold for ridge regression with noiseless data is given by αridge = 1. Whenever ρ < 1, there
exists a full range of sample ratios αBO < α < αridge where the BO estimator achieves zero test error, while
the ridge estimator does not.
As ρ → ∞, S converges to a matrix with i.i.d. standard Gaussian entries: the problem is effectively

vectorised, as there remain no correlations between the token and embedding dimensions L and d. In
this limit, we expect that optimally-regularised ridge regression will achieve the BO performance, as the
loss/regularisation choice matches the distribution on S and the generative process for the labels. This is
indeed the case, as we show in Appendix C 5 by explicitly computing the large-ρ limit of (24) for the BSR
model.
This answers Question (Q4) from the introduction: vectorizing data and learning it with linear regression

is suboptimal for any finite ρ. For 0 < ρ < 1, the suboptimality is particularly striking, as there exists a full
region of sample ratio αBO < α < 1 in which linear regression has non-zero test error, while the BO estimator
achieves zero error.

D. Comparison with a minimal nuclear norm estimator

As discussed in the introduction, previous works explored algorithms based on nuclear norm minimization
to solve the matrix sensing/denoising problem [42, 43, 71]. It is instructive to compare the performance of
this algorithm to the optimal estimator. The minimal nuclear norm estimator (MNNE) is defined as

SMNNE := argmin ||S||nuc = argminTr(
√
SST ) such that yµ =

1√
Ld

L,d∑
a,i=1

Xµ
aiSia , (46)

where we recall that the nuclear norm is just the sum of the singular values of a given matrix. This algorithm
is the convex relaxation of the minimum rank estimator, where one seeks a matrix with minimal rank fitting
the dataset. It has been observed [43, 71] that the MNNE can achieve zero estimation error, provided that
the ground-truth matrix S∗ has constrained rank (i.e. 0 < ρ < 1), and that the number of samples n is large
enough. The authors are also able to characterise the corresponding strong recovery threshold αMNNE, and
provide an explicit asymptotic value, which we report here for completeness.

Previous result 7 (Strong recovery threshold for the MNNE [43, 71]). Consider the Marc̆enko–Pastur
distribution defined by

pγ(t) :=
1

2πγt

√
(γ+ − t)(t− γ−) · 1[γ−,γ+](t), (47)
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ᾱ
=
n
/r

(d
+
L

)

β = 1

β = 2

β = 5

FIG. 4. Comparison between the BO strong recovery threshold (Result 5, solid lines) and the MNNE strong
recovery threshold (Previous Result 7, dashed lines) for β = max(d, L)/min(d, L) = 1, 2, 10 as a function of the
width ratio ρ = r/min(d, L). In the left panel we plot the strong recovery thresholds in the scaling α = n/(dL),
natural in the extensive-width case ρ > 0. In the right panel we plot the same data in the low-width sample scaling
ᾱ = n/[r(d+ L)], highlighting the strong suboptimality of MNNE at low ranks/widths. The colored markers on the
vertical axis highlight the finite ρ → 0 limit of the strong recovery threshold of MNNE, as given in (53).

where γ± = (1±√
γ)2, and define its complementary incomplete moments as

Pγ(x; k) :=

∫ γ+

x

tkpγ(t) dt. (48)

Let

M(Λ; ρ, β) := ρ(1 + β − ρ) + (β − ρ)

[
ρΛ2 + (1− ρ)

(
Pγ

(
Λ2; 1

)
− 2ΛPγ

(
Λ2;

1

2

)
+ Λ2Pγ

(
Λ2; 0

))]
, (49)

for 0 < ρ < 1 and β ≥ 1, with

γ =
1− ρ

β − ρ
. (50)

Then the strong recovery threshold of the MNNE satisfies

αMNNE = min
0≤Λ≤γ+(ρ,β)

M(Λ; ρ, β̃) . (51)

The minimum can be computed numerically by solving the zero-derivative condition dM/dΛ = 0 on the
interval (0, γ+), i.e.

Pγ

(
Λ2;

1

2

)
− Λ · Pγ

(
Λ2; 0

)
=

Λρ

1− ρ
. (52)

This can be done by a bisection algorithm.

In Figure 4, we plot the theoretical prediction of αMNNE from [43, 71] and compare it with the BO threshold
αBO that we derived in Section III B for different values of β. We observe that for all values of 0 < ρ < 1
and β ≥ 1 the two thresholds are different, and in particular αBO < αMNNE. This highlights an intrinsic
suboptimality of the MNNE, which for an extended range of values αBO < α < αMNNE fails to achieve the
BO performance.
In the low-rank regime ρ→ 0, [43] provide the following asymptotic value for the strong recovery threshold

of the MNNE

ᾱMNNE = lim
ρ→0

β

ρ(1 + β)
αMNNE = 2

(
1 +

√
β

1 + β

)
. (53)
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while for the BO strong recovery threshold we have limρ→0 ᾱBO = 1. We thus see that also in the low-rank
limit (with the appropriately rescaled sample ratio) the MNNE recovery threshold remains suboptimal. This
is akin to what happens in the compressed sensing problem when we compare the Bayes-optimal performance
to the performance of the convex relaxation via L1 regularization [72]. In Appendix A, we provide numerical
experiments comparing the performance of the MNNE estimator with the BO test error, with GAMP-RIE,
and with the prediction for the strong recovery threshold (Previous Result 7).

IV. BEHAVIOUR OF GRADIENT DESCENT

Arguably, the most interesting algorithm to study in the context of the BSR model is gradient descent
(GD) since its variants are the driving horse of state-of-the-art applications of machine learning. We will
consider here the BSR model with Gaussian additive noise channel and assume the width parameter r is
known. For this case the most natural choice of loss function is

L(U, V ) =
1

4

n∑
µ=1

yµ − 1√
Ldr

L,d∑
a,i=1

Xµ
ai

r∑
j=1

UijVja

2

, (54)

where U ∈ Rd×r and V ∈ Rr×L. The loss is then minimized over the factors U and V using the following
gradient descent iterations

U t+1 = U t − η∇UL(U t, V t) and V t+1 = V t − η∇V L(U t, V t) . (55)

with η > 0 being the learning rate. Unlike in linear regression, the loss (54) is non-convex, and thus keeping
particular attention to the initialisation, learning rate and the stopping criterion is required to properly
understand the properties of the GD estimator. In general non-convex settings the generalization performance
of the GD algorithms is mostly a widely open question that is actively studied.
In this section, we initiate the understanding the performance of the GD in the BSR model, and investigate

how the choice of initialization and learning rate influence the performance of the algorithm, thus providing
some answers to (Q5) from the introduction. We argue that the BSR model is a simple yet very interesting
model to further the understanding of the broad set of questions behind the functioning of the GD algorithm.
Without exhaustively mapping the possible choices of initialization, learning rate and stopping time, we
identify two remarkable properties and discuss them further below:

• GD can reach the Bayes-optimal performance: For the noiseless BSR model we find that for well-
chosen learning rate and factors initialized in the prior distribution, GD behaves as if it was sampling
uniformly the space of global minimizers, and an averaged version of GD (defined in (56)) reaches the
Bayes-optimal generalization error. We stress that there is no a priori reason for GD being able to
sample the minimizers, this observations is thus very surprising. When noise is present, the behaviour
is more complex, and GD does not seem to sample the minimizers anymore. Numerical evidence is
given in Fig. 5. Note that similar properties were observed for a related model in [58].

• Implicit regularization of GD, but not with respect to the minimum nuclear norm: We
find that many choices of the learning rate and initialization lead to a generalization performance that
is better than the one of a randomly-chosen global minimizer. An interesting existing line of work
proposed that in some settings the implicit regularization may be related to the nuclear norm [45].
We thus ask whether this would be the case in the BSR model. Our numerical investigation suggests
that in the BSR model, even with small learning rate and small amplitude initialization, GD does not
minimize the nuclear norm. This is evidenced in Fig. 6.

More work is needed to fully characterize the behaviour of the GD algorithm in the BSR model and this
characterization is a prerequisite for further understanding of learning dynamics in more complex sequence
models.

A. GD and the Bayes-optimal performance

In Fig. 5 we initialise both U and V as i.i.d. Gaussian matrices, with each entry having mean zero and unit
variance, i.e. from the same distribution as in the BSR model (1). Figure 5, left panel, shows that GD run on
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FIG. 5. Comparison between the test error achieved by GD and AGD initialised in the prior and of the BO test
error for β = 1, ρ = 0.2 and ∆ = 0, 0.5 (left and right panels respectively). In the noisy case, we depict the test
error minus the variance of the noise ∆. Solid lines are the BO test error, dashed lines are twice the BO test error
corresponding to the error of the Gibbs sampler. Orange crosses are numerical experiments for the test errors at the
end of the run of GD for d = L = 100, maximum number of steps τ = 50000, and runs are averaged over 16 instances
of the data. Blue squares are numerical experiments for the test errors at the end of the run of AGD (averaged over
32 initial conditions) and they are averaged over 2 instances of the data (8 in the right panel up to α = 0.6). The
error bars denoting standard error on the mean are negligible. In both cases, a fine-tuned value of the learning rate
η(α) must be used, dependent on the sample ratio α. We provide the values used to generate this plot in Appendix
A. The green crosses mark the value of the training loss at the end of the training for GD. The grey vertical line in
the right-hand panel marks where the number of samples equals the number of degrees of freedom. Finally, red dots
are numerical experiments for GAMP-RIE, with a single random instance of d = L = 100. We observe that in the
noiseless case ∆ = 0 (left), GD achieves a test error compatible with the error of the Gibbs sampler and that AGD
achieves a test error compatible with the BO test error. Instead, for ∆ = 0.5 (right) we observe that AGD does not
reach the BO error, and moreover it trivialises (namely, all differently-initialised runs of GD converge to the same
estimator) for α large enough, roughly around α ≈ 1 here. We show qualitatively similar comparisons at β = 2 in
Appendix A.

the BSR model without noise reaches very small training loss if the learning rate η is properly tuned, and a
test error equal to the one of a uniformly sampled global minimum of the loss (this is usually called a Gibbs
sampler for the posterior distribution, and has test error equal to twice the BO test error as we show in (23)).
This prompts us to speculate that runs of GD with independent initialization may be close to sampling the
space of global minimizers of the loss (as a Gibbs sampler would do). Notice that GD can only converge
to the boundary of the set of global minimizers, and that in high-dimension the uniform measure over such
set is plausibly concentrated on the boundary, provided that the set of global minimizers is not pathological.
This observation, plus the numerical observation that the test error matches the Gibbs sampler, justifies our
speculation.
The Bayes-optimal estimator in the noiseless case is given by averaging over the global minimizers of the

loss. Given our hypothesis above that GD samples uniformly the set of global minimizers, we are prompted to
average J GD runs to construct a novel estimator. If our hypothesis is correct, then this averaged estimator
should achieve close to BO performance. Thus, we sample J different pairs of initial matrices (U0

j , V
0
j ),

iterate GD for τ iterations obtaining (Uτ
j , V

τ
j ) to compute the estimator of S as

ŜGD,avg =
1

J

J∑
j=1

Uτ
j V

τ
j√
r

(56)

We call this the averaged GD (AGD) algorithm. Figure 5 shows that this AGD estimator indeed reaches the
Bayes-optimal test error. This observation holds for different values of β.
Figure 5, right panel, shows experiments in the same setting, but with label noise ∆ = 0.5. We observe

here a different phenomenology, in particular with AGD not reaching the BO test error. We notice also that
the training error equals zero before the naive interpolation threshold where the number of samples equals
the number of degree of freedom (α = αBO in the BSR model). At the interpolation threshold AGD has a
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FIG. 6. (Left) Comparison between the test error achieved by GD initialised with small norm (blue crosses,
d = L = 50, maximum iterations T = 104, learning rate η = 0.2, initialisation norm σ2 = 10−4) and its early stopped
version (blue dots) averaged over 16 instances, the test error of the MNNE (orange squares, d = L = 50) and of the
BO test error (solid black line, dashed lines is twice the BO error corresponding to the error of the Gibbs sampler)
for β = 1, ρ = 0.2 and ∆ = 0. We observe that the MNNE performs slightly better than GD with small initialisation
up to roughly the BO strong recovery thresholds, while for larger α GD becomes better, and notably has a better
strong recovery threshold than MNNE. (Right) Comparison between the MNNE and several runs of GD with small
initialisation (maximum iterations τ = 20000), all on the same instance of the data and ground-truth with d = L = 50,
ρ = 0.2 and ∆ = 0. We perform this comparison at α = 0.45, where the left panel suggests that GD will achieve zero
error, while MNNE does not. We run GD from 2 different initialisation magnitudes σ2 = 10−3, 10−4 (orange and blue
curves, thick curves mark the average), and we also run GD from the MNNE initialisation (see main text for a precise
definition). We observe that in all cases GD outperforms MNNE at convergence.

trace of what may be an interpolation peak, which does not appear in the simple GD. More work is needed
to fully understand whether there is a way to tune the parameters of the AGD algorithm to reach the BO
error also in the noisy case.

B. Implicit regularization of GD, comparison to the minimum nuclear norm

The data reported in Fig. 5 depend strongly on the choice of the initialization and the learning rate. We will
consider initialization where the component of matrices U0 and V 0 are still iid Gaussian random variables of
zero mean, but this time with variance σ2. Fig. 5 was for σ2 = 1, but initializing with small σ2 is considered
more interesting, one reason being that the BO estimator at α = 0 is simply 0. In Figure 6, left panel, we
show that GD initialised with small norm σ2 = 10−3 or 10−4 reaches a test error which is slightly larger than
the BO one, but still significantly smaller than initialising at σ2 = 1 (where non-averaged GD reaches the
Gibbs sampling error). When GD leads to a better test error than a random global minimizer the machine
learning literature often refers to so-called implicit regularization of gradient descent [45, 46, 73, 74]. What
we observe in Fig. 6 is a clear sign of implicit regularization. In this case the role of the learning rate is less
influential, as long as it is kept small enough (see Figure 11 in Appendix A). We also find that for small
initialization early stopping can be advantageous, as also reported in the figure.
It is natural to compare GD with small initialisation to the MNNE, as it was suggested that in some

settings (in particular over-parametrized ones), gradient flow with vanishing norm at initialisation has an
implicit bias towards minimising the nuclear norm [45]. Later work then questioned this conjecture, and
disproved it in a constructed special case [46]. In the BSR model, we find numerically that GD starting with
small initialization does not go to the minimizer corresponding to the smallest nuclear norm. Evidence for
this is reported in Fig. 6. In particular, the most striking difference between GD and the minimum nuclear
norm estimator (MNNE) is at values of sample complexity α slightly above the BO strong recovery threshold
but below the MNNE strong recovery threshold, where we see that GD already reaches strong recovery and
the MNNE does not.
In Figure 6, right panel, we show a numerical experiment on a single instance of the data and ground
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truth, comparing the test error during training for GD with small initialisation and small learning rate
(σ2 = 10−3, 10−4) and GD initialised in the MNNE solution with the MNNE error. To initialise GD in
the MNNE solution, we consider the SVD of the MNNE SMNNE = UMNNEDMNNEVMNNE, and we take

U0 = UMNNE

√
D̃MNNE and similar for V , where D̃MNNE is the truncated version of DMNNE to the leading

r singular values. We plot this comparison at α = 0.45, where we observed GD to achieve zero error and
MNNE to not achieve zero error from the averaged comparison in Figure 6, left panel. We clearly see that
at single instance GD outperforms the MNNE estimator, and that the MNNE estimator is not even a stable
minimum of the GD landscape.

V. DISCUSSION AND FUTURE DIRECTIONS

We introduced the bilinear sequence regression as a basic model for learning from long sequences of high-
dimensional tokens. In this paper, we addressed and answered questions (Q1)-(Q4) posed in the Introduction.
Our analysis involved techniques of statistical physics that are, in general, not mathematically rigorous, and
the rigorous establishment of our results is a clear avenue for future work. Concerning question (Q5) about
gradient descent, we investigated the behaviour of this algorithm numerically, and it is clear that, already
for this rather simple model, there is a very rich behaviour of gradient descent that can be observed. Our
experiments reveal some of the intriguing properties of GD in the BSR model. A clear avenue for future work
is to analyze the behaviour of gradient descent in the large size limit e.g. via dynamical mean field theory
[75] and aim to explain our numerical observation theoretically.
The need for a detailed understanding of the properties of the optimizer is also emphasized by a set of

experiments that we performed using the toy transformer architecture presented in Section IC on the data
from the BSR model. We observed that the performance is comparable to what we report for gradient descent
is section IV. The transformer model seems able to figure out that the attention part of the architecture is not
useful and only the skip connection is. However, again the performance depended strongly on the optimizer
used, and thus, it seems to us that attempts to quantify the cases where the attention layer is advantageous
need to be preceded by a more complete understanding of the gradient descent and its variants.
Since sequence models are behind the recent progress of artificial intelligence, having a basic model for

studying learning from sequences of tokens opens the avenue to address many of the questions underlying
these systems. For this, future work will need to generalize the BSR model in several directions.

• Structured input data and more general tasks: So far we considered Gaussian iid input data X
and a task defined by (1). One should generalize the model to add non-trivial structure in the input X
to mimic correlations present e.g. in natural language. A step towards this that is technically achievable
may be done in a similar manner as in the hidden manifold model in [15], or in the general Gaussian
covariance model treated in [17]. For sequences of token the correlation can be added both between
different tokens and among the different embedding dimensions, two cases which are of interest.

• Learning with other architectures (in particular those involving attention layers): In this paper,
we start with the analysis of the Bayes-optimal performance for data generated by the BSR model. We
then consider gradient descent for the model (8) that matches the BSR model, d′ = r. The next step
would be to study in detail the mismatched case where the learning model uses a different width than
the data generative model d′ ̸= r. The landscape of the corresponding loss (54) is of interest as well
as the behaviour of the GD algorithm. Future work should also study models that include attention
layers and clarify how their use is related to the structure in the data/task.

• Training algorithms: In this work, we studied the Bayes-optimal estimation and a related message-
passing algorithm. Understanding the behaviour and properties of gradient descent theoretically is
more challenging and is left for future work. Gradient descent should also be analyzed in more general,
e.g. overparamaterized d′ > r settings. Studying the behaviour and properties of other algorithms
such as stochastic gradient descent, variants with momentum and adaptive learning rates are also of
interest. Investigation of an algorithm that would eventually lead to better learning than the currently
existing variant of gradient descent would be immensely important.

Of course, the investigation of the above three directions cannot be done separately because the right
architecture will depend on the structure of the data and the task and on the fact that the used training
algorithm needs to run efficiently. The three ingredients – the data/task structure; the architecture/estimator;
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and the algorithm interplay in ways that need to be understood better. The present paper initiates this study
for sequence models and opens a natural program for future research along these directions, both in terms
of more realistic models and avenues for developing the methodological toolbox to study learning in high
dimensions.
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[38] F. Mignacco, P. Urbani, and L. Zdeborová, Stochasticity helps to navigate rough landscapes: comparing gradient-
descent-based algorithms in the phase retrieval problem, Machine Learning: Science and Technology 2, 035029
(2021).

[39] S. Sarao Mannelli, G. Biroli, C. Cammarota, F. Krzakala, P. Urbani, and L. Zdeborová, Complex dynamics
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neural network from quadratically many samples, to appear at NeurIPS 2024 (2024).
[59] H. Hu and Y. M. Lu, Universality laws for high-dimensional learning with random features, IEEE Transactions

on Information Theory 69, 1932 (2022).
[60] Z. Wang, E. Nichani, and J. D. Lee, Learning hierarchical polynomials with three-layer neural networks, in The

Twelfth International Conference on Learning Representations (2024).
[61] T. M. Cover and J. A. Thomas, Information theory and statistics, Elements of information theory 1, 279 (1991).
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Appendix A: Additional plots

In this section we provide additional details on the plots we presented in the main text, as well as additional
plots for different values of the parameters.

• In Figure 7, we verify for β = 1, 2 and ρ = 0.5, 1 that the free entropy as a function of q is maximised at
a unique non-trivial q < 1 solution for all values of α < αBO. We cannot check all values of alpha. We
check a selection, and claim that by regularity of the free entropy no hard phase (i.e. no maximality of
the trivial solution of the state evolution equations q = 1) is expected up to the largest value of alpha
we checked, which is numerically very close to the predicted strong recovery threshold for all values of
β, ρ showed.

• Figure 9 and Figure 8 are the noisy versions, with ∆ = 0.1, of the main text Figure 1 and Figure 2.

• In Figure 3 left, for α < αBO we used ζ = 20, γ = 0.5, while for α > αBO we used ζ = 20, γ = 0.8.
In Figure 3 right, we used ζ = 20, γ = 0.5. In all cases the tolerance used to determine convergence
was ϵ = 10−6 on the MSE between successive iterates. Around the transition αBO in the noiseless case,
more iterates are needed, and for this reason we used a lower tolerance ϵ = 10−8.

• In Figure 12, we plot the MSE of the MNNE as a function of α obtained through finite-size numerical
simulations (max(d, L) = 20, 50 using CVXPY [76, 77]) for β = 1, 2 and ρ = 0.2, 0.5. We observe that,
somewhat surprisingly, for 0 < α ⪅ αBO the performance of the MNNE is quantitatively very close to
the BO performance, while for αBO < α < αMNNE the MNNE performs sizably worse than the BO
estimator. A theoretical prediction of the MSE of the MNNE in the high-dimensional limit is, as far
as we know, not readily available.

• Figure 10 is the rectangular version β = 2 of Figure 5, and Table III indicates the learning rates used.

• Tables I, II lists all learning rates used to produce 5.

• In Figure 11 we probe the effect of the learning rate on the test error. We can see that if we initialise
with small norm we need the learning rate to be small enough for GD to perform well, while if we
initialise in the prior we need to carefully tune our parameters.

Sample ratio α = n/(dL) 0.05 0.1 0.15 0.2 0.25 0.3 - 0.45 0.5 - 0.6

Learning Rate η 0.7 0.75 0.65 0.58 0.53 0.5 0.45

Sample ratio α = n/(dL) 0.65 0.7 0.75 - 0.8 0.85 - 0.9 0.95 - 1.1 1.15 - 1.25

Learning Rate η 0.4 0.35 0.3 0.25 0.2 0.15

TABLE I. Learning rate as a function of sample complexity for Figure 5 right

Sample ratio α = n/(dL) 0.05 0.1 - 0.33 0.45 - 0.5

Learning Rate η 0.5 0.7 0.3

TABLE II. Learning rate as a function of sample complexity for Figure 5 left

Sample ratio α = n/(dL) 0.05 0.1 0.15 0.2 0.23 0.35

Learning Rate η 0.85 0.75 0.7 0.65 0.65 0.25

TABLE III. Learning rate as a function of sample complexity for Figure 10
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FIG. 7. Free entropy (B49) for β = 1, 2 and ρ = 0.5, 1 as a function of q. We highlight that the free entropy has only
a single maximum in 0 < q < 1 in all these cases.
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choosing the right learning rate influences the performance of the model rather drastically.
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Appendix B: Replica computation for the Bayes Optimal case

In this Appendix we derive Result 1, and we rederive Previous Result 4 under more general priors, through
the replica method. We study both the intensive and extensive width BSR model using a common framework.
We then specialise to the extensive case in B 1, and to the intensive case in B 2.
a. A word on scalings. In the following derivation, we consider the sample ratio ᾱ = n(r(d + L)),

where the number of samples scales proportionally to the number of unknown scalars in the ground truth
signal. This allows to treat the low width case r ≪ d and the extensive width case r = O(d) within a unique
framework. This choice dictates also the overall scaling for the free entropy (defined below) to be O(r(d+L)).
In the extensive-width case, one recovers the results in term of the ratio α = n/(dL) through the rescaling

ᾱ =
n

r(d+ L)
=

β

ρ(1 + β)
α . (B1)

The scaling ᾱ makes sense only for factorised priors, where r exists. Our computation holds also for non-
factorised, but rotationally invariant priors. To obtain the associated results set ρ = 1.

b. Preliminaries. We start by recalling the definition of the posterior distribution and the associated
partition function. The posterior distribution P (S|D) is the probability that given an observed dataset
Dn = {(Xµ, yµ}nµ=1, the dataset has been generated from a given set of weights S. By the Bayes rule, we
have

P (S|Dn) =
P (Dn|S)P0(S)

P (Dn)
=

P0(S)

P (Dn)

n∏
µ=1

Pout

(
yµ
∣∣∣∣ 1√
dL

Tr(STXµ)

)
(B2)

where P (Dn) is interpreted as the normalisation factor for the distribution (as it is independent on Dn), and
for this reason is though of as a partition function. As usual in the statistical mechanics of disordered systems
and in its applications in inference, we expect the free entropy ΦD = 1

r(d+L) logP (Dn) to concentrate both

w.r.t. the variable S and the quenched disorder D in the high dimensional limit. For this reason, we study
the averaged free entropy Φ = EDΦD, and we do so using the replica method.
c. Replica trick. The first step is to study the integer moments of the partition function EDP (Dn)

u,
from which the averaged free entropy can be recovered (using a carefully chosen analytic continuation in u)
as

Φ =
1

r(d+ L)
ED logP (Dn) =

1

r(d+ L)
lim
u→0

EDP (Dn)
u − 1

u
. (B3)

The averaged replicated partition function is (we call S0 the ground truth S∗ to highlight the fact that it
behaves identically to other replicas)

EP (Dn)
u = EX,y,S0

∫ u∏
a=1

dSa P0(Sa)

n∏
µ=1

Pout

(
yµ| 1√

dL
Tr(ST

a X
µ)
)

= EXES0
Ey|X,S0

∫ u∏
a=1

dSa P0(Sa)

n∏
µ=1

Pout

(
yµ| 1√

dL
Tr(ST

a X
µ)
)

= EX

∫
dS0 P0(S0)

n∏
µ=1

dyµPout

(
yµ| 1√

dL
Tr(XµS0)

)∫ u∏
a=1

dSa P0(Sa)

n∏
µ=1

Pout

(
yµ| 1√

dL
Tr(ST

a X
µ)
)

=

∫ n∏
a=0

n∏
µ=1

dSa P0(Sa)EXµ

∫
dyµPout

(
yµ| 1√

dL
Tr(ST

a X
µ)
)

=

∫ n∏
a=0

n∏
µ=1

dSa P0(Sa)EXµ

∫
dyµ

dhµa dĥµa

(2π)Nr
Pout

(
yµ|hµa

)
exp

[
iĥµa

(
hµa − 1√

dL
Tr(ST

a X
µ)
)]

=

∫ n∏
a=0

n∏
µ=1

dSa P0(Sa)EXµ

∫
dyµ dĥµa P̂out

(
yµ, ĥµa

)
exp

(
− i

1√
dL

ĥµa Tr(ST
a X

µ)
)
,

(B4)
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where we defined

P̂out(y, ĥ) =

∫
dh

2π
Pout

(
y|h
)
exp

[
iĥh
]
. (B5)

For the Gaussian noise channel Pout(y|h) = N(y;h,∆) we have

P̂out(y, ĥ) =

∫
dh

2π
√
2π∆

e−
(y−h)2

2∆ +iĥh = eiĥy
∫

dx

2π
√
2π∆

e−
x2

2∆−iĥx =
1

2π
eiĥy−∆/2ĥ2

(B6)

which reduces to the noiseless case for ∆ = 0. Notice also that by normalisation
∫
dy Pout(y|h) = 1, implying∫

dy P̂out(y, ĥ) =

∫
dy

dh

2π
Pout

(
y|h
)
eiĥh =

∫
dh

2π
eiĥh = δ(ĥ) . (B7)

d. Disorder average. We can now perform the average over the data Xµ. We have

EXµ exp
(
− i

1√
dL

u∑
a=0

ĥµa Tr(XµSa)
)
= EXµ exp

(
− i

1√
dL

d∑
i=1

L∑
j=1

Xµ
ij

u∑
a=0

ĥµaSa,ij

)

= exp
(
− 1

2dL

u∑
a,b=0

ĥµaĥµb
d∑

i=1

L∑
j=1

Sa,ijSb,ij

)
= exp

(
− 1

2

u∑
a,b=0

ĥµaĥµbQ(Sa, Sb)
)
,

(B8)

where we introduced the overlaps

Q(Sa, Sb) =
1

dL

d∑
i=1

L∑
j=1

Sa,ijSb,ij =
1

dL
Tr(ST

a Sb) . (B9)

This allows to rewrite the replicated partition function as

EP (Dn)
u =

∫
dSa dy

µ dĥµa

[∏
a

P0(Sa)
∏
µa

P̂out

(
yµ|ĥµa

)]
exp

(
− 1

2

∑
µab

ĥµaĥµbQ(Sa, Sb)
)

=

∫
dQab dQ̂ab

(2π)u(u+1)/2
dSa dy

µ dĥµa

[∏
a

P0(Sa)
∏
µa

P̂out

(
yµ|ĥµa

)]

× exp
(
− 1

2

∑
µab

ĥµaĥµbQab + ir(d+ L)
∑
a≤b

QabQ̂ab − i
r(d+ L)

dL

∑
a≤b

Q̂ab Tr(S
T
a Sb)

)
=

∫
dQab dQ̂ab

(2π)u(u+1)/2
exp

(
ir(d+ L)

∑
a≤b

QabQ̂ab

)

×
[∫

dy dĥaP̂out(y|ĥa) exp
(
− 1

2

∑
ab

ĥaĥbQab

)]n

×

∫ dSaP0(Sa) exp
(
− i

r(d+ L)

dL

∑
a≤b

Q̂ab Tr(S
T
a Sb)

) .

(B10)

e. Replica symmetric ansatz. It is well known that in the BO case, the replica symmetric ansatz is
correct due to Nishimori’s identities [62]. Then, we can take Q00 = Q0, Q0a = m, Qaa = Q and Qab = q

and iQ̂00 = Q̂0, iQ̂0a = −m̂, iQ̂aa = Q̂ and iQ̂ab = −q̂. Nishimori’s identities additionally imply m = q
and Q0 = Q, and similarly for the hat variables. Using these simplifications, we can perform the following
rewritings. The algebraic term becomes

i
∑
a≤b

QabQ̂ab = (u+ 1)QQ̂− u(u+ 1)

2
qq̂ =

u→0
(1 + u)QQ̂− u

2
qq̂ +O(u2) . (B11)
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The output channel term can be treated by a standard decoupling trick involving an Hubbard-Stratonovich
transformation. One has first the rewriting∑

ab

ĥaĥbQab = Q
∑
a

(ĥa)2 + q
∑
a ̸=b

ĥaĥb = (Q− q)
∑
a

(ĥa)2 + q
(∑

a

ĥa
)2
, (B12)

then the Hubbard-Stratonovich decoupling

exp

(
− q

2

(∑
a

ĥa
)2)

∝
∫
Dz exp(

√
qz
∑
a

iĥa) , (B13)

where Dz denotes integration against a standard Gaussian measure, from which∫
dy dĥaP̂out(y|ĥa) exp

(
− 1

2

∑
ab

ĥaĥbQab

)
=

=

∫
Dz dy

[∫
dĥP̂out(y|ĥ) exp

(
− Q− q

2
ĥ2 +

√
qziĥ

)]u+1

=

∫
Dz dy Iout(z, y)

u+1

=
u→0

∫
Dz dy Iout(z, y) + u

∫
Dz dy Iout(z, y) log Iout(z, y) +O(u2) ,

(B14)

where

Iout(z, y) =

∫
dĥP̂out(y|ĥ) exp

(
− Q− q

2
ĥ2 +

√
qziĥ

)
. (B15)

A similar procedure can be repeated for the prior term. We start by

−i
∑
a≤b

Q̂ab Tr(S
T
a Sb) = −Q̂

∑
a

Tr(ST
a Sa) + q̂

∑
a<b

Tr(ST
a Sb)

= −
(
Q̂+

q̂

2

)∑
a

Tr(ST
a Sa) +

q̂

2

∑
ab

Tr(ST
a Sb) ,

(B16)

then

exp
( q̂
2
Tr((

∑
a

Sa)
T (
∑
b

Sb))
)
=

∫
DY exp

(
− 1

2
Tr(Y TY ) +

√
q̂Tr(Y T (

∑
a

Sa))
)
, (B17)

where Y is a d× L matrix with standard Gaussian entries. This gives∫
dSaP0(S

a) exp
(
− i

r(d+ L)

dL

∑
a≤b

Q̂ab Tr(S
T
a Sb)

)

=

∫
DY

[∫
dS P0(S) exp

(
− r(d+ L)

dL

(
Q̂+

q̂

2

)
Tr(STS) +

√
r(d+ L)

dL

√
q̂Tr(Y TS)

)]u+1

=

∫
DY I0(Y )u+1

=
u→0

∫
DY I0(Y ) + u

∫
DY I0(Y ) log I0(Y ) +O(u2) ,

(B18)

where

I0(Y ) =

∫
dS P0(S) exp

(
− r(d+ L)

dL

(
Q̂+

q̂

2

)
Tr(STS) +

√
r(d+ L)

dL

√
q̂Tr(Y TS)

)
. (B19)
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f. Zero replicas: Q and Q̂ equations. For u = 0 we need to recover the trivial result EP (Dn)
0 = 1. The

replicated partition function in that case equals

EP (Dn)
0 =

∫
dQab dQ̂ab

(2π)u(u+1)/2
exp

(
r(d+ L)QQ̂+ n log

∫
Dz dy Iout(z, y) + log

∫
DY I0(Y )

)
(B20)

where (using (B7))∫
Dz dy Iout(z, y) =

∫
Dz dy dĥ P̂out(y|ĥ) exp

(
− Q− q

2
ĥ2 +

√
qziĥ

)
= 1 (B21)

and∫
DY I0(Y ) =

∫
DY dS P0(S) exp

(
− r(d+ L)

dL

(
Q̂+

q̂

2

)
Tr(STS) +

√
r(d+ L)

dL

√
q̂Tr(Y TS)

)
=

∫
dS P0(S) exp

(
− r(d+ L)

dL

(
Q̂+

q̂

2

)
Tr(STS) +

r(d+ L)

dL

q̂

2
Tr(STS)

)
=

∫
dS P0(S) exp

(
− r(d+ L)

dL
Q̂Tr(STS)

)
.

(B22)

Taking a saddle-point approximation on the scale r(d+ L) gives two equations for Q, Q̂, namely Q̂ = 0 and

Q =
1

r(d+ L)

∫
dS P0(S) exp

(
− Q̂Tr(STS)

)
r(d+L)

dL Tr(STS)∫
dS P0(S) exp

(
− Q̂Tr(STS)

) =
Q̂=0

1

dL

∫
dS P0(S) Tr(S

TS) = Q∗ . (B23)

This in turn implies that at the saddle point∫
DY I0(Y ) =

∫
dS P0(S) = 1 . (B24)

g. Free entropy. At the first non-trivial order in u → 0, the replicated partition function reads (using

the above results for Q, Q̂, and dropping irrelevant constant factors)

EP (Dn)
u ∝

∫
dqdq̂ exp

[
ur(d+ L)

(
− 1

2
qq̂

+ ᾱ log

∫
DY I0(Y ) log I0(Y ) +

1

r(d+ L)
log

∫
Dz dy Iout(z, y) log Iout(z, y)

)]
,

(B25)

from which we get

Φ = extr
q,q̂

(
− 1

2
qq̂ +

1

r(d+ L)

∫
DY I0(Y ) log I0(Y ) + ᾱ

∫
Dz dy Iout(z, y) log Iout(z, y)

)
. (B26)

h. Equation w.r.t. q. Taking the derivative w.r.t. q gives

q̂ = 2ᾱ∂q

∫
Dz dy Iout(z, y) log Iout(z, y)

= 2ᾱ

∫
Dz dy (1 + log Iout(z, y)) ∂qIout(z, y)

(B27)

Now, using [44, Eq 19], we get

∂qIout(z, y) = ∂q

∫
dhN (h;

√
qz;Q∗ − q)Pout

(
y|h
)

=
ez

2/2

2q
∂z

[
e−z2/2∂z

∫
dhN (h;

√
qz;Q∗ − q)Pout

(
y|h
)]

=
ez

2/2

2q
∂z

[
e−z2/2∂zIout(z, y)

] (B28)
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giving

q̂ = 2ᾱ

∫
Dz dy (1 + log Iout(z, y)) ∂qIout(z, y)

= −2ᾱ

∫
Dz dy (1 + log Iout(z, y))

ez
2/2

2q
∂z

[
e−z2/2∂zIout(z, y)

]
= − ᾱ

q
√
2π

∫
dz dy (1 + log Iout(z, y)) ∂z

[
e−z2/2∂zIout(z, y)

]
=

ᾱ

q
√
2π

∫
dz dy ∂z (1 + log Iout(z, y))

[
e−z2/2∂zIout(z, y)

]
=
ᾱ

q

∫
Dz dy

(∂zIout(z, y))
2

Iout(z, y)

(B29)

which matches [44, Eqs (60), (76)] modulo a different definition of the sample ratio ᾱ. For the Gaussian noise
channel we have

Iout(z, y) =

∫
dĥ

2π
exp

(
− ∆+Q− q

2
ĥ2 + (

√
qz + y)iĥ

)
=

1√
2π(∆ +Q− q)

exp
(
− (

√
qz + y)2

2(∆ +Q− q)

) (B30)

from which

q̂ =
ᾱ

q

∫
Dz dy

(∂zIout(z, y))
2

Iout(z, y)

= ᾱ

∫
Dz dy

(
√
qz+y)2

(∆+Q−q)2√
2π(∆ +Q− q)

exp
(
− (

√
qz + y)2

2(∆ +Q− q)

)
= ᾱ

∫
dt

t2

(∆+Q−q)2√
2π(∆ +Q− q)

exp
(
− t2

2(∆ +Q− q)

)
=

ᾱ

∆+Q∗ − q
.

(B31)

We also have, for the free entropy term and Gaussian output channel

∫
Dz dy Iout(z, y) log Iout(z, y) =

∫
Dz dy

exp
(
− (

√
qz+y)2

2(∆+Q−q)

)
√
2π(∆ +Q− q)

log
exp

(
− (

√
qz+y)2

2(∆+Q−q)

)
√
2π(∆ +Q− q)

=

∫
Dt log

exp
(
− t2

2

)
√

2π(∆ +Q− q)

=

∫
Dt

(
− t

2

2
− 1

2
log (2π(∆ +Q− q))

)
= −1

2
− 1

2
log (2π(∆ +Q− q))

= −1

2
log (∆ +Q− q) + . . .

(B32)

where we changed variable y → (y +
√
qz)/

√
∆+Q− q = t, and kept only the order-parameter-dependent

terms in the last passage.
i. Equation w.r.t. for q̂, and a denoising subproblem. The non-trivial part of the free entropy, involving

q̂, is

1

r(d+ L)

∫
DY I0(Y ) log I0(Y ) , (B33)
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where (recall that β = L/d)

I0(Y ) =

∫
dS P0(S) exp

(
− r(d+ L)q̂

dL

1

2
Tr(STS) +

√
r(d+ L)q̂

dL
Tr(Y TS)

)
. (B34)

We recognise that this quantity is proportional to the entropy H(Y ) = −EY logP (Y ) of the observation Y
in the denoising problem

Y =

√
r(d+ L)q̂

dL
S∗ + Z (B35)

with prior S ∼ P0 and additive i.i.d. standard Gaussian noise Z, by the identification I0(Y ) = P (Y ) (notice
that we showed in (B24) that I0 is properly normalised). Thus, q̂ plays the role of a rescaled signal-to-noise
ratio. Moreover, we have that by the I-MMSE theorem the derivative w.r.t. q̂ of the denoising observation
entropy will be related to the MMSE of the same denoising problem.
Thus, to proceed we need to solve the asymptotics of this denoising free entropy for the prior (10), and in

particular of the associated MMSE. This requires different approaches based on the scaling of r. If r ≪ d,
the computation is already in the literature [44], but we reproduce it here for convenience and generalise
it to correlated priors. If r = O(d), the computation for the denoiser has been carried out in [50], but its
application to our problem is novel.

1. Equation w.r.t. q̂ in the extensive width case.

In the regime where r = ρmin(L, d) with constant ρ, we use the results from [50] (which more generally
apply to all rotationally invariant priors). Again, in this subsection we assume that d ≤ L, understanding
that the general case is retrieved by substituting d → min(L, d). It is best to rescale the various quantities
to match those in [50] to easily adapt their results. We define

δ(q̂) =
β

ρ(1 + β)q̂
. (B36)

We want to compute

I =
1

ρ(1 + β)d2

∫
DY I0(Y ) log I0(Y ) , (B37)

where

I0(Y ) =

∫
dS P0(S) exp

(
− 1

2δ
Tr(STS) +

√
1

δ
Tr(Y TS)

)
. (B38)

We perform the change of variable Y = Y 4
√
Ld/

√
δ, S = S 4

√
Ld, S∗ = S∗

4
√
Ld and get

I =
1

ρ(1 + β)d2

∫
dY dS∗ P 0(S∗) (2πδ/

√
Ld)−Ld/2 exp

(
−

√
Ld

2δ
Tr((Y − S∗)

T (Y − S∗))
)

× log

∫
dS P 0(S)(2πδ/

√
Ld)−Ld/2 exp

(
−

√
Ld

2δ
Tr((Y − S)T (Y − S))

)
+

√
β

2ρ(1 + β)δd

∫
dY dS∗ P 0(S∗)N(Y ;S∗, δ/

√
Ld) Tr(Y TY ) +

1

ρ(1 + β)d2
Ld

2
log

2πδ√
Ld

(B39)

where P 0 is the rescaled prior, still normalised and such that its samples have O(1) spectral density. Notice

that after the rescaling we have the denoising problem Y = S +
√
δ(q̂)Z. The second term can be simplified

to √
β

2ρ(1 + β)δd

∫
dY dS∗ P 0(S∗)N(Y ;S∗, δ/

√
Ld) Tr(Y TY ) =

=

√
β

2ρ(1 + β)δd

∫
dS∗ P 0(S∗)

(
δ
√
Ld+Tr(ST

∗ S∗)
)

=
β(δ +Q∗)
2ρ(1 + β)δ

,

(B40)
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so that

I =
β(δ +Q∗)
2ρ(1 + β)δ

+
β

2ρ(1 + β)
log

2πδ√
Ld

+
1

ρ(1 + β)d2

∫
dY dS∗ P 0(S∗) (2πδ/

4
√
Ld)−Ld/2 exp

(
−

√
Ld

2δ
Tr((Y − S∗)

T (Y − S∗))
)

× log

∫
dS P 0(S) exp

(
−

√
Ld

2δ
Tr((Y − S)T (Y − S))

)
(B41)

We now recognise that the third term is proportional to [50, Eq (15)], which is the free entropy of the

denoising problem with noise-to-signal ratio
√
δ. We just need to be careful of a factor β, as in [50] the free

entropy is normalised by 1/Ld and not by 1/d2. Thus, we can use directly [50, Eq (18)] to get (one needs to
set β = β)

I =
β(δ +Q∗)
2ρ(1 + β)δ

+
β

2ρ(1 + β)
log

2πδ
4
√
Ld

+
β

ρ(1 + β)

[
const(β, P 0)−

1

β
Σ[µ̂Y ]−

β − 1

β
Λ[µ̂Y ]

]
(B42)

where µ̂Y is the symmetrised singular value density of a matrix distributed as Y in the high dimensional
limit, and

Σ[µ̂Y ] = −
∫
dx dy µ̂Y (x)µ̂Y (y) log |x− y| and Λ[µ̂Y ] = −

∫
dx µ̂Y (x) log |x| (B43)

regularised as in [50, Appendix A]. Thus, translating this back into a function of q̂ we get, dropping all q̂
independent terms

I = const +
Q∗q̂
2

− β

2ρ(1 + β)
log(q̂)− β

ρ(1 + β)

[
1

β
Σ[µ̂

S+
√

δ(q̂)Z
] +

β − 1

β
Λ[µ̂

S+
√

δ(q̂)Z
]

]
. (B44)

Then, taking the derivative w.r.t. q̂ we obtain the second state equation

q = 2∂q̂I

= Q∗ −
β

ρ(1 + β)q̂
+

2β2

ρ2(1 + β)2q̂2
∂δ

[
1

β
Σ[µ̂S+

√
δZ ] +

β − 1

β
Λ[µ̂S+

√
δZ ]

]
δ= β

ρ(1+β)q̂

= Q∗ − δ(q̂) + δ(q̂)2
∫
dx µ̂

S+
√

δ(q̂)Z
(x)

[
(β − 1)2

β3/2x2
+

4π2

3β3/2
µ̂
S+

√
δ(q̂)Z

(x)2
]
,

(B45)

where the derivative of the spectral term was computed using [50, Eqs (35), (70) and (71)].
We also notice that

∂δ

[
1

β
Σ[µ̂Y ] +

β − 1

β
Λ[µ̂Y ]

]
= −∂δΦdenoising(δ) =

δ −MMSEdenoising(δ)

2δ2
, (B46)

where we used [50, Eq (14)], so that the state equation can be rewritten as

q = Q∗ − δ(q̂) + δ(q̂)2
δ(q̂)−MMSEdenoising(δ(q̂))

δ(q̂)2

= Q∗ −MMSEdenoising(δ(q̂)) .

(B47)

The only non-trivial ingredient needed to solve the state equations is the symmetrised singular value density
of Y . This can be computed numerically efficiently, as detailed in [50, Section 3.3 and Appendix F, setting
R1 = β, R2 = ρ and ∆ = δ(q̂)] for the factorised Gaussian prior. For generic rotationally invariant priors,
this spectral density may be difficult to compute accurately.
It is also useful to write the associated free entropy. One gets, discarding all terms that are not dependent

on the order parameters (and using Q = Q∗ = 1)

Φ ≈ − ᾱ
2
log (∆ + 1− q)+

q̂(1− q)

2
− β log(q̂)

2ρ(1 + β)
− β

ρ(1 + β)

[
1

β
Σ[µ̂

S+
√

δ(q̂)Z
] +

β − 1

β
Λ[µ̂

S+
√

δ(q̂)Z
]

]
. (B48)
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Notice also that substituting back ᾱ = β
ρ(1+β)α and rescaling q̂ → q̂ β

ρ(1+β) we get

ρ(1 + β)

β
Φ ≈ −α

2
log (∆ + 1− q) +

q̂(1− q)

2
− log(q̂)

2
−
[
1

β
Σ[µ̂

S+
√

1/q̂Z
] +

β − 1

β
Λ[µ̂

S+
√

1/q̂Z
]

]
. (B49)

In the case of Gaussian label noise, we get q̂ = α/(1 − q + ∆) so that (again discaring all terms not
dependent on the order parameter q̂, the only one left now)

ρ(1 + β)

β
Φ ≈ α− 1

2
log(q̂)− q̂∆

2
−
[
1

β
Σ[µ̂

S+
√

1/q̂Z
] +

β − 1

β
Λ[µ̂

S+
√

1/q̂Z
]

]
. (B50)

2. Equation w.r.t. q̂ in the low width case.

In the regime where r ≪ d, we re-derive results from matrix compressed sensing [44]. We assume w.l.o.g.
d ≤ L. Not assuming this is equivalent to substituting d → min(L, d) everywhere in this subsection. We
want to compute

I =
1

r(d+ L)

∫
DY I0(Y ) log I0(Y ) , (B51)

where (recall that β = L/d)

I0(Y ) =

∫
dS P0(S) exp

(
− (1 + β)q̂

β

r

d

1

2
Tr(STS) +

√
(1 + β)q̂

β

r

d
Tr(Y TS)

)
. (B52)

We consider factorised priors S = ABT /
√
r with A ∈ RL×r, B ∈ Rd×r, where the priors on A and B are

row-factorised, but arbitrarily correlated along the width r through distributions GA and GB . A special case
is that of fully factorised prior, already treated in [44], among which one finds the i.i.d. Gaussian priors we
are interested to in the main text. To start, we have

µ2(0) =
1

rdL
ES∼P0 Tr(S

TS)

=
1

rdL
EA,B

∑
ijkl

AikBjkAilBjl

=
1

r

∑
kl

EA [A·kA·l]EB [B·kB·l]

=
1

r

∑
kl

ΣA
klΣ

B
kl

(B53)

where ΣA,B are the column covariances of A and B in Rr. To compute I and deal with the logarithm, we
need to replicate again. We replicate s times, so that we need to compute I = lims→0(Is − 1)/s with

Is =
∫
DY I0(Y )s+1

=

∫ (∏
a

dSaP0(Sa)

)
exp

(
− (1 + β)q̂

β

1

2

r

d

∑
a

Tr(ST
a Sa)

)∫
DY exp

√ (1 + β)q̂

β

r

d

∑
ij

Yij
∑
a

Sa
ij


=

∫ (∏
a

dSaP0(Sa)

)
exp

(
r

d

(1 + β)q̂

β

∑
a<b

Tr(ST
a Sb)

)
(B54)

Then we use the prior

dSaP0(Sa) = dAa dBa PA(Aa)PB(Ba) (B55)
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to get

Tr(ST
a Sb) =

∑
ij

Sa
ijS

b
ij =

1

r

∑
ijkl

Aa
ikB

a
jkA

b
ilB

b
jl =

1

r

∑
kl

(∑
i

Aa
ikA

b
il

)∑
j

Ba
jkB

b
jl

 (B56)

where the terms we highlighted inside the parentheses are summed over an extensive coordinate i, j, and have
two free indices k, l that run up to r, which are intensive quantities. Thus, we can introduce two overlaps
(call them g instead of q to avoid confusion with the overlaps of the original problem)

gAab,kl =
1

d

d∑
i=1

Aa
ikA

b
il

gBab,kl =
1

L

L∑
j=1

Ba
jkB

b
jl

(B57)

giving

r

d
Tr(ST

a Sb) = βd
∑
kl

gAab,kl(A)g
B
ab,kl(B) . (B58)

Thus, we have

Is =
∫ (∏

a

dSaP0(Sa)

)
exp

(
r

d

(1 + β)q̂

β

∑
a<b

Tr(ST
a Sb)

)

=

∫  ∏
a<b,kl

dgAab,kl dg
B
ab,kl dĝ

A
ab,kl dĝ

B
ab,kl


× exp

d(1 + β)q̂
∑
a<b

∑
kl

gAab,klg
B
ab,kl − id

∑
a<b,kl

gAab,klĝ
A
ab,kl − idβ

∑
a<b,kl

gBab,klĝ
B
ab,kl


×
∫ (∏

a

dAa dBa PA(Aa)PB(Ba)

)
exp

i ∑
a<b,kl

ĝAab,kl

d∑
i=1

Aa
ikA

b
il + i

∑
a<b,kl

ĝBab,kl

L∑
i=1

Ba
ikB

b
il

 .

(B59)

We take notice that for s = 0 the argument of the exp vanishes, and Is=0 = 1 as it should. Now we can
perform the RS ansatz, with no diagonal as that simplified away and using Nishimori’s identities to avoid
having to single out the zero-th replica, to get

Is =
∫ (∏

kl

dgAkl dg
B
kl dĝ

A
kl dĝ

B
kl

)

× exp

(
d(1 + β)q̂

s(s+ 1)

2

∑
kl

gAklg
B
kl − d

s(s+ 1)

2

∑
kl

gAklĝ
A
kl − dβ

s(s+ 1)

2

∑
kl

gBklĝ
B
kl

)

×
∫ (∏

a

dAa dBa PA(Aa)PB(Ba)

)
exp

(∑
kl

ĝAkl
∑
i

∑
a<b

Aa
ikA

b
il +

∑
kl

ĝBkl
∑
i

∑
a<b

Ba
ikB

b
il

)
.

(B60)
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Now we use the assumption that the priors on A,B are row-factorised, call the prior on a row G (it is a
distribution over Rr, so intensive), and get

Is =
∫ (∏

kl

dgAkl dg
B
kl dĝ

A
kl dĝ

B
kl

)

× exp

(
d(1 + β)q̂

s(s+ 1)

2

∑
kl

gAklg
B
kl − d

s(s+ 1)

2

∑
kl

gAklĝ
A
kl − dβ

s(s+ 1)

2

∑
kl

gBklĝ
B
kl

)

×
[∫ (∏

a

daaGA(aa)

)
exp

(∑
kl

ĝAkl
∑
a<b

aaka
b
l

)]d

×
[∫ (∏

a

dbaGB(ba)

)
exp

(∑
kl

ĝBkl
∑
a<b

bakb
b
l

)]βd
,

(B61)

where a and b a rows of the respective matrices. Finally we need to decouple the replicas. We use

exp

(∑
kl

ĝBkl
∑
a<b

bakb
b
l

)
= exp

∑
kl

ĝBkl

1
2

∑
a,b

−1

2

∑
a

 bakbbl


= exp

(
−1

2

∑
kl

ĝBkl
∑
a

bakb
a
l

)
exp

(
1

2

∑
kl

(
∑
a

bak)ĝ
B
kl(
∑
a

bal )

)

= exp

(
−1

2

∑
kl

ĝBkl
∑
a

bakb
a
l

)∫
dzN (z, 0, ĝBkl) exp

(∑
k

zk
∑
a

bak

)

=

∫
dzN (z, 0, ĝBkl)

[
exp

(
−1

2

∑
kl

ĝBklbkbl +
∑
k

zkbk

)]s+1

,

(B62)

where N (x, µ,Σ) to denote the Gaussian density with given mean µ and covariance Σ, so that

Is =
∫ (∏

kl

dgAkl dg
B
kl dĝ

A
kl dĝ

B
kl

)

× exp

(
d(1 + β)q̂

s(s+ 1)

2

∑
kl

gAklg
B
kl − d

s(s+ 1)

2

∑
kl

gAklĝ
A
kl − dβ

s(s+ 1)

2

∑
kl

gBklĝ
B
kl

)

×

∫ dzN (z, 0, ĝAkl)

[∫
daGA(a) exp

(
−1

2

∑
kl

ĝAklakal +
∑
k

zkak

)]s+1
d

×

∫ dzN (z, 0, ĝBkl)

[∫
dbGB(b) exp

(
−1

2

∑
kl

ĝBklbkbl +
∑
k

zkbk

)]s+1
dβ

.

(B63)



40

Now we take s→ 0 and get∫
dzN (z, 0, ĝAkl)

[∫
daGA(a) exp

(
−1

2

∑
kl

ĝAklakal +
∑
k

zkak

)]s+1

=

∫
dzN (z, 0, ĝAkl)

[∫
daGA(a) exp

(
−1

2

∑
kl

ĝAklakal +
∑
k

zkak

)]

×
[
1 + s log

∫
daGA(a) exp

(
−1

2

∑
kl

ĝAklakal +
∑
k

zkak

)
+ . . .

]

= 1 + s

∫
dzN (z, 0, ĝAkl)

[∫
daGA(a) exp

(
−1

2

∑
kl

ĝAklakal +
∑
k

zkak

)]

× log

[∫
daGA(a) exp

(
−1

2

∑
kl

ĝAklakal +
∑
k

zkak

)]
+ . . .

= 1 + sΦA(ĝ
A) + . . . ,

(B64)

where ΦA(ĝ
A) is related to an r-dimensional vector denoising problem with Gaussian noise and prior GA.

More importantly, it is just an r-dimensional integral and r ≪ d. Thus, we get

Is =
∫ (∏

kl

dgAkl dg
B
kl dĝ

A
kl dĝ

B
kl

)
exp sd

(
q̂(1 + β)

2

∑
kl

gAklg
B
kl −

1

2

∑
kl

gAklĝ
A
kl −

β

2

∑
kl

gBklĝ
B
kl

+ΦA(ĝ
A) + βΦB(ĝ

B) + . . . )

)
,

(B65)

from which

I =
1

r(1 + β)
extr

gA,gB ,ĝA,ĝB

[
q̂(1 + β)

2

∑
kl

gAklg
B
kl −

1

2

∑
kl

gAklĝ
A
kl −

β

2

∑
kl

gBklĝ
B
kl

+ΦGA(ĝAkl) + βΦGB (ĝBkl)

]
,

(B66)

where for any (symmetric, p.s.d.) r × r matrix ĝ we defined

ΦG(ĝ) =

∫
dzN (z, 0, ĝ)

[∫
daG(a) exp

(
−1

2

∑
kl

ĝklakal +
∑
k

zkak

)]

× log

[∫
daG(a) exp

(
−1

2

∑
kl

ĝklakal +
∑
k

zkak

)]
.

(B67)

The extremization conditions for I lead to the equations

ĝAkl = q̂(1 + β)gBkl ,

ĝBkl = q̂
1 + β

β
gAkl ,

gAkl = 2∂ĝA
kl
ΦA(ĝ

A) ,

gBkl = 2∂ĝB
kl
ΦB(ĝ

B) .

(B68)

At the extremiser of I, the state equation for the overlap of the original problem reads

q =
1

r

∑
kl

gAklg
B
kl . (B69)
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In the special case of factorised priors, [44] showed that one can take the order parameters g and ĝ to be
diagonal, and with all diagonal elements equal. In that case, one can show by explicit computation that

Φ(ĝ) = r

∫
Dtda0G(a0) log

[∫
daG(a) exp

(
−1

2
ĝa2 + (

√
ĝt+ ĝa0)a

)]
,

2∂ĝΦG(ĝ) =
r√
ĝ

∫
dz

(∫
daG(a) aN (a, z/

√
ĝ, 1/ĝ)

)2∫
daG(a)N (a, z/

√
ĝ, 1/ĝ)

,

(B70)

where now all g and ĝ are scalars, and which leads to [44, Eqs. (76-78)]. Notice that in the extremisation
conditions an additional factor r comes out due to the sums for k, l in I trivialising. Finally, for Gaussian
priors one can solve all integrals in closed form, obtaining the equations

q = gAgB

ĝAkl = q̂(1 + β)gBkl ,

ĝBkl = q̂
1 + β

β
gAkl ,

gAkl =
ĝA

1 + ĝA
,

gBkl =
ĝB

1 + ĝB
,

(B71)

which can be solved explicitly to

gA =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + 1)
,

gB =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + β)
,

q = gAgB .

(B72)

Notice that q does not depend on r in this case, so that all low-rank problems have the same MMSE. This
is due to fact that the priors over the factors are i.i.d..

Appendix C: Consequences of the main results

In this appendix we derive various consequences of Result 1 and Previous Result 4. In particular:

• In Appendix C 1 we derive the weak and strong recovery thresholds for the BSR model in the intensive
width regime, as presented in Section III B.

• In Appendix C 2 we derive the strong recovery threshold for the BSR model in the extensive width
regime, as presented in Result 5.

• In Appendix C 3 we derive the large β limit of the BO error for the BSR model in the intensive width
regime.

• In Appendix C 4 we derive the large β limit of the BO error for the BSR model in the extensive width
regime.

• In Appendix C 5 we derive the large ρ limit of the BO error for the BSR model, and show that it equals
the error of optimally-regularised ridge regression.
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1. Weak and strong recovery thresholds in the intensive width BSR model without noise

The state equations are (B31) and (B72), i.e.

gA =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + 1)
,

gB =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + β)
,

q = gAgB ,

q̂ =
ᾱ

1− q
.

(C1)

The strong recovery threshold ᾱBO is such that

ᾱBO = lim
q̂→∞

q̂(1− q(q̂)) = 1 , (C2)

as can be seen by explicitly computing the limit. In the main text scaling n = αdL this translates to

αBO =
ρ(1 + β)

β
= 0 , (C3)

as for r ≪ d then ρ→ 0. This highlights the importance of the scaling r(d+ L) to study both intensive and
extensive width in a common scaling.
The weak recovery threshold, i.e. the value ᾱweak at which q = 0 can be found by imposing q = 0, which

gives either gA = 0 or gB = 0 implying (β + 1)2q̂2 − β = 0. Combined with the equation for q̂ this gives

ᾱweak = (1 +∆)q̂ = (1 +∆)

√
β

1 + β
. (C4)

Notice that the weak threshold is non-trivial also in the noiseless case.

2. Strong recovery threshold in the extensive width BSR model without noise

We have MMSE = 1− q with the state equations (B31) and (B47), i.e.

δ =
β

ρ(1 + β)

1− q

ᾱ
,

q = 1− δ + δ2
∫
dx µ̂S+

√
δZ(x)

[
(β − 1)2

β3/2x2
+

4π2

3β3/2
µ̂S+

√
δZ(x)

2

]
.

(C5)

Strong recovery happens for ᾱBO such that MMSE = 0, i.e. for q → 1 and δ → 0. Rearranging the equations,
we have

ᾱBO = lim
δ→0

β

ρ(1 + β)

1− q(δ)

δ
=

β

ρ(1 + β)
− β

ρ(1 + β)
lim
δ→0

δ

∫
dx µ̂S+

√
δZ(x)

[
(β − 1)2

β3/2x2
+

4π2

3β3/2
µ̂S+

√
δZ(x)

2

]
.

(C6)
Thus, we need to study the second equation in the limit of δ → 0, and specifically look whether the integral
terms develop divergencies at δ → 0.

Notice that, assuming that the last limit-integral term is finite as we will verify later, q = 1, δ = 0 is a
solution of these equations for all values of ᾱ. This is kind of a trivial solution, and we expect that it is
not the only solution for low enough values of ᾱ. Thus, to find the strong recovery threshold, which can be
seen as the bifurcation point at which the non-trivial, low-ᾱ solution of the equations merges with the trivial
one, we assume that q < 1 and δ > 0, and take the limit q → 1− and δ → 0+, effectively moving along the
non-trivial solution towards the bifurcation point.
Intuitively, for δ → 0, the spectral density µ̂S+

√
δZ(x) will be composed either by a single bulk (if the width

parameter does not constrain the rank of S, i.e. if ρ ≥ min(1, β)) or by two bulks (if the width parameter
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constrains the rank of S, i.e. 0 < ρ < min(1, β)), one gapped away from zero and the other close to zero. This
is due to the fact that the spectrum of S is either composed by a bulk gapped away from zero or diverging
at zero, or by a bulk gapped away from zero and an additional delta accounting for the rank deficiency.
Gaussian noise with vanishingly small variance alters this picture only perturbatively.
Then, if no rank deficiency is present (0 < ρ < min(1, β)), and assuming that ungapped bulks are not

problematic, the integrals will have no divergence and

ᾱc =
β

ρ(1 + β)
. (C7)

Otherwise, the first integral will develop a divergence due to the interplay of the noised delta peak of the
spectrum of S and the 1/x2 factor in the integral, leading to a non-trivial ᾱc.

To follow this intuition, we perform the change of variable x =
√
δz in the integrals, so that

ᾱBO =
β

ρ(1 + β)
− β

ρ(1 + β)
lim
δ→0

∫
dz

√
δµ̂S+

√
δZ(

√
δz)

[
(β − 1)2

β3/2z2
+

4π2

3β3/2

(√
δµ̂S+

√
δZ(

√
δz)
)2]

. (C8)

The scaling
√
δ can be guessed as it allows to identify an expression which depends on δ only through the

rescaled density
√
δµ̂S+

√
δZ(

√
δz), which we now study.

As shown in [63] (but we follow the notations and definitions of [50]) the Stieltjes transform of Y = S+
√
δZ

satisfies

gY (x) = zgY Y T (x2) (C9)

where gY Y T (x2) is a root of the polynomial p(G) =
∑4

a=0 ak(x
2, δ)Gk. We plug in the equation x =

√
δz, take

the scaling ansatz G = H/δ, and expand everything at leading order for δ → 0, obtaining (after simplifying
an overall factor of δ)

H(z2) =

√
βz4 − 2

√
βz2(β − 2ρ+ 1) + (β − 1)2 +

√
βz2 − β + 1

2z2
(C10)

(the other solutions have either the wrong sign in front of the square root, or no square root). Here we
defined ρ = ρ/min(1, β) for simplicity. Now, recall that µ is the discontinuity at branch cuts over the real
axes of H. Thus, only the square root term will contribute, and only when its argument is negative. The
roots of the argument of the square roots are

z± =
±2
√
(ρ− 1)(ρ− β) + β − 2ρ+ 1√

β
(C11)

giving the distribution

f(z) =
1

π
lim

ϵ→0+
ℑ
[
(x− iϵ)H((x− iϵ)2)

]
=

√
β(z+ − z2)(z2 − z−)

2πz
(C12)

We can check using Mathematica that

2

∫ z+

z−

dz f(z) = (1− ρ)

2

∫ z+

z−

dz f(z)3 =
3
√
β(1− ρ)2

4π2

2

∫ z+

z−

dz f(z)z−2 =

√
β(1− ρ)

β − 1

(C13)

The normalisation is correct, as we are in a scaling limit where only the noisy version of the (1 − ρ)δ0
contribution to the non-noisy measure. Notice that all this derivation holds only for 0 < ρ < 1, as 0 < z− < z+
holds only in this case. For ρ ≥ 1, the square root never develops a branch cut, so that the function f(z) is
identically zero.
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Thus, we get for ρ ≥ 1

ᾱBO =
β

ρ(1 + β)
, (C14)

as expected, and for 0 < ρ < 1

ᾱBO =
β

ρ(1 + β)
− β

ρ(1 + β)

(1− ρ)(β − ρ)

β
=

β

ρ(1 + β)
− (ρ− 1) (ρ− β)

ρ(1 + β)
= 1− ρ

1 + β
. (C15)

For ρ→ 0, the threshold reduces to ᾱc = 1, as found explicitly in the low-width case (C2).
In the main text scaling n = αdL this translates to

αBO =

{
ρ
β (1 + β − ρ) 0 < ρ < 1 ,

1 ρ > 1 .
(C16)

3. Large β limit for the intensive width BSR model

The state equations are (B31) and (B72), i.e.

gA =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + 1)
,

gB =
(β + 1)2q̂2 − β

(β + 1)q̂(βq̂ + q̂ + β)
,

q = gAgB ,

q̂ =
ᾱ

1− q +∆
.

(C17)

For large β, assuming that q̂ remains finite, we have

gA ∼ β2q̂2

βq̂(βq̂)
= 1 ,

gB ∼ β2q̂2

βq̂(βq̂ + β)
=

q̂

1 + q̂
,

q ∼ q̂

1 + q̂
,

q̂ =
ᾱ

1− q +∆
.

(C18)

The equations can be solved explicitly to

q =
1

2

(
1 + ∆+ ᾱ−

√
(ᾱ− 1)2 + 2(ᾱ+ 1)∆ +∆2

)
, (C19)

which reduces to

q = min(1, ᾱ) , (C20)

in the noiseless case ∆ = 0.

4. Large β limit for the extensive width BSR model

We have the state equations (B31) and (B47), i.e.

δ =
1− q +∆

α
,

q = 1− δ + δ2
∫
dx µ̂S+

√
δZ(x)

[
(β − 1)2

β3/2x2
+

4π2

3β3/2
µ̂S+

√
δZ(x)

2

]
,

(C21)
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where we rescaled α and q = 1/δ to match the scaling α = n/(dL) of the main text w.r.t. Appendix B.
We will show below that

f(w) = lim
β→∞

4
√
βµ̂S+

√
δZ

(
4
√
βw
)

(C22)

for a finite and compactly supported function f(w) fully independent on β. This implies that

q = 1− δ + δ2
∫
dx µ̂S+

√
δZ(x)

[
(β − 1)2

β3/2x2
+

4π2

3β3/2
µ̂S+

√
δZ(x)

2

]
∼ 1− δ + δ2

∫
dw 4
√
βµ̂S+

√
δZ

(
4
√
βw
)[ 1

w2
+

4π2

3β2

√
βµ̂S+

√
δZ

(
4
√
βw
)2]

∼ 1− δ + δ2
∫
dw f(w)

[
1

w2
+

4π2

3β2
f(w)2

]
∼ 1− δ + δ2

∫
dw

f(w)

w2

(C23)

where we changed variable x = 4
√
βw, and used that∫

dwf(w)3 < +∞ (C24)

as f(w) is finite and compactly supported. We now need to compute f and show that it is indeed well
behaved.
Recall that the Stieltjes transform of µ̂S+

√
δZ satisfies [50, 63]

gY (z) = zGY TY (z
2) (C25)

so that

4
√
βgY (z)

(
4
√
βw
)
= w

√
β GY TY

(√
βw2

)
. (C26)

Now, recall that GY TY (z) satisfies a quartic polynomial equation. By rescaling z = 4
√
βw and G = H/

√
β

and considering the leading order in β. one obtains the simplified quadratic equation

H2(δ − w2) +H(1 + ρw2 − (1 + δ)ρ)− ρ = 0 (C27)

which solves to

wH(w) = w

√
(−δρ+ ρw2 − ρ+ 1)

2
+ 4ρ (δ − w2) + δρ− ρw2 + ρ− 1

2 (δ − w2)
. (C28)

leading by the standard inversion formula to the associated measure

f(w) =
ρw

2π(w2 − δ)

√
(b+ − w2) (w2 − b−) , (C29)

supported on

b− < w2 < b+ , (C30)

and on the symmetric interval, where we defined

b± = 1 + δ +
1

ρ
± 2√

ρ
. (C31)
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This confirms that f is finite and compactly supported, as t ≤ b− < b+ for all δ and ρ. We can also verify
that ∫

dw f(w) = 2
ρ

2π

∫ √
b+

√
b−

dww

√
(b+ − w2) (w2 − b−)

w2 − δ

=
ρ

2π

∫ b+

b−

dt

√
(b+ − t) (t− b−)

t− δ

=
ρ

2π

{
2π if ρ < 1 ,
2π
ρ otherwise ,

= min(ρ, 1) ,

(C32)

where we used t = w2. This is the correct normalisation for the bulk of the distribution, excluding the
rank-deficiency-induced spike in zero of mass max(0, 1− ρ).

Now, we need to compute∫
dw

f(w)

w2
= 2

ρ

2π

∫ √
b+

√
b−

dww

√
(b+ − w2) (w2 − b−)

w2(w2 − δ)

=
ρ

2π

∫ b+

b−

dt

√
(b+ − t) (t− b−)

t(t− δ)

=

√
1 + ρ (ρ− 2 + 2δ + (2 + δ)δρ)− δρ+ ρ− 1

2δ
,

(C33)

where we used t = w2. Thus, we obtain the equations

δ =
1− q +∆

α
,

q = 1− δ + δ

√
1 + ρ (ρ− 2 + 2δ + (2 + δ)δρ)− δρ+ ρ− 1

2
,

(C34)

to be solved for q.

5. Large β limit for the extensive width BSR model

We have the state equations (B31) and (B47), i.e.

δ =
1− q +∆

α
,

q = 1− δ + δ2
∫
dx µ̂S+

√
δZ(x)

[
(β − 1)2

β3/2x2
+

4π2

3β3/2
µ̂S+

√
δZ(x)

2

]
,

(C35)

where we rescaled α and q = 1/δ to match the scaling α = n/(dL) of the main text w.r.t. Appendix B.
We want to compute the ρ → ∞ limit of the equations. Recall that the Stieltjes transform of µ̂S+

√
δZ

satisfies [50, 63]

gY (z) = zGY TY (z
2) (C36)

and that GY TY (z) satisfies a quartic polynomial equation. One obtains the simplified quadratic equation in
the large ρ limit

G2 z
2(1 + δ)√

β
+G

(
z2 − (1 + δ)(β − 1)√

β

)
− 1 = 0 (C37)
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which solves to

zG(z2) = z

√
β
(√

− 2(β+1)(δ+1)z2
√
β

+ (β−1)2(δ+1)2

β + z4 + z2
)
− β(δ + 1) + δ + 1

2(δ + 1)z2
. (C38)

leading by the standard inversion formula to the associated measure

f(z) =

√
β

1 + δ

√
(b+ − z2) (z2 − b−)

2πz
, (C39)

supported on

b− < z2 < b+ , (C40)

and on the symmetric interval, where we defined

b± = (
√
β ± 1)2

1 + δ√
β
. (C41)

We can verify that

2

∫ b+

b−

dz f(z) = 1 , (C42)

This is the correct normalisation for the bulk of the distribution. We also have

2

∫ b+

b−

dz f(z)
1

z2
=

√
β

(β − 1)(δ + 1)
, (C43)

and

2

∫ b+

b−

dz f(z)3 =
3
√
β

4π2(1 + δ)
, (C44)

from which one gets the equations

δ =
1− q +∆

α
,

q =
1

1 + δ
,

(C45)

whose solution gives

1 + α+∆−
√

(α+∆+ 1)2 − 4α

2
. (C46)

This coincides with the overlap achieved by optimally-regularised ridge regression Previous Result 6.
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