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Abstract
When can the input of a ReLU neural network be inferred from its output? In other words, when
is the network injective? We consider a single layer, x 7→ ReLU(Wx), with a random Gaussian
m × n matrix W , in a high-dimensional setting where n,m → ∞. Recent work connects this
problem to spherical integral geometry giving rise to a conjectured sharp injectivity threshold for
α = m/n by studying the expected Euler characteristic of a certain random set. We adopt a
different perspective and show that injectivity is equivalent to a property of the ground state of
the spherical perceptron, an important spin glass model in statistical physics. By leveraging the
(non-rigorous) replica symmetry-breaking theory, we derive analytical equations for the threshold
whose solution is at odds with that from the Euler characteristic. Furthermore, we use Gordon’s
min–max theorem to prove that a replica-symmetric upper bound refutes the Euler characteristic
prediction. Along the way we aim to give a tutorial-style introduction to key ideas from statistical
physics in an effort to make the exposition accessible to a broad audience. Our analysis establishes
a connection between spin glasses and integral geometry but leaves open the problem of explaining
the discrepancies.

Contents

1 Introduction 3
1.1 Injectivity and (random) neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Injectivity and random geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Statistical physics and the spherical perceptron . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Relating the free entropy to injectivity . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Predictions of full replica symmetry breaking theory . . . . . . . . . . . . . . . 10
1.5.3 Additional bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Structure of the paper and open problems . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 The replica hierarchy of upper bounds 14
2.1 General principles of the replica method . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 First steps of the replica method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 The replica-symmetric solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The overlap distribution and replica symmetry breaking . . . . . . . . . . . . . . . . . 19
2.5 One-step replica symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

⋆ Department of Mathematics, ETH Zürich, Switzerland.
♯ Department of Mathematics and Computer Science, University of Basel, Switzerland.
♭ Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, USA.
▷ Graduate School of Science and Technology, Meiji University, Kanagawa, Japan.
◁ Faculty of Mathematics and Computer Science, UniDistance Suisse.
⋄ To whom correspondence shall be sent: antoine.maillard@math.ethz.ch.

1

ar
X

iv
:2

30
2.

14
11

2v
2 

 [
co

nd
-m

at
.d

is
-n

n]
  1

2 
D

ec
 2

02
4

mailto:antoine.maillard@math.ethz.ch


3 The full-RSB solution: exact injectivity threshold 22
3.1 The full-RSB prediction for the free entropy . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Zero-temperature limit and algorithm for the injectivity threshold . . . . . . . . . . . 24

A Proofs 32

B Replica-symmetric supplementary calculations 41

C A replica-symmetric lower bound 45

D One-step replica symmetry breaking 46

E Details of the FRSB computation 50

F Technicalities of the algorithmic FRSB procedure 54

G “Escape through a mesh” theorem: an alternative proof of Theorem 1.8 59

2



1 Introduction
We ask the following question: when is a randomly-initialized ReLU neural network injective? For
n,m ≥ 1 we consider a single layer at initialization, that is the map φW defined as

φW(x)µ = σ
[(Wx√

n

)
µ

]
, µ = 1, · · · ,m, (1)

with x ∈ Rn and σ(x) := max(0, x), the ReLU activation. The weights at initialization are random;
concretely, we let Wµi

i.i.d.∼ N (0, 1) in what follows, although we expect some of our results to generalize
to W with independent entries with zero mean, unit variance, and uniformly bounded third moment;
see the discussion on universality in Section 1.3.

Earlier work studied this question in the proportional growth asymptotics, where n → ∞ and the
aspect ratio m

n → α > 0. Puthawala et al. proved that there exist values αl and αh, with αl < αh, such
that the probability pm,n that the map φW is injective converges to 1 for α > αh and to 0 for α < αl,
suggesting that interesting transitions may appear precisely in this proportional scaling [PKL+22] .
Indeed, by studying the expected Euler characteristic of the intersection of a random subspace with
a union of orthants with sufficiently many negative coordinates, Clum, Paleka, Bandeira, and Mixon
conjectured a sharp injectivity threshold at the value αEuler

inj ≃ 8.34 [Pal21, Clu22, CPBM22]. We
adopt this setting and propose an alternative derivation of the injectivity threshold, by making a
connection with a spin glass model known as the spherical perceptron.

1.1 Injectivity and (random) neural networks

Our focus is on framing injectivity as a statistical physics problem and exploring parallels and dis-
crepancies with the mentioned conjecture based on integral geometry1. But a study of injectivity has
a variety of motivations in contemporary machine learning. Inferring x from φW(x) is an ill-posed
problem unless φW is injective. The question thus arises naturally when applying neural networks
to model forward and inverse maps in inverse problems [PKL+22, AMÖS19]. There has been consid-
erable interest in inverting generative models on their range to regularize ill-posed inverse problems
[BJPD17] and in building injective generative models [BC20, KKdHD21, RC21]. Normalizing flows
are designed to be invertible with efficiently computable inverses; similar feats can be achieved with
injective maps, even with ReLU activations, while retaining favorable approximation-theoretic prop-
erties [PKL+22, PLDDH22, KKdHD21]. In finite dimension injective maps are (locally) Lipschitz
[SU09]. There is significant work on estimating and controlling the Lipschitz constants of deep neural
networks; see for example [FRH+19, JD20, GFPC21] and references therein.

Applications abound beyond inverse problems: certain injective generative models can provably be
trained with sample complexity which is polynomial in image dimension [BMR18]; a message-passing
graph neural networks is as powerful as the Weisfeiler–Lehman test, but only if the aggregation
function is injective [XHLJ18]; injective ReLU networks are universal approximators of any map with
a sufficiently high-dimensional output space [PKL+22] as well as of densities on manifolds [PLDDH22].

There is an analogy between random neural networks and random matrices. Just as results for
random matrices help us understand general matrices and have implications throughout mathematics,
physics, engineering, and computer science, random neural networks yield insight into general neural
networks. This is the perspective of recent work on “nonlinear random matrix theory” for machine
learning [PW17, LLC18]. We mention two other examples from this emerging line of research: neural
networks at initialization have been used to theoretically study batch normalization [DKB+20] and
properties of gradients in deep networks [HN20].
1If formal injectivity was itself the goal, we could simply replace ReLU by Leaky ReLU and reduce the problem to
injectivity of matrices. In that case the interesting quantity to study may be the inverse Lipschitz constant.
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1.2 Injectivity and random geometry

Notation – N⋆ = Z>0 denotes the positive integers. We say that an event occurs with high proba-
bility (w.h.p.) when its probability is 1 − o(1) as the dimension n → ∞. We denote µn the uniform
probability measure on the Euclidean unit sphere Sn−1 in Rn. The symbol P→ refers to convergence
in probability, and Dξ is the standard Gaussian measure on R, as usual in physics.

Our first tool is a proposition proved in Appendix A.1, stated as Proposition 4.10 in [Pal21] and
Proposition 37 in [Clu22], which is a simple consequence of Theorem 1 of [PKL+22]. It connects
injectivity to random geometry:
Proposition 1.1 (Injectivity and random geometry)
The probability pm,n that φW is injective is

pm,n = PV

[
V ∩ Cm,n = {0}

]
, (2)

where V is a uniformly random n-dimensional subspace of Rm, and Cm,n is the set of vectors in Rm

with strictly less than n strictly positive coordinates.

Remark – Since V ∩ Cm,n is a cone, we can equivalently ask in eq. (2) that V ∩ Cm,n ∩ Sm−1 be an
empty set.

Recall that we will study injectivity for large matrices W in the proportional growth asymptotics,

n → ∞, m/n → α.

In what follows we will only consider the case m ≥ n (and therefore α ≥ 1). For m < n even x 7→ Wx is
not injective, implying that pm,n = 0. An analysis of the random subspace–set intersection introduced
in Proposition 1.1, which is based on the phase transition in the expected Euler characteristic, yields
a sharp injectivity threshold prediction of αEuler

inj ≃ 8.34 [Pal21], see Section 1.4. Here we refute this
prediction and conjecture a new threshold based on a different geometric intuition.

1.3 Statistical physics and the spherical perceptron

Injectivity as energy minimization – The random subspace V of Proposition 1.1 is constructed
as the column space of the random matrix W, which has dimension n with probability 1 when m ≥ n.
If V ′ := W(Sn−1) is the image of the n-dimensional unit sphere, we have that P[V ∩ Cm,n = {0}] =
P[V ′ ∩ Cm,n = ∅]. Moreover, for any x ∈ Sn−1 we can define EW(x) as the total number of positive
coordinates of Wx, and eW(x) as a normalization of this quantity:

EW(x) :=
m∑

µ=1
θ[(Wx)µ], eW(x) := EW(x)

n
, (3)

where θ(x) = 1(x > 0) is the Heaviside step function, with the convention θ(0) = 0. Since Cm,n is the
set of all vectors in Rm with strictly less than n (strictly) positive coordinates, one has immediately
that Wx ∈ Cm,n ⇔ EW(x) < n. Therefore, by Proposition 1.1, pm,n can be rewritten as1

pm,n = PW
[

min
x∈Sn−1

EW(x) ≥ n
]
. (4)

Eqs. (2) and (4) express two different geometric intuitions. The former one lives in Rm (recall that
m ≥ n) and it is about an intersection of a random n-dimensional subspace and a certain nonconvex
union of orthants. The latter one lives in Rn and it is about the existence of a halfspace which contains
less than n (out of m) random vectors. The two intuitions naturally encourage different analytic tools.
1The minimum is always reached since EW(Sn−1) is a finite set.
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Statistical physics of disordered systems – The right-hand side of eq. (4) is reminiscent of
quantities that theoretical physicists have been tackling since the 1970s, in the field of physics of
disordered systems. In these disordered models (also known as spin glasses), one wishes to minimize
an energy function like EW, which is itself a function of random interactions (also called quenched
disorder), represented in our case by W. We recommend the famous book by Mézard, Parisi, and
Virasoro for a beautiful review of the early breakthroughs of the physics of spin glasses [MPV87].

Given this short description, we can see that eq. (4) fits the framework of these studies: the energy
function given in eq. (3) defines a model known in the statistical physics literature as the spherical
perceptron (sometimes referred to as the Gardner–Derrida perceptron [GD88] when EW(x) is given by
eq. (3)). We consider this perhaps unexpected point of view on injectivity of random layers in neural
networks.

Cover’s theorem and the bound αinj ≥ 3 – Cover’s theorem [Cov65] leads to a first natural
bound for αinj. It implies that for α < 2, there exists with high probability (as n → ∞) x ∈ Sn−1 s.t.
EW(x) = 0 (that is, the constraint satisfaction problem EW(x) = 0 is satisfiable w.h.p.). One can
easily deduce from this that αinj ≥ 3:
Lemma 1.2 (Cover’s lower bound for injectivity)
Assume α < 3. Then as n,m → ∞ the ReLU layer is non injective with high probability, i.e.,
limn→∞ pm,n = 0.

Such arguments are classical, and we detail the proof of Lemma 1.2 for completeness in Appendix A.21.
Results about the perceptron based on Cover’s theorem were greatly extended by Gardner and Derrida
[Gar88, GD88] using non-rigorous tools, and then later rigorously justified by Scherbina and Tirozzi
[ST02, ST03] and Stojnic [Sto13a]. In the constraint satisfaction problem (CSP) view on the per-
ceptron, α = 2 is sometimes referred to as the Gardner capacity, which marks the limit between the
satisfiable (SAT) and unsatisfiable (UNSAT) phases.

Thermal relaxation: the Gibbs–Boltzmann distribution – Statistical physicists characterize
the landscape of the (random) energy function EW(x) by considering the Gibbs–Boltzmann distribu-
tion Pβ,W, defined for any inverse temperature β ≥ 0 as

dPβ,W(x) := 1
Zn(W, β)e

−βEW(x)µn(dx). (x ∈ Sn−1) (5)

Informally, the parameter β ≥ 0 interpolates between two extremes: the infinite-temperature (β = 0)
regime, in which the Gibbs measure is uniform on the sphere, and the zero-temperature (β → ∞)
limit, in which the Gibbs measure is concentrated on the global minima of the energy function EW(x).
Studying the properties of the Gibbs measure for n → ∞ at various β (remaining finite when n → ∞)
yields deep insight about the landscape of the corresponding energy function [Ell06]2. In particular,
many of our results will be based on an analysis of the large n limit of the free entropy, which is
defined as the the logarithm of the normalization in eq. (5):

Φn(W, β) := 1
n

log Zn(W, β) = 1
n

log
∫

Sn−1
µn(dx) e−βEW(x). (6)

Universality of the free entropy – Following classical arguments based on the Lindeberg ex-
change method [Cha06], one can show that the free entropy Φ(α, β) is universal for all matrices W
with independent zero-mean entries with unit variance and uniformly bounded third moment. In
1In a nutshell, by Lemma 1.2 there is always an x at obtuse angle with the top 2n rows of W. Even if all the remaining
m − 2n rows form acute angles with x, we need at least n such rows for injectivity.

2The Gibbs distribution is also the invariant measure of stochastic optimization procedures such as Langevin dynamics.
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particular, all our conjectures and theorems on the free entropy can be stated in this more gen-
eral case. We note that in a recent line of work, similar universality properties have been general-
ized to matrices with independent rows (see, e.g., [MS22, GKL+24] and references therein) under a
“one-dimensional CLT” condition. In particular, [GKL+24] conjectures that the ground state energy
f⋆(α) = limn→∞{minx eW(x)} (shown in Fig. 1) is universal with respect to the distribution of W
in a much wider class than matrices with independent elements: we leave the investigation of this
conjecture and its implications on injectivity for future work.

1.4 Related work

Average Euler characteristic prediction – We follow here closely the presentation of [Pal21] (see
also [Clu22]). Proposition 1.1 is reminiscent of the kinematic formulas in integral geometry [SW08],
that allow to compute expressions of the type E[F (V ∩ C)], when V is a uniformly-sampled random
n-dimensional subspace, and

(i) C is a finite union of convex cones.

(ii) F is an additive function, i.e., it satisfies for any A,B ⊆ Rm that F (A ∪ B) + F (A ∩ B) =
F (A) + F (B).

Recall that we can write eq. (2) as pm,n = E[1S(V ∩ Cm,n)], with 1S(A) := 1{A ∩ Sm−1 ̸= ∅} the
indicator function of the sphere. While Cm,n is indeed a finite union of orthants (and thus of convex
cones), 1S is not additive. However, it follows from Groemer’s extension theorem [SW08] that the
unique additive function defined on finite unions of convex cones to agree with 1S on convex cones is
the (spherical) Euler characteristic χS(A) := χ(A∩Sm−1). A possible heuristic is thus to approximate
pm,n = E[1S(V ∩ Cm,n)] by

qm,n := E[χS(V ∩ Cm,n)], (7)

in order to apply the kinematic formulas. We refer to [Pal21] for more discussion on the validity of this
heuristic. In particular, let us note that this strategy has also been used to estimate the probability
of excursions of random fields, see [AT07]. Using the kinematic formulas, one can obtain an explicit
formula for qm,n. Estimating its limit as n,m → ∞ is involved, and a non-rigorous calculation
performed in [Pal21] leads to the conjecture:

lim sup
n→∞

1
n

log qm,n < 0 for α < αEuler
inj ,

lim inf
n→∞

1
n

log qm,n > 0 for α > αEuler
inj ,

(8)

for a sharp threshold αEuler
inj ≃ 8.34, which we will call the average Euler characteristic prediction for

injectivity. Checking the validity of this heuristic approach as a prediction for the behavior of pm,n

was one of the motivations of our work.

Physics and mathematics of the perceptron – Motivated in particular by the relation of
the perceptron to continuous constraint satisfaction problems (e.g. to soft sphere packing), stud-
ies of the spherical perceptron in physics and mathematics are numerous. Without aiming at be-
ing exhaustive, and rather primarily referring to works relevant for our presentation, these studies
include [GD88, Gar88, FPS+17] in the physics literature, while the spherical perceptron has also
been studied with mathematically rigorous techniques [ST02], [Tal10, Chapter 3], [Tal11, Chapter
8], [Sto13a, Sto13b, MZZ24]. In particular, the satisfiability threshold α = 2 has been rigorously
determined. The techniques however do not apply to the unsatisfiable (UNSAT) regime, which is
the one that is relevant in this paper. One reason for this is that the satisfiability question can be
formulated in terms of a convex Hamiltonian, while in the unsatisfiable regime one is interested in a
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Hamiltonian given by the number of half-spaces a point is contained in, which is not convex. This
precludes the straightforward use of these rigorous techniques to study the injectivity question. A
rigorous sharp characterization of the unsatisfiable phase remains an important open problem. We
refer to [BNSX22] for a summary of current advances on the spherical perceptron, from both the
physics and the mathematics points of view.

Other related work – Puthawala et al. derived a suite of results on injectivity of neural networks,
including a simple analysis of random ReLU layers [PKL+22]. By combining ideas related to Cover’s
theorem with union bounds over row selections from W and concentration of measure, they proved
upper and lower bounds on the injectivity threshold, the upper bound being later improved by Paleka
[Pal21] and Clum [Clu22]. We summarize them in the following theorem:

Theorem 1.3 (Known bounds for injectivity [PKL+22, Pal21, Clu22])(
α ≤ 3.3 ⇒ lim

n→∞
pm,n = 0

)
and

(
α ≥ 9.091 ⇒ lim

n→∞
pm,n = 1

)
.

By Proposition 1.1, the injectivity threshold can be characterized as a phase transition in the prob-
ability that a random subspace intersects a certain union of orthants. Similar characterizations arise
in the study of convex relaxations of sparse linear regression and other high-dimensional convex op-
timization problems with random data. Amelunxen et al. connect the probability of success of these
optimization problems to random convex constraint satisfaction problems, namely the probability that
two random convex cones have a common ray [ALMT14]. They prove that this probability exhibits a
sharp phase transition in terms of scalar values known as the statistical dimension of the cones. Un-
fortunately, these results are limited to convex cones, whereas the union of orthants from Proposition
1.1 is non-convex.

1.5 Main results

Recall that we study a high-dimensional regime in which n → ∞ and m = m(n) satisfies m(n)/n →
α > 0. We will sometimes use the notation αn := m(n)/n. The proofs of the rigorous statements in
this section are given in Appendix A.

1.5.1 Relating the free entropy to injectivity

Our starting point is eq. (4) in Proposition 1.1 (recall that eW(x) = EW(x)/n):

pm,n = PW
[

min
x∈Sn−1

eW(x) ≥ 1
]
.

Recall the definition of the free entropy in eq. (6). We immediately have

−Φn(W, β)
β

≥ min
x∈Sn−1

eW(x), (9)

which formalizes the fact that the Gibbs distribution is a relaxation of the uniform distribution on
the global minima of EW. Our strategy is to use eq. (9) to characterize injectivity. This involves two
challenging steps:

(i) Make the inequality of eq. (9) as tight as possible: as we explain below, conjecturally, when
taking n → ∞ and then β → ∞, eq. (9) becomes an equality. While we are not able to prove
this statement, we will use it to conjecture a sharp transition for injectivity in terms of the
aspect ratio α. Moreover, without assuming that this conjecture holds, we will also use eq. (9)
to prove upper bounds on the injectivity threshold.
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(ii) Second, computing the large system limit n → ∞ of Φn(W, β) on the left-hand side of eq. (9).
This is a central object in the physics of disordered systems, and we will provide a conjecture
for its limiting value, as well as rigorous upper bounds. Our results leverage a long line of work
combining probability theory with heuristic predictions of statistical physics.

The following statement is classical in the theory of disordered systems and a direct consequence of
celebrated concentration inequalities [BLM13]. It bounds the probability that the free entropy deviates
from its mean (with respect to the disorder W):

Theorem 1.4 (Free entropy concentration)
For any β ≥ 0 and n ≥ 1, we have,

PW[|Φn(W, β) − EWΦn(W, β)| ≥ t] ≤ 2 exp
{

− nt2

2αnβ2

}
.

Combined with the bound of eq. (9), this already allows us to state a sufficient condition for non-
injectivity with high probability. We summarize this in the following corollary, proved in Appendix A.4.

Corollary 1.5 (Sufficient condition for non-injectivity)
We denote Φ(α, β) = lim infn→∞ EWΦn(W, β). It has the following properties:

(i) β 7→ −Φ(α, β)/β is a positive non-increasing function of β > 0.

(ii) Its limit as β → ∞ satisfies

lim
β→∞

[
− Φ(α, β)

β

]
< 1 ⇒ lim

n→∞
pm,n = 0,

that is, the limit being smaller than 1 implies non-injectivity w.h.p. as n,m → ∞1.

Existence of the limit – While we expect the limit of EWΦn(W, β) as n → ∞ to exist, or, in
other words, Φ(α, β) to be defined not only as a lim inf, this fact is far from trivial. In the spin glass
literature, this has historically been shown using interpolation methods due to Guerra, by showing
sub-additivity of the free entropy in the system size [GT02, Tal10] for mean-field spin glass models
possessing certain convexity properties. Guerra’s technique, however, fails beyond this setting, e.g.
in bipartite (or other multi-species) spin glass models [Pan15]. On the other hand, even in some
mean-field spin glasses, including spherical p-spins, the existence of the limit was only shown as a
corollary of the much stronger asymptotically tight two-sided bound allowing to precisely relate the
value of the limit to the Parisi formula, i.e. the prediction of statistical physics [Tal06a, Che13]2. In
the spherical perceptron we consider here, the existence of this limit is, to the best of our knowledge,
still a conjecture.

Following the statistical physics intuition about the asymptotic tightness of eq. (9), we conjecture the
following.
1The proof actually shows that pm,n goes to zero exponentially fast in n, see eq. (65).
2However an approximate sub-additivity property has recently been shown to be enough to deduce the convergence of
the free entropy in this case [Sub22].
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Conjecture 1.6 (Tightness of the free entropy bound)
The bound of Corollary 1.5 is tight, i.e.,

lim
β→∞

[
− Φ(α, β)

β

]
< 1 ⇒ lim

n→∞
pm,n = 0,

lim
β→∞

[
− Φ(α, β)

β

]
> 1 ⇒ lim

n→∞
pm,n = 1.

A generalized conjecture – Conjecture 1.6 is a weakened version of a more general conjecture
one can make from the definition of Φ(α, β), which largely motivates the study of free entropies in
statistical physics. First, assume that the limit defining Φ(α, β) is well defined, so that Φ(α, β) =
limn→∞ EWΦn(β,W). As β → ∞, we expect the configurations that have dominating mass under
the Gibbs measure of eq. (5) to have the smallest energy, i.e., to be the ground state configurations.
Therefore, the stronger conjecture that motivates our use of Φ(α, β) to characterize injectivity is that
as β → ∞, the bound of eq. (9) is actually an equality. In a nutshell, this conjecture can be stated as
(p-lim denotes limit in probability):

lim
β→∞

−Φ(α, β)
β

= p-lim
n→∞

{
min

x∈Sn−1
eW(x)

}
. (10)

Note that such a statement also assumes the concentration of the ground state energy on a value
independent of W as n → ∞. Generally, the concentration of the intensive energy eW(x) under the
Gibbs measure at any given β ≥ 0 can be deduced from the existence of the limiting free entropy and
its differentiability in β [AC18]1.

A remark on discretization – A subtlety in establishing eq. (10) arises from the continuous nature
of the variable x: one needs to discard the existence of sets with “super-exponentially” small volume
that might contain the global minima of eW. In discrete models this issue is often not present. For
example, replacing

∫
Sn−1 µn(dx) by 2−n∑

x∈{±1}n in eq. (6) yields a model called the binary (or Ising)
perceptron, for which it is easy to see that

min
x∈{±1}n

eW(x) ≤ −Φn(W, β)
β

≤ min
x∈{±1}n

eW(x) + log 2
β

, (11)

so that the generalized conjecture of eq. (10) follows from the concentration and existence of the limit
of the free entropy. In our spherical model one could hope to approximate Sn−1 by a sufficiently fine
ε-net, so that the value of Φn(W, β) is well approximated by averaging over the points of this net,
and such that a two-sided bound similar to eq. (11) holds. Let us briefly describe such an approach.
Considering an arbitrary fixed vector x ∈ Sn−1, it is clear that with high probability there exists
µ ∈ [n] s.t. |Wµ · x| ≤ 12. From this, one easily deduces that there exists a small rotation y = Rx
of x (in the direction of ±Wµ/∥Wµ∥), with angle O(1/

√
n), such that (y · Wµ)(x · Wµ) < 0, while

∥y − x∥2 ≲ 1/
√
n. This (very) rough estimation shows that ε ≲ 1/

√
n is necessary to approximate the

minimum of eW over Sn−1 by the minimum on an Euclidean-distance net. However it is well known
that such a net needs to have cardinality at least (1/ε)n [vH14]. Thus under this discretization the
term log 2/β in the upper bound of eq. (11) becomes Ω(log ε−1/β) = Ω(logn/β). Therefore we would
need to consider diverging inverse temperatures β = β(n) ≳ logn in the discretized system for its free
entropy to provably approximate the ground state energy. A rigorous computation of the free entropy
on this net with diverging β would be challenging: since our results are based on heuristic methods of
statistical physics assuming Conjecture 1.6 (with the exception of a rigorous upper bound), we leave
the analysis of a possible discretization for future work.
1Unfortunately, proving these properties often requires the full power of the so-called Parisi formula for the limit of the
free entropy, which must first be proven as we discuss later.

2Since {Wµ · x}n
µ=1

i.i.d.∼ N (0, 1).
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1.5.2 Predictions of full replica symmetry breaking theory

Computing Φ(α, β) is in general intractable rigorously. We will show in Theorem 1.8 that we can
still derive meaningful rigorous bounds, but before describing that result we first introduce another
conjecture, stemming from non-rigorous methods of statistical physics. This conjecture, which we call
a Parisi formula as usual in spin glass models, and that we derive in Section 3 using the non-rigorous
replica method of statistical physics, gives us a (heuristic) means to exactly compute Φ(α, β).
Conjecture 1.7 (Parisi formula)
Φ(α, β) is given by the full replica symmetry breaking (FRSB) prediction of statistical physics,
discussed in Section 3. More precisely, we have Φ(α, β) = ΦFRSB(α, β), cf. eq. (47), with the
following interpretation:

(i) We have the “Parisi formula”:

ΦFRSB(α, β) = inf
q∈F

P[q;α, β], (12)

with F the set of non-decreasing functions from [0, 1] to [0, 1], and P[q;α, β] a functional of
q, whose expression is given in eq. (47).

(ii) The infimum in eq. (12) is attained at a q⋆ ∈ F that is the functional inverse of the CDF of
a probability distribution ρ⋆ on [0, 1], such that for any continuous bounded function f we
have

lim
n→∞

EW
[
E(x,x′)∼P⊗2

β,W
f(x · x′)

]
=
∫
f(u) ρ⋆(du), (13)

where Pβ,W is the Gibbs measure defined in eq. (5).

Eq. (13) shows that in the Parisi formula of eq. (12), the functional parameter q ∈ F can be interpreted
as the average overlap distribution of the system. Intuitively speaking, the “alignment” x · x′ of two
independent draws x,x′ of the Gibbs measure Pβ,W (sharing the same matrix W) will, on average, be
distributed according to ρ⋆ as n → ∞. The fact that the large-size limit of the system is characterized
by this overlap distribution (called therefore an “order parameter” in statistical physics) is one of the
most important predictions of the replica symmetry breaking theory of Parisi, and we will further
discuss this theory in the following.

Rigorous approaches – While the most general full replica symmetry breaking framework is widely
believed to yield exact predictions in the asymptotic limit, proving these predictions is a field of
probability theory in itself. Indeed, significant progress has been made in some mean-field spin glass
models, see e.g. [Tal10, Pan14], or in the context of inference problems and the study of computational-
to-statistical gaps [BPW18, BKM+19], but proving the validity of the replica symmetry breaking
procedure in more generality remains one of the important open problems in a rigorous description
of the physics of disordered systems. In particular, in the spherical perceptron considered here, the
general full-RSB prediction is still a conjecture beyond the satisfiable phase.

Based on Conjectures 1.6 and 1.7, we can design a statistical physics program to characterize the
injectivity of the ReLU layer:

(i) For any β ≥ 0, compute Φ(α, β) = limn→∞ EW log Zn(W, β)/n, as given by the Parisi formula
of Conjecture 1.7.

(ii) Compute analytically the limit f⋆(α) := − limβ→∞ Φ(α, β)/β. As we discussed above, this is a
non-decreasing function of α, and moreover f⋆(2) = 0.
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(iii) φW is (typically) injective if f⋆(α) > 1, and non-injective if f⋆(α) < 1. In particular, if f⋆ is
continuous and strictly increasing (which we numerically observe), the injectivity threshold αinj
is characterized by

αinj = [f⋆]−1(1). (14)

We perform this procedure in detail in Section 3, and it yields the main result of this section.
Result 1.1 (“Full-RSB” conjecture)
Assume Conjectures 1.6 and 1.7 hold. Denote by A the event “φW (cf. eq. (1)) is injective”, and
let pm,n = PW[A]. There exists a constant αFRSB

inj ∈ (6.6979, 6.6982), obtained via the Full-RSB
prediction of Conjecture 1.7, such that:

(i) If lim supn→∞(m/n) < αFRSB
inj , then limn→∞ pm,n = 0.

(ii) If lim infn→∞(m/n) > αFRSB
inj , then limn→∞ pm,n = 1.

1.5.3 Additional bounds

The replica hierarchy of upper bounds – In Conjecture 1.7, the FRSB prediction is given as

ΦFRSB(α, β) = inf
q∈F

P[q;α, β], (15)

and we saw that the function q : [0, 1] → [0, 1] could be interpreted in terms of an overlap distribution.
Restricting the infimum to atomic overlap distributions with k + 1 atoms (or, equivalently, letting
x 7→ q(x) be a step function with k + 1 steps) yields a sequence of upper bounds indexed by k ≥ 0:

Φ conj.= ΦFRSB = lim
k→∞

Φk−RSB ≤ · · · ≤ Φk−RSB ≤ · · · ≤ Φ1RSB ≤ ΦRS, (16)

in which the “k − RSB” functional is given by eq. (15), with the infimum restricted to step functions
with k + 1 steps, and we suppressed the dependence of all quantities on α and β to lighten notation.
Let k⋆ be the smallest k such that ΦFRSB(α, β) = Φk⋆−RSB(α, β). If 1 ≤ k⋆ < ∞, we say that the
system is k⋆-th step replica symmetry breaking; if k⋆ = 0 the system is called replica-symmetric (RS);
if k⋆ does not exist the system is said to exhibit full replica symmetry breaking. We will clarify the
meaning of “replica symmetry breaking” in Section 2. Finally, note that by using Corollary 1.5 and
Conjecture 1.6, eq. (16) transfers into a hierarchy of upper bounds for the injectivity threshold:

αinj
conj.= αFRSB

inj ≤ · · · ≤ α
(k+1)−RSB
inj ≤ αk−RSB

inj ≤ · · · ≤ α1RSB
inj ≤ αRS

inj , (17)

in which αk−RSB
inj is the value of α at which f⋆

k−RSB(α) := limβ→∞[−Φk−RSB(α, β)/β] crosses 1. In
particular, as we will see in Section 2, one can compute αRS

inj ≃ 7.65. Note that increasing k and in
particular going to the full-RSB solution, which conjecturally solves the problem, only takes us further
from the Euler characteristic prediction αEuler

inj ≃ 8.34. In Fig. 1 we illustrate the predictions at the
RS, 1-RSB, and Full-RSB levels.

Proving the replica-symmetric bound – We can state another rigorous characterization. Using
Gordon’s min-max theorem [Gor85, TAH18], we can prove that the replica-symmetric prediction is an
upper bound on the injectivity threshold:

Theorem 1.8 (Replica-symmetric upper bound for the injectivity threshold)

Assume that α > αRS
inj ≃ 7.65. Then pm,n → 1 as n,m → ∞, that is, φW is injective w.h.p.
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Note that for the computation of the Gardner capacity of the so-called “positive” perceptron, the
replica-symmetric prediction has been shown to be tight also using Gordon’s inequality [Sto13a],
because one can rewrite the associated min-max problem using a convex function on convex sets.
In the unsatisfiable phase we consider here the solution is conjecturally full-RSB, and the replica-
symmetric bound of Theorem 1.8 is not expected to be tight.

Theorem 1.8 is proved in Appendix A.5. It improves upon the earlier upper bounds of Theorem 1.3, and
it disproves the Euler characteristic based threshold prediction αEuler

inj ≃ 8.34 [Pal21, Clu22, CPBM22].
In Appendix G, we provide an alternative proof of Theorem 1.8, developed during the review process
of this paper, which leverages Gordon’s “escape through a mesh” theorem [Gor88]. Due to this
chronology, and because Gordon’s min-max theorem underpins the “escape through a mesh” result
while potentially being better suited for future refinements (see the discussion below), we have retained
the original proof alongside the “escape through a mesh” approach. Finally, let us mention two other
bounds one can obtain on the injectivity threshold.

The annealed bound – A classical approach in statistical physics to upper-bound the free entropy
Φ(α, β) is an annealed calculation. Namely, one uses Jensen’s inequality to write

EWΦn(W, β) = 1
n
EW log Zn(W, β) ≤ 1

n
logEWZn(W, β) n→∞−→ Φann.(α, β).

This gives us an additional upper bound Φ(α, β) ≤ Φann.(α, β)1 and a corresponding upper bound
for the injectivity threshold αinj ≤ αann.

inj . We leave to the reader the exercise to show Φann.(α, β) =
α log[(1 + e−β)/2]. In particular, we have −Φann.(α, β)/β → 0 as β → ∞ for any α > 0, and therefore
αann.

inj = +∞: here, the result of the annealed calculation is completely uninformative.

An additional lower bound – In Fig. 1 we also show in green a region that is discarded for the
injectivity threshold by a non-rigorous lower bound αinj ≥ αdAT ≃ 5.32, based on the de Almeida-
Thouless criterion [dAT78] of statistical physics. We detail its origin in Section 2.3, and its calculation
in Appendix C. While it is not mathematically rigorous, proving it would follow from a rigorous com-
putation of the free entropy in the “high-temperature” (or small β) phase in which replica symmetry
is conjectured to hold. In many models, this turned out to be possible to handle more easily than the
complete full-RSB conjecture, so we mention it for completeness. We also note that it improves over
the lower bound αinj ≥ 3.4 of Theorem 1.3.

1.6 Structure of the paper and open problems

Section 2 has in great part a pedagogical purpose, to introduce the unacquainted reader to the (mostly
non-rigorous) results of statistical physics known in the spin glass literature under the umbrella of
replica method and replica symmetry breaking. We detail there the replica computation in the spher-
ical perceptron and the arising of replica symmetry breaking, and derive the replica symmetric and
one-step replica symmetry breaking predictions for the injectivity threshold. In Section 3 we discuss
the full-replica symmetry breaking prediction for the free entropy, and we derive an efficient algorith-
mic procedure to solve the zero-temperature full-RSB equations. We discuss the numerical behavior of
this algorithm, and use it to derive the numerical estimate of the injectivity threshold in Result 1.1. As
mentioned, the proofs of our rigorous results (in particular Theorem 1.8) are given in Appendix A, and
other analytical or numerical details and technical arguments will be deferred to the other appendices.

Let us finally mention a few open directions that stem from our analysis.
1However, it never improves over the replica-symmetric one, since it is a general fact that ΦRS(α, β) ≤ Φann.(α, β).
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Figure 1: T = 0 limit of the RS, 1RSB and FRSB solutions, as a function of α. We compare
the predictions for the ground state energy f⋆(α) = limβ→∞[−Φ(α, β)/β] and the zero-temperature
susceptibility χ (see Sections 2 and 3). The green area is forbidden for αinj by the replica-symmetric
lower bound of eq. (39).

Deep networks – A natural extension of our results would be to analyze a composition of multiple
ReLU layers. Denoting still by n the input dimension, Theorem 1.8 guarantees injectivity w.h.p. if
the size kL of the L-th layer satisfies kL > n(αRS

inj )L. However, this is far from optimal: leveraging the
structure of the image space of a ReLU layer, [Pal21, Clu22] have shown that kL ≥ n(C1 +C2L logL)
(for some constants C1, C2 > 0) is enough to guarantee injectivity; this may be further improved
using arguments based on random projections [PKL+22]. An interesting open question is whether
the techniques we develop here (and in particular the replica symmetry breaking framework) can be
extended to predict exact injectivity transitions in the multi-layer case.

Stability of the inverse – While the injectivity question is limited to non-injective σ – such as
ReLU – in eq. (1), a natural extension would be to estimate the Lipschitz constant of the inverse of
φW on its range, either in the injective phase we described for σ = ReLU, or for any α > 0 when σ is
injective. Whether this question can be tackled using statistical physics tools similar to the ones we
used here is an interesting open direction.

Improvement over Theorem 1.8 – One can consider a closely-related model called the negative
perceptron by replacing θ(x) = 1{x > 0} by 1{x ≥ κ} with κ < 0 in the energy of eq. (3). In this
model, even computing the Gardner capacity conjecturally requires the full-RSB prediction. We note
that [Sto13b, MZZ24] have made a refined use of Gordon’s inequality to improve over the replica-
symmetric upper bound for the capacity. While similar ideas might be able to improve the upper
bound of Theorem 1.8, it is not immediate to implement them, since the method used in [MZZ24]
relies on the min-max problem being formulated over unit-norm vectors, which is not the case here:
we give more details on this point in Appendix A.7. Since Theorem 1.8 already allows to disprove the
Euler characteristic prediction, we leave such an improvement for later work.

Large deviations of sublevel sets – The non-validity of the average Euler characteristic prediction
also leads to interesting predictions on the energy landscape of the perceptron. Indeed, the quantity
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qm,n of eq. (7) is the mean Euler characteristic of a sublevel set U of the perceptron, more precisely
qm,n = EW[χ(U)], with U := {x ∈ Sn−1 : eW(x) ≤ 1}. Recall that αEuler

inj ≃ 8.34 while αRS
inj ≃ 7.65.

According to Theorem 1.8, for all α ∈ (αRS
inj , α

Euler
inj ) (and conjecturally in (αFRSB

inj , αEuler
inj )) the set U is

typically empty: however its average Euler characteristic is exponentially large! A possible explanation
for this discrepancy is that there exist large deviations events with probability exp(−nI1) in which
the set U is not only non-empty, but has Euler characteristic exp(nI2). A natural conjecture is that
I2 > I1 for α < αEuler

inj and I2 < I1 for α > αEuler
inj . Exploring further these large deviations could thus

explain the error made in the Euler characteristic approach.

Numerical code and reproducibility – All figures and numerical results in this paper are fully
reproducible. The JAX [BFH+18] code is available in a GitHub repository [Mai23].
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2 The replica hierarchy of upper bounds
2.1 General principles of the replica method

The replica method is based on the replica trick, a heuristic use of the following formula, for any
random variable X > 0 (assuming that all the moments written hereafter are well-defined):

E logX = lim
r→0

EXr − 1
r

= ∂

∂r
[logEXr]r=0. (18)

While the replica trick is most often described as the first equality in eq. (18), we will here use the
second (and equivalent) equality. Assuming that Φ(α, β) := limn→∞ EW Φn(W, β) is well defined, we
reach:

Φ(α, β) = lim
n→∞

∂

∂r

[ 1
n

logEW
{
Zn(W, β)r}]

r=0
. (19)

So far, eq. (19) is not really surprising. The replica method is based on several heuristics, and leverages
the fact that it is often possible to compute the RHS of eq. (19) for integer r. More precisely, the
replica method proceeds as follows:

Replica method

(i) Assume that the limits n → ∞ and r → 0 can be inverted in eq. (19), i.e. that we have
Φ(α, β) = ∂r[Φ(α, β; r)]r=0, with

Φ(α, β; r) := lim
n→∞

1
n

logEW
{
Zn(W, β)r}. (20)

(ii) Compute Φ(α, β; r) for integer r, i.e. the asymptotics of the moments of Zn(W, β).

(iii) Use these values to analytically expand {Φ(α, β; r)}r∈N to all r ≥ 0.

(iv) Compute Φ(α, β) = ∂r[Φ(α, β; r)]r=0 from the analytic continuation above.

Note that step (i), although a priori non-rigorous, can sometimes be put on rigorous ground using
convexity arguments, cf. e.g. page 146 of [Tal10] in the context of the Sherrington-Kirkpatrick (or
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SK) model. The arguably “most heuristic” step is (iii), as there is in general no guarantee for the
uniqueness of the analytic continuation (and it is often not unique!). The choice of the conjecturally
correct continuation was proposed by Parisi in a remarkable series of papers [Par79, Par80a, Par80b],
one of the most important contributions for which he earned a Nobel prize in Physics in 2021, and
we will describe this choice in the following sections. In the SK model originally studied by Parisi his
prediction was ultimately proven to be correct by Talagrand [Tal06b] and generalized by Panchenko
[Pan14], leveraging notably interpolation techniques that originated with Guerra [Gue03]. An actual
rigorous treatment of the replica method itself remains out of reach, and in the spherical perceptron
considered here replica predictions have not been proven, with the exception of the satisfiable phase
[ST03, Sto13a].

2.2 First steps of the replica method

Let us now perform step (ii) of the replica method. From now on, we relax the level of rigor and
sometimes adopt notations closer to the theoretical physics literature, since the core of the method is
heuristic. Fixing r ∈ N⋆ we have (recall eq. (6)):

Φ(α, β; r) = lim
n→∞

1
n

logEW

{(∫
Sn−1

µn(dx) e−βEW(x)
)r}

,

= lim
n→∞

1
n

log
∫ r∏

a=1
µn(dxa)EW

{
r∏

a=1
exp

{
− β

m∑
µ=1

θ
[
(Wxa)µ

]}}
. (21)

We have used Fubini’s theorem in eq. (21). We see appearing a set {xa}r
a=1 of independent samples

from the Gibbs measure Pβ,W, with the same realization of the matrix W: we call such independent
samples replicas, following the statistical physics nomenclature. The expectation with respect to
W in eq. (21) can be performed, since at fixed {xa}, za := Wxa are jointly Gaussian vectors with
covariance E[za

µz
b
ν ] = δµνQ

ab, where we introduced the overlap matrix Qab := xa ·xb (note that Qaa = 1,
Qab = Qba, and that the matrix {xa · xb} is almost surely invertible under µ⊗r

n ). Therefore we have:

EW

r∏
a=1

e
−β
∑m

µ=1 θ[(Wxa)µ] = Iβ(Q)m,

in which we defined

Iβ(Q) :=
∫
Rr

dz
(2π)r/2√

det Q
e− 1

2 z⊺Q−1ze−β
∑r

a=1 θ(za). (22)

One can thus write eq. (21) as:

Φ(α, β; r) = lim
n→∞

1
n

log
[ ∫ {∏

a<b

dQab
}
J(Q) × Iβ(Q)m

]
,

with J(Q) defined as the PDF of the overlap matrix Q({xa}) (for {xa} ∼ µ⊗r
n ) evaluated in Q:

J(Q) :=
∫ r∏

a=1
µn(dxa)

∏
a<b

δ(Qab − xa · xb) = n
r(r−1)

2

∫ ∏r
a=1 dxa∏

a≤b δ(nQab − xa · xb)∫ ∏r
a=1 dxa δ(n− ∥xa∥2) , (23)

in which we used that Qaa = 1 and we re-normalized xa by
√
n. One way to compute the numerator

in eq. (23) is to use an exponential tilting method, by the following argument: for any symmetric
Λ ∈ Rr×r positive-definite, we have

1
n

log
∫ r∏

a=1
dxa

∏
a≤b

δ(nQab − xa · xb)
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= 1
2Tr[ΛQ] + 1

n
log

∫ r∏
a=1

dxa
∏
a≤b

δ(nQab − xa · xb) e− 1
2
∑

a,b
Λabxa·xb

. (24)

The idea is to pick Λ so that under the probability distribution PΛ({xa}) ∝ exp{−1
2
∑

a,b Λabxa · xb},
we have with high probability xa · xb/n → Qab as n → ∞. Since PΛ is Gaussian, one finds Λ = Q−1

as the correct choice. Heuristically, the argument then goes as follows: for Λ = Q−1, the constraint
terms in eq. (24) are satisfied as n → ∞, so that we can remove the Dirac deltas without affecting
the asymptotic value of the integral. Performing the same calculation in the denominator (for which
Λ = Ir is now the correct choice), one reaches:

1
n

log J(Q) = 1
2Tr[Q−1Q] + log

∫
Rr

r∏
a=1

dxa e
− 1

2
∑

a,b
(Q−1)abxaxb

− r(1 + log 2π)
2 + on(1). (25)

Such “exponential tilting” arguments can be made rigorous, and are classical e.g. in the theory of large
deviations [DZ98]. Another (equivalent) way to obtain eq. (25) is to introduce the Fourier transform
of the Dirac delta in eq. (23), and perform a saddle-point method over the parameters of the Fourier
integral, see e.g. [CC05] or [Urb18]. The Gaussian integral in eq. (25) can be computed:

1
n

log J(Q) = 1
2 log det Q + on(1).

This yields:

Φ(α, β; r) = lim
n→∞

1
n

log
[ ∫ {∏

a<b

dQab
}

exp{nFn(Q)}
]
, (26)

with

Fn(Q) := 1
2 log det Q + α log Iβ(Q) + on(1).

It is crucial that in many physical models, the average of the replicated partition function can be
written as in eq. (26), as a function of a low-dimensional parameter (recall that Q is a r × r matrix,
and that r is a fixed positive integer). In physics, one refers to the overlap matrix Q as the order
parameter of the problem: a low-dimensional quantity that allows to characterize the macroscopic
behavior of our high-dimensional system (similarly to the average magnetization in a ferromagnet for
instance).

Applying Laplace’s method to the integral in eq. (26), we finally reach:

Φ(α, β; r) = sup
Q

[1
2 log det Q + α log Iβ(Q)

]
, (27)

where the supremum is over r × r symmetric positive-definite matrices such that Qaa = 1, and recall
that Iβ(Q) is defined in eq. (22). Note that we completely removed the high dimensionality of the
problem! The remaining task is to perform step (iii) of the replica method, i.e. to analytically continue
Φ(α, β, r) to any r > 0. This is the crucial difficulty of the replica method (and the main reason why
it is ill-posed mathematically in general), which was solved by Parisi [Par79, Par80a, Par80b].

2.3 The replica-symmetric solution

The functional in eq. (27) is symmetric: one can permute the different replicas of the systems (and
correspondingly swap the rows and columns of Q) without changing the value of the functional. This
has led physicists to first assume that the supremum in eq. (27) is attained by a matrix Q that is
also invariant under permutations, i.e. that satisfies Qab = q for all a ̸= b. This replica-symmetric
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assumption was historically the first one considered to find a solution to the SK model [SK75]. We
will see how it allows to complete the final steps of the replica method.

Note that replica symmetry can be put on a firmer mathematical ground, using the following charac-
terization.
Replica symmetry (RS) – Let Q(x,x′) := x ·x′, and recall the Gibbs distribution Pβ,W of eq. (5).
Replica symmetry amounts to assuming that the random variable Q(x,x′) concentrates when x,x′

are sampled independently from Pβ,W (with the same W), in the following sense:

lim
n→∞

EW
[
E(x,x′)∼P⊗2

β,W

{
(Q(x,x′) − EQ)2

}]
= 0, (28)

with the shorthand EQ := EW[E(x,x′)∼P⊗2
β,W

(Q(x,x′))].

In particular, under the RS ansatz, we can write the off-diagonal elements of the overlap matrix
appearing in eq. (27) as Qab = q = EW[E(x,x′)∼P⊗2

β,W
(x · x′)], in which x,x′ are two independent

samples under the Gibbs measure with quenched noise W (two replicas of the system), and a ̸= b. .
Therefore, we also have q = EW[∥Ex∼Pβ,W(x)∥2], which implies in particular that q ∈ [0, 1].

Let us now finish the replica calculation under a replica symmetric assumption, going back to eq. (27).
By simple linear algebra calculations, the RS ansatz implies, for all a ̸= b:

Q−1
ab = − q

(1 − q)[1 + (r − 1)q] ,

Q−1
aa −Q−1

ab = 1
1 − q

,

and moreover

log det Q = (r − 1) log[1 − q] + log[1 + (r − 1)q]. (29)

Plugging the form of Q−1 we have:

exp
{

− 1
2z⊺Q−1z

}
= exp

{
− 1

2(1 − q)

r∑
a=1

(za)2 + q

2(1 − q)[1 + (r − 1)q]
( r∑

a=1
za
)2}

=
∫

Dξ exp
{

− 1
2(1 − q)

r∑
a=1

(za)2 +
√

q

(1 − q)[1 + (r − 1)q]
( r∑

a=1
za
)
ξ
}
. (30)

Recall that Dξ is the standard Gaussian measure on R, and we have used the identity exp(x2/2) =∫
Dξ exp(xξ). Plugging eqs. (29) and (30) in eq. (27) we reach, for r ∈ N⋆:

ΦRS(α, β; r) = sup
q∈[0,1]

ΦRS(α, β; r, q) = sup
q∈[0,1]

[
− α− 1

2
[
(r − 1) log[1 − q] + log[1 + (r − 1)q]

]
(31)

+ α log
∫

Dξ
[ ∫

R

dz√
2π
e

− 1
2(1−q) z2+

√
q

(1−q)[1+(r−1)q] zξ−βθ(z)
]r]

.

One can now begin to see how the replica-symmetric ansatz yields an analytical continuation of
ΦRS(α, β; r) for all r > 0. A final non-trivial (and non-rigorous) technicality of the replica method,
which we do not detail here, is that when we analytically expand the function above to r < 1,
theoretical physicists argue that maximizers of eq. (31) for r > 1 are continued into minima of ΦRS(r, q)
for r < 1. We refer to [MPV87] for a detailed discussion: in the present case this phenomenon can be
easily observed numerically, see Fig. 2. Under the replica-symmetric ansatz, we therefore obtain:

ΦRS(α, β) = ∂r[ΦRS(α, β; r)]r=0
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Figure 2: The function ΦRS(r, q)−ΦRS(r, q⋆(r)) as a function of q ∈ [0, 1], for different values of r close
to 1, and q⋆(r) the unique solution to ∂qΦRS(r, q) = 0. We observe that q⋆(r) is a global maximum
for r > 1, and becomes a global minimum for r < 1. Here α = 5 and β = 1.

= inf
q∈[0,1]

{
− α− 1

2
[

log[1 − q] + q

1 − q

]
+ α

∫
Dξ log

∫ dz√
2π
e

− 1
2(1−q) z2+

√
q

1−q
zξ−βθ(z)

}
.

The inner integral is easy to work out:∫
R

dz√
2π
e

− 1
2(1−q) z2+

√
q

1−q
zξ−βθ(z) =

√
1 − q e

q
2(1−q) ξ2[

1 − (1 − e−β)H
(

− ξ

√
q

1 − q

)]
,

where H(x) :=
∫∞

x Du = [1 − erf(x/
√

2)]/2. In particular, H ′(x) = −e−x2/2/
√

2π. Then:

ΦRS(α, β) = inf
q∈[0,1]

{1
2
[

log[1 − q] + q

1 − q

]
+ α

∫
Dξ log

[
1 − (1 − e−β)H

(
ξ

√
q

1 − q

)]}
. (32)

For any β ≥ 0, the minimizing q is thus given by the solution to

q3/2
√

1 − q
= α

∫
Dξ

(1 − e−β)ξH ′
(
ξ
√

q
1−q

)
1 − (1 − e−β)H

(
ξ
√

q
1−q

) (33)

that minimizes the functional of eq. (32). The quantity e⋆(α, β) := −∂βΦRS(α, β) is called the average
intensive energy: as can be seen from eq. (6), ne⋆(α, β) is the average number of negative components
of x when sampled from the Gibbs measure of eq. (5). At the replica-symmetric level it is given by:

e⋆
RS(α, β) = αe−β

∫
R

Dξ
H
(
ξ
√

q
1−q

)
1 − (1 − e−β)H

(
ξ
√

q
1−q

) . (34)

In particular, one sees that for β = 0 we have q = 0 and e⋆(α, β = 0) = α/2, which is the typical
number of negative components of a random m-dimensional vector (divided by n).

The zero-temperature limit – For any α > 2 (i.e. in the UNSAT phase), one can check from
eq. (33) that q → 1 as β → ∞. This means that the replica-symmetric ansatz predicts that, as
β → ∞, the Gibbs measure concentrates on the global minima of EW(x), and that (at fixed W) the
distance between any two such minima goes to 0 as n → ∞1. One can see also from this equation (cf.
[GD88, FPS+17]) that the expansion of the solution q is of the type:

q = 1 − χRS
β

+ O(β−2), (35)

1As we will see in Sec 3, while the replica-symmetry assumption turns out to be wrong, this prediction remains correct!
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where χRS is the so-called zero-temperature susceptibility. Plugging this expansion in the equations
above, we recover the result of [GD88] (we detail the computations in Appendix B.1). We find that
χRS is the unique solution to:

α

∫ √
2χRS

0
Dξ ξ2 = 1, (36)

and f⋆
RS(α) = limβ→∞[−ΦRS(α, β)/β] is given as (recall H(x) =

∫∞
x Du):

f⋆
RS(α) = αH[

√
2χRS]. (37)

Replica-symmetric prediction for αinj – Recall the criterion of eq. (14) for the injectivity threshold.
Eqs. (36) and (37) are easy to analyze numerically, and they yield that f⋆

RS(α) = 1 for:

αRS
inj ≃ 7.64769, (38)

in which RS stands for the replica-symmetric assumption.

Instability of the replica-symmetric solution and the need for a different ansatz – An
important check of the validity of the replica-symmetric ansatz is that it indeed is a maximum of
the functional given in eq. (27) (or a minimum when r < 1 as we discussed). This can be verified
locally, by considering the Hessian of this function, and looking at the sign of its eigenvalues when
r → 0. The stability criterion is called the de Almeida-Thouless (dAT) condition [dAT78], and we
derive it in Appendix B.2 for any inverse temperature β ≥ 0, cf. eq. (98). However, we also show
that this condition is never satisfied in the limit β → ∞, for any α > 2. This suggests that the
correct solution actually breaks the replica symmetry! Formally, the functional of eq. (27) exhibits
a well-known physical phenomenon known as spontaneous symmetry breaking: while the function to
maximize is invariant under the group of permutations of the r replicas, any particular maximum is
not invariant under this symmetry.

A replica-symmetric lower bound – In Appendix C, we detail a way to use the replica-symmetric
prediction at finite β ≥ 0, combined with the stability analysis of Appendix B.2, to obtain a lower
bound on αinj:

αinj ≥ αdAT ≃ 5.3238, (39)

in which the definition and calculation of αdAT can be deduced solely from the replica-symmetric
calculation at high enough temperature (low enough β). High temperature replica-symmetric regimes
in spin glasses are notoriously easier to analyze mathematically than low-temperature settings [Tal10]:
for this reason, while we do not provide here a mathematical proof of eq. (39), we expect it to be easier
to establish rigorously than bounds from replica symmetry breaking theory, and we leave a proof of
eq. (39) as an interesting open problem. We refer to Appendix C for more details on this bound,
which is shown as a light green area in Fig. 1.

2.4 The overlap distribution and replica symmetry breaking

Since we must go beyond replica symmetry, one has to understand what could happen if the overlap
concentration of eq. (28) is not satisfied. We define q ≡ x · x′, in which x,x′ are independent samples
under the Gibbs measure of eq. (5), with the same quenched noise W, and we will study the law of q
averaged over W, which we will denote ρn(q).

A natural possibility is that, while the random variable q no longer concentrates, its average distri-
bution ρn(q) still converges (weakly) to an asymptotic law ρ(q) (for q ∈ [0, 1]) as n → ∞. Replica-
symmetry then corresponds to the case ρ(q) = δ(q − q0). But how does an arbitrary ρ(q) transfers
to a r × r overlap matrix Q maximizing eq. (27)? Actually, the other way (going from Q to ρ(q))
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is easier to formalize. Indeed, for the same W, let us draw two independent samples x,x′ under the
Gibbs measure (two “replicas”). On average, their overlap is distributed as the off-diagonal elements
of the overlap matrix, i.e. we have (one can formalize this argument, see e.g. [MS24])

ρ(q) ≃ 1
r(r − 1)

∑
a̸=b

δ(q −Qab).

However, recall that our physical system is not represented by the overlap matrix Q at finite r, but
rather by its r → 0 limit, so we should take this limit as well to get the ρ(q) that describes our original
physical system (even though taking the r → 0 limit of a r×r matrix shatters much of our intuition!).
More concretely, the overlap distribution ρ(q) is related to the overlap matrix Q by:

ρ(q) = lim
r→0

1
r(r − 1)

∑
a̸=b

δ(q −Qab). (40)

One-step replica symmetry breaking – To build back our intuition a bit, let us look at the simplest
possible ρ(q) beyond the RS ansatz, that is, let us assume that ρ(q) = mδ(q − q0) + (1 −m)δ(q − q1),
with m ∈ [0, 1], and q0 ≤ q1. One brilliant realization of Parisi [Par79, Par80a, Par80b] was that this
distribution arises from an ultrametric overlap matrix Q, i.e. that has the following form:

ρ(q) = mδ(q − q0) + (1 −m)δ(q − q1) “ ⇐⇒ ” Q =



1 q1 q1
q1 1 q1 · · · q0 · · ·
q1 q1 1

. . .

1 q1 q1
· · · q0 · · · q1 1 q1

q1 q1 1


. (41)

Let us detail how to go from the Q shown in eq. (41) to the ρ(q) that we want. We denote x ∈ {1, · · · , r}
the size of the diagonal blocks in this matrix Q. Then:

1
r(r − 1)

∑
a̸=b

δ(q −Qab) = x− 1
r − 1 δ(q − q1) + r − x

r − 1 δ(q − q0). (42)

Now arises an issue: since we take the r ↓ 0 limit, and x ∈ {1, · · · , r} is an integer, how should we
proceed? Comparing eq. (42) with our target ρ(q) gives us a possible answer (which turns out to be
the correct one [MPV87]): relaxing the constraint that x ∈ {1, · · · , r}, and taking the limit r ↓ 0
independently of x, we reach:

ρ(q) = (1 − x)δ(q − q1) + xδ(q − q0),

i.e. exactly the ρ(q) we wanted to build, with x = m ∈ [0, 1] which now became a real parameter
in [0, 1]. This type of distribution ρ(q) (and by extension the corresponding Q in eq. (41)) is called
One-Step Replica Symmetry Breaking (1RSB).

General replica symmetry breaking – More generally, one can represent a distribution with a
finite support of (k + 1) elements as ρ(q) =

∑k
i=0(mi − mi−1)δ(q − qi), with weights m0 ≤ m1 ≤

· · · ≤ mk−1 ≤ mk, using the conventions m−1 = 0,mk = 1. This distribution is called “k-step
replica symmetry breaking” (k-RSB), and in this ansatz, the overlap matrix {Qab} can be written as
a hierarchical generalization of eq. (41) (with the convention q−1 = 0 and qk+1 = 1):

Q =
k+1∑
i=0

(qi − qi−1)J(r)
mi−1 ,
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Figure 3: Illustration of the finite-RSB and full-RSB structure in the functions ρ(q) (right) and q(x)
(left). We use the convention m−1 = 0. In terms of the overlap distribution, the k-RSB ansatz (in
blue) corresponds to ρ(q) =

∑k
i=0(mi −mi−1)δ(q − qi), with the convention m−1 = 0. In orange, the

full-RSB distribution is ρ(q) =
∫ 1

0 δ(q− q(x)) dx, and is assumed to have two delta peaks at the edges
of its support q ∈ {qm, qM }, with masses {xm, (1 − xM )} (see the equation on the right figure). x(q)
is the functional inverse of q(x).

with J(r)
m the block-diagonal matrix with r/m blocks of size m, each diagonal block being the all-ones

matrix. Once again, the integers {mi}k
i=0 become elements of [0, 1] in the r ↓ 0 limit. As in the

replica-symmetric case discussed above, the limit r ↓ 0 also turns the maximum over {mi, qi} into an
infimum [MPV87]. In the end, the k-RSB prediction for the free entropy is of the form:

Φk−RSB(α, β) = inf
0≤q0≤···≤qk≤1

inf
0<m0<···mk−1<mk=1

P[{mi}, {qi};α, β]. (43)

It is common to represent the right hand side as a function of a step function q(x) for x ∈ [0, 1],
uniquely defined by {mi} and {qi}, see Fig. 3 (left, blue curve). We write then the argument of the
RHS of eq. (43) as P[{q(x)};α, β]. This allows to consider completely generic distributions ρ(q) (or
equivalently functions q(x)), by taking the k → ∞ limit of eq. (43). This generic procedure is called
“Full Replica Symmetry Breaking” (Full RSB), and was introduced by Parisi in [Par79]. It yields for
the free entropy a formula of the type:

ΦFRSB(α, β) = inf
{q(x)}

{P[{q(x)};α, β]}. (44)

Such formulas are usually called Parisi formulas in the spin glass literature. Note that in many
disordered models, the overlap distribution ρ(q) has been observed to have two points with positive
mass, at the edges of its bulk (see Fig. 3, right). This leads to generically characterize the function
q(x) as (see Fig. 3 right, red curve):

q(x) = qm if x ∈ [0, xm],
q(x) if x ∈ [xm, xM ],
q(x) = qM if x ∈ [xM , 1].

This is purely a convention that often turns out to be convenient and does not remove any generality
as one can always set xm = 0 and xM = 1.

Relation between ρ(q) and q(x) – For an overlap distribution with a well-defined density ρ(q), one
has the relation ρ(q) = x′(q), with x(q) ∈ [0, 1] the CDF of the overlap, and x 7→ q(x) is then the
functional inverse of q 7→ x(q).

RSB and the form of the Gibbs measure – Interestingly, one can interpret the level of RSB as
an assumption on the structure of the level sets of the Gibbs measure (or the global minima of the
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energy, when β = ∞). Roughly speaking, 1-RSB corresponds to an organization of the mass of the
Gibbs measure into clusters. Inside each cluster two solutions typically have overlap q1, while solutions
belonging to two different clusters have a typical overlap q0. This hierarchy can be iterated inside each
cluster, which gives rise to the 2-RSB structure. Iterating even further, the level of RSB corresponds
to the depth of this hierarchical structure of clusters, which is known as ultrametric [MPS+84, Pan13].
Ultrametricity and RSB is a beautiful mathematical representation of the free energy landscape of spin
glass models, which also allows creating efficient algorithms [EAMS21a, EAMS21b, Sub21, Mon21,
AMS23].

A thorough description of all the consequences of replica symmetry breaking would be beyond our
scope: the major reference on this topic is [MPV87], and we invite the reader to read as well [Tal10],
and the very recent lecture notes [MS24], for discussions in a more mathematically-friendly language.

2.5 One-step replica symmetry breaking

We start by generalizing the calculation we made in Section 2.3 to the more general one-RSB ansatz
we described above. We give the results here, while the calculation is detailed in Appendix D. The
final result is given as an infimum over three parameters {m, q0, q1} (see Fig. 3 for their interpretation):

Φ1RSB(α, β) = inf
m,q0,q1

[
m− 1

2m log(1 − q1) + 1
2m log[1 −mq0 + (m− 1)q1] + q0

2[1 −mq0 + (m− 1)q1]

+ α

m

∫
Dξ0 log

{∫
Dξ1

[
1 − (1 − e−β)H

(
−

√
q0ξ0 +

√
q1 − q0ξ1√

1 − q1

)]m}]
. (45)

Note that when q1 = q0 or when m = 1, the overlap distribution ρ(q) reduces to a single delta peak,
and we consistently retrieve the replica-symmetric solution of eq. (32).

The zero-temperature limit and the injectivity threshold – In Appendix D.2, we detail how to
take the β → ∞ limit in Φ1RSB(α, β), and to obtain the function f⋆

1RSB(α) := limβ→∞[−Φ1RSB(α, β)/β].
In Appendix D.3 we present the numerical procedure we used to solve the resulting equations. We
reach the light blue curve in Fig. 1 for f⋆

1RSB(α), and in particular we have

α1RSB
inj ≃ 6.7157. (46)

Validity of the 1-RSB assumption – While the 1-RSB ansatz is a natural extension of the previous
replica symmetric assumption, the results of [FPS+17] (which study the same model with a slightly
different energy function) strongly suggest that for any α > 2, at low enough temperatures the system
undergoes a continuous transition from a RS to a Full RSB phase, without any finite level of RSB at
intermediate temperatures1. This motivates us to compute the complete Full RSB picture in Section 3.
Nevertheless, we will see the 1-RSB prediction of eq. (46) is already very accurate.

3 The full-RSB solution: exact injectivity threshold
3.1 The full-RSB prediction for the free entropy

The full-RSB calculation is detailed in Appendix E, and quite closely follows a similar derivation
presented in [FPS+17, Urb18].

Notations – Before stating the result, let us introduce some notation. For any σ ≥ 0, we let
γσ2(h) = exp{−h2/(2σ2)}/

√
2πσ2 the PDF of N (0, σ2). For two functions a, b : R → R, we denote

1In particular, a stability analysis of the 1-RSB ansatz, similar to what we did in Appendix B.2, would yield that it
becomes unstable at the same temperature as the RS ansatz.
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(a ⋆ b)(h) =
∫

du a(u)b(h − u) their convolution. For a function f(x, h) with x ∈ [0, 1] and h ∈ R,
we always consider convolutions in the h variable, e.g. the notation γσ2 ⋆ f(x, h) denotes the function
(γσ2 ⋆ f)(x, h) =

∫
du γσ2(u)f(x, h− u). Moreover, we denote with a dot derivatives in the x variable,

and with a prime derivatives in the h variable, e.g. ḟ = ∂xf and f ′′ = ∂2
hf .

Let us now state the results of the full-RSB calculation. We obtain the following formula for the free
entropy:

ΦFRSB(α, β) = inf
{q(x)}

{
1
2 log(1 − q(1)) + q(0)

2(1 − ⟨q⟩) + 1
2

∫ 1

0
du q̇(u)
λ(u) + α(γq(0) ⋆ f)(0, 0)

}
. (47)

Here, we denoted ⟨q⟩ =
∫ 1

0 du q(u) and we defined the auxiliary function:

λ(x) := 1 − xq(x) −
∫ 1

x
dy q(y). (48)

Moreover, f(x, h) is taken to be the solution of the Parisi PDE :
f(1, h) = log γ1−q(1) ⋆ e

−βθ(h),

ḟ(x, h) = − q̇(x)
2
[
f ′′(x, h) + xf ′(x, h)2], x ∈ (0, 1).

(49)

Similar equations were derived and analyzed in [FPS+17, Urb18]. These works followed a long series
of important papers on the spherical perceptron and its connection to the packing of hard spheres
[CKP+14, FPUZ15, RUYZ15]. Note that these works consider a shift σ in the perceptron activation,
so that here we are in the σ = 0 setting of their results. Moreover, their energy function is slightly
different from eq. (3), as it contains a multiplicative quadratic term.

The positive-temperature FRSB equations – In order to impose the Parisi PDE constraint on
the function f(x, h) in eq. (47), we use a functional Lagrange multiplier Γ(x, h). This yields that the
free entropy ΦFRSB(α, β) is given by the extremization with respect to q(x),Λ(x, h), f(x, h) of:

ΦFRSB(α, β) = 1
2 log(1 − q(1)) + q(0)

2(1 − ⟨q⟩) + 1
2

∫ 1

0
du q̇(u)
λ(u) + αγq(0) ⋆ f(0, 0)

− α

∫
dhΛ(1, h)[f(1, h) − log γ1−q(1) ⋆ e

−βθ(h)]

+ α

∫ 1

0
dx
∫

dhΛ(x, h)[ḟ(x, h) + q̇(x)
2 (f ′′(x, h) + xf ′(x, h)2)]. (50)

Differentiating these equations with respect to Λ(x, h) yields the Parisi PDE of eq. (49) (as it should),
while differentiation w.r.t. q(x) and f(x, h) respectively yield:

q(0)
λ(0)2 +

∫ x

0
du q̇(u)
λ(u)2 = α

∫
dhΛ(x, h)f ′(x, h)2, (51a)

Λ̇(x, h) = q̇(x)
2
[
Λ′′(x, h) − 2x(f ′(x, h)Λ(x, h))′

]
, (51b)

Λ(0, h) = γq(0)(h). (51c)

Finally, differentiation w.r.t. β yields the average energy:

e⋆
FRSB(α, β) := −Φ′

FRSB(α, β) = α

∫
dhΛ(1, h)

[
γ1−q(1) ⋆ θe

−βθ
]
(h)[

γ1−q(1) ⋆ e−βθ
]
(h)

. (52)

A sanity check: the RS solution – In the RS assumption, we have q(x) = q0 for all x. In particular,
this implies that q̇(x) = 0, and q(0) = ⟨q⟩ = q0. Moreover, it is easy to see that in this case, since
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q̇(x) = 0, we have f(x, h) = f(1, h) = log γ1−q0 ⋆ e
−βθ(h) for all x, and similarly Λ(x, h) = γq0(h).

Therefore, eq. (51a) becomes:

q0
(1 − q0)2 = α

∫
dhγq0(h)

[(
γ1−q0 ⋆ e

−βθ
)′(h)

γ1−q0 ⋆ e
−βθ(h)

]2

. (53)

One can check (the derivation is presented in Appendix E.3) that this equation is equivalent to eq. (33):
we found back the RS solution!

3.2 Zero-temperature limit and algorithm for the injectivity threshold

The zero-temperature limit – In the zero temperature limit, the scaling of the FRSB equations
in the “UNSAT” phase of a slightly different spherical perceptron has been worked out in [FPS+17].
The scaling with β of the solution to eqs. (49) and (51), as β → ∞, can be deduced by transposing
their arguments to our model. More precisely, in the β → ∞ limit, letting λ(q) := λ[x(q)] and
f(q, h) := f(x(q), h), one can show that the “rescaled” variables (β(1 − qM );βx(q);βλ(q);β−1f(q, h))
satisfy non-trivial limiting equations as β → ∞, and we define (χ;x∞;λ∞; f∞) as the limiting values
of these variables: 

β(1 − qM ) → χ,

βx(q) → x∞(q),
βλ(q) → λ∞(q),
β−1f(q, h) → f∞(q, h).

(54)

Moreover, Λ(q, h) := Λ(x(q), h) remains finite as β → ∞. In particular, since x(q = 1) = 1 by
definition (see Fig. 3), we have that x∞(q) now extends up to +∞. We define q∞(x) as the inverse
function to x∞(q), and then we can define all functions in terms of x, e.g. f∞(x, h) := f∞(q∞(x), h).
In this limit, all eqs. (51a),(51b),(51c) scale very naturally, and the Parisi PDE of eq. (49) as well.
The only non-trivial part is the boundary condition at x = 1, which becomes

f∞(x → +∞, h) = 1
β

log γχ/β ⋆ e
−βθ(h) + o(1).

The scaling of the right hand-side can be worked out exactly:

f∞(x → +∞, h) =


0 if h < 0,
−1 if h >

√
2χ,

− h2

2χ otherwise .
(55)

Similarly, we can work out the zero-temperature limit of eq. (52), and we get:

f⋆
FRSB(α) = lim

β→∞
e⋆

FRSB(α, β) = α

∫ ∞

√
2χ

Λ∞(x → ∞, h)dh.

Algorithmic procedure – In this paragraph, for the clarity of the presentation, all quantities are
considered in the zero-temperature limit, and we drop the ∞ subscripts.

The procedure we use is relatively similar to the finite-temperature one described in Appendix B
of [FPS+17], but is done at zero temperature, and at fixed x rather than fixed q (as we found this
choice to be numerically more stable). In order to increase numerical precision, we rescale h and use
t = h/

√
2χ, allowing to handle small values of the susceptibility χ. Our algorithmic procedure is as

follows:
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• Before starting – Pick k large enough, xmax ≫ 1 large enough, and a grid 0 < x0 < x1 <
· · · < xk−1 = xmax < xk = ∞.

• Initialization – Start from a guess χ > 0 and 0 ≤ q0 ≤ q1 ≤ · · · ≤ qk−1 < qk = 1.

(i) Find the functions f(xi, t) via the procedure:

f(xk = ∞, t) =


0 if t ≤ 0,
−1 if t ≥ 1,
−t2 if t ∈ (0, 1).

, (56)

f(xi, t) = 1
xi

log
[
γ qi+1−qi

2χ

⋆ exif (xi+1, t)
]
. (57)

(ii) Find Λ(qi, t) via the procedure:
Λ(x0, t) = γq0(

√
2χt),

Λ(xi, t) = exi−1f(xi,t) γ qi−qi−1
2χ

⋆
[
Λ · e−xi−1f

]
(xi−1, t).

(58)

(iii) Compute q−1
i (the hierarchical elements of Q−1, not 1/qi) using, for all i ∈ {0, · · · , k}:

q−1
i = − α√

2χ

∫
dtΛ(xi, t) f ′(xi, t)2. (59)

(iv) Update λi = λ(qi) via 
λ0 =

√
− q0

q−1
0
,

1
λi

= 1
λi−1

− xi−1(q−1
i − q−1

i−1).
(60)

(v) Update {qi}k
i=0 with qk = 1 and

qi = 1 − λi

xi
−

k∑
j=i+1

( 1
xj

− 1
xj−1

)
λj . (61)

(vi) Update χ by solving the equation (with q−1 = 0 and x−1 = 0):

k∑
i=0

√
χ(qi − qi−1)[

χ+
∑k

j=i+1(qj − qj−1)xj−1
][
χ+

∑k
j=i(qj − qj−1)xj−1

] = 23/2α

∫ 1

0
dtΛ(1, t) t2. (62)

• Iterate steps (i) → (vi) until convergence.

• Final value for the energy – We then compute the ground state energy as:

f⋆
FRSB(α) = α

√
2χ
∫ ∞

1
dtΛ(1, t).

The procedure is done for k large enough so that the result does not vary with k and approaches the
k → ∞ limit. Steps (i) and (ii) are a discretization of the zero-temperature limits of the PDEs of
eqs. (49) and (51b), arising from the k-RSB ansatz (see Appendix E). We give more details on the
derivation of steps (iii) − (vi) in Appendix F.1, leveraging results of [FPS+17].
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Figure 4: T = 0 limit quantities of the RS, 1RSB and FRSB solutions, as a function of α. We compare
the predictions for the different forms of the function q(x) corresponding to the assumed level of replica
symmetry breaking.

The different convolutions with Gaussians are done using an analytical formula for the Discrete Fourier
Transform (DFT) of a Gaussian under a Shannon-Whittaker interpolation, and fast Fourier transform
techniques. More details on this point are given in Appendix F.3.

Implementation and results – We present our results for f⋆
FRSB and the zero-temperature suscep-

tibility χ in Fig. 1, and the zero-temperature overlap distribution function q(x) for various values of α
in Fig. 4. In particular, the full-RSB prediction for the injectivity threshold is αFRSB

inj ≃ 6.698. We ran
a more precise binary search procedure for computing the value of this transition, which we detail in
Appendix F.4. A summary of its result is presented in Fig. 5, and it yields the bound we conjecture
in Result 1.1:

6.6979 ≤ αFRSB
inj ≤ 6.6981. (63)

Note that this bound is compatible with the hierarchy described in eq. (17). Moreover, the 1-RSB
predictions are found to be very close (but not equal) to the exact FRSB results. This can be intuitively
visualized by the fact that q(x) is relatively well approximated by a step function, which corresponds
to the 1RSB ansatz, cf. Fig. 4. We emphasize however that the full-RSB algorithmic procedure above
does not allow to directly recover the 1-RSB result, even used with k = 1: indeed it implicitly relies
on the fact that one takes k large enough so as not to have to optimize over the variables x1, · · · , xk,
so that we can take them to be fixed.

Remark: convexity of the Parisi functional – In the context of mixed p-spin models, the so-
called Parisi functional, i.e. the functional whose infimum we take in eq. (47), has been shown to
be strictly convex, and thus to have a unique minimizer [AC15]. This is conjectured to hold as well
in our setting, however there is no rigorous guarantee that our iterative procedure should converge
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Figure 5: Computation of αFRSB
inj using the FRSB algorithmic procedure. For different values of xmax

and k we give an interval numerically found to contain αFRSB
inj . In Result 1.1 we took the interval of

values obtained with k = 200 and xmax = 15. We give more details on the numerical procedure in
Appendix F.4.

to a global minimizer. However, our numerical simulations are compatible with this conjecture: as
we detail in Appendix F.2, we find the iterative procedure to converge to a consistent solution for
all initializing points. Moreover, our procedure exhibits polynomial convergence (see Fig. 6): this
suggests that there is an accumulation of near-zero eigenvalues in the Hessian of the Parisi functional
close to the minimum (otherwise we would observe exponential convergence), and thus that the Parisi
functional is strictly but not strongly convex.

References
[AC15] Antonio Auffinger and Wei-Kuo Chen. The Parisi formula has a unique minimizer.

Communications in Mathematical Physics, 335(3):1429–1444, 2015.

[AC18] Antonio Auffinger and Wei-Kuo Chen. On concentration properties of disordered Hamil-
tonians. Proceedings of the American Mathematical Society, 146(4):1807–1815, 2018.

[ALMT14] Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp. Living on the
edge: Phase transitions in convex programs with random data. Information and Infer-
ence: A Journal of the IMA, 3(3):224–294, 2014.

[AMÖS19] Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse
problems using data-driven models. Acta Numerica, 28:1–174, 2019.

[AMS23] Antonio Auffinger, Andrea Montanari, and Eliran Subag. Optimization of random high-
dimensional functions: Structure and algorithms. In Spin Glass Theory and Far Beyond:
Replica Symmetry Breaking After 40 Years, pages 609–633. World Scientific, 2023.

[AT07] Robert J Adler and Jonathan E Taylor. Random fields and geometry, volume 80. Springer,
2007.

[BC20] Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and den-
sity estimation. Advances in Neural Information Processing Systems, 33:442–453, 2020.

27



[BFH+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs,
2018.

[BJPD17] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing
using generative models. In International Conference on Machine Learning, pages 537–
546. PMLR, 2017.

[BKM+19] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová.
Optimal errors and phase transitions in high-dimensional generalized linear models. Pro-
ceedings of the National Academy of Sciences, 116(12):5451–5460, 2019.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[BMR18] Yu Bai, Tengyu Ma, and Andrej Risteski. Approximability of discriminators implies
diversity in GANs. In International Conference on Learning Representations, 2018.

[BNSX22] Erwin Bolthausen, Shuta Nakajima, Nike Sun, and Changji Xu. Gardner formula for
Ising perceptron models at small densities. In Conference on Learning Theory, pages
1787–1911. PMLR, 2022.

[BPW18] Afonso S Bandeira, Amelia Perry, and Alexander S Wein. Notes on computational-
to-statistical gaps: predictions using statistical physics. Portugaliae Mathematica,
75(2):159–186, 2018.

[CC05] Tommaso Castellani and Andrea Cavagna. Spin-glass theory for pedestrians. Journal of
Statistical Mechanics: Theory and Experiment, 2005(05):P05012, 2005.

[Cha06] Sourav Chatterjee. A generalization of the Lindeberg principle. The Annals of Probability,
34(6):2061–2076, 2006.

[Che13] Wei-Kuo Chen. The Aizenman-Sims-Starr scheme and Parisi formula for mixed p-spin
spherical models. Electronic Journal of Probability, 18:1–14, 2013.

[CKP+14] Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, Pierfrancesco Urbani, and
Francesco Zamponi. Fractal free energy landscapes in structural glasses. Nature commu-
nications, 5(1):1–6, 2014.

[Clu22] Charles Clum. Topics in the Mathematics of Data Science. PhD thesis, The Ohio State
University, 2022.

[Cov65] Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition. IEEE transactions on electronic computers,
pages 326–334, 1965.

[CPBM22] Charles Clum, Daniel Paleka, Afonso S. Bandeira, and Dustin G. Mixon. Private com-
munication, 2022.

[dAT78] Jairo RL de Almeida and David J Thouless. Stability of the Sherrington-Kirkpatrick so-
lution of a spin glass model. Journal of Physics A: Mathematical and General, 11(5):983,
1978.

[DKB+20] Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Luc-
chi. Batch normalization provably avoids ranks collapse for randomly initialised deep
networks. Advances in Neural Information Processing Systems, 33:18387–18398, 2020.

28



[Dup81] B Duplantier. Comment on Parisi’s equation for the SK model for spin glasses. Journal
of Physics A: Mathematical and General, 14(1):283, 1981.

[DZ98] Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications. Springer,
1998.

[EAMS21a] Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Algorithmic thresholds in mean
field spin glasses. The Annals of Probability, 2021.

[EAMS21b] Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Optimization of mean-field spin
glasses. The Annals of Probability, 49(6):2922–2960, 2021.

[Ell06] Richard S Ellis. Entropy, large deviations, and statistical mechanics, volume 1431. Taylor
& Francis, 2006.

[EVdB01] Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cam-
bridge University Press, 2001.

[FPS+17] Silvio Franz, Giorgio Parisi, Maxime Sevelev, Pierfrancesco Urbani, and Francesco Zam-
poni. Universality of the SAT-UNSAT (jamming) threshold in non-convex continuous
constraint satisfaction problems. SciPost Physics, 2(3):019, 2017.

[FPUZ15] Silvio Franz, Giorgio Parisi, Pierfrancesco Urbani, and Francesco Zamponi. Univer-
sal spectrum of normal modes in low-temperature glasses. Proceedings of the National
Academy of Sciences, 112(47):14539–14544, 2015.

[FRH+19] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pap-
pas. Efficient and accurate estimation of Lipschitz constants for deep neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

[Gar88] Elizabeth Gardner. The space of interactions in neural network models. Journal of
physics A: Mathematical and general, 21(1):257, 1988.

[GD88] Elizabeth Gardner and Bernard Derrida. Optimal storage properties of neural network
models. Journal of Physics A: Mathematical and general, 21(1):271, 1988.

[Get13] Pascal Getreuer. A survey of Gaussian convolution algorithms. Image Processing On
Line, 2013:286–310, 2013.

[GFPC21] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of
neural networks by enforcing lipschitz continuity. Machine Learning, 110(2):393–416,
2021.

[GKL+24] Federica Gerace, Florent Krzakala, Bruno Loureiro, Ludovic Stephan, and Lenka Zde-
borová. Gaussian universality of perceptrons with random labels. Physical Review E,
109(3):034305, 2024.

[Gor85] Yehoram Gordon. Some inequalities for Gaussian processes and applications. Israel
Journal of Mathematics, 50(4):265–289, 1985.

[Gor88] Yehoram Gordon. On Milman’s inequality and random subspaces which escape through
a mesh in Rn. In Geometric aspects of functional analysis, pages 84–106. Springer, 1988.

[GT02] Francesco Guerra and Fabio Lucio Toninelli. The thermodynamic limit in mean field spin
glass models. Communications in Mathematical Physics, 230(1):71–79, 2002.

[Gue03] Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass model.
Communications in mathematical physics, 233(1):1–12, 2003.

29



[HN20] Boris Hanin and Mihai Nica. Products of many large random matrices and gradients in
deep neural networks. Communications in Mathematical Physics, 376(1):287–322, 2020.

[JD20] Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant
of relu networks. Advances in Neural Information Processing Systems, 33:7344–7353,
2020.

[KKdHD21] Konik Kothari, AmirEhsan Khorashadizadeh, Maarten de Hoop, and Ivan Dokmanić.
Trumpets: Injective flows for inference and inverse problems. In Uncertainty in Artificial
Intelligence, pages 1269–1278. PMLR, 2021.

[LLC18] Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural
networks. The Annals of Applied Probability, 28(2):1190–1248, 2018.

[Mai23] Antoine Maillard. Numerical code used to produce the figures. https://github.com/
AnMaillard/Injectivity_ReLu_layer, 2023.

[Mon21] Andrea Montanari. Optimization of the Sherrington-Kirkpatrick Hamiltonian. SIAM
Journal on Computing, pages FOCS19–1, 2021.

[MP91] Marc Mézard and Giorgio Parisi. Replica field theory for random manifolds. Journal de
Physique I, 1(6):809–836, 1991.

[MPS+84] Marc Mézard, Giorgio Parisi, Nicolas Sourlas, G Toulouse, and Miguel Virasoro. Nature
of the spin-glass phase. Physical review letters, 52(13):1156, 1984.

[MPV87] Marc Mézard, Giorgio Parisi, and Miguel Virasoro. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, volume 9. World Scientific
Publishing Company, 1987.

[MS22] Andrea Montanari and Basil N Saeed. Universality of empirical risk minimization. In
Conference on Learning Theory, pages 4310–4312. PMLR, 2022.

[MS24] Andrea Montanari and Subhabrata Sen. A friendly tutorial on mean-field spin glass
techniques for non-physicists. Foundations and Trends® in Machine Learning, 17(1):1–
173, 2024.

[MZZ24] Andrea Montanari, Yiqiao Zhong, and Kangjie Zhou. Tractability from overparametriza-
tion: The example of the negative perceptron. Probability Theory and Related Fields,
188(3):805–910, 2024.

[Pal21] Daniel Paleka. Injectivity of ReLU neural networks at initialization. Master’s thesis,
ETH Zurich, 2021.

[Pan13] Dmitry Panchenko. The Parisi ultrametricity conjecture. Annals of Mathematics, pages
383–393, 2013.

[Pan14] Dmitry Panchenko. The Parisi formula for mixed p-spin models. The Annals of Proba-
bility, 42(3):946–958, 2014.

[Pan15] Dmitry Panchenko. The free energy in a multi-species Sherrington–Kirkpatrick model.
The Annals of Probability, 43(6):3494 – 3513, 2015.

[Par79] Giorgio Parisi. Infinite number of order parameters for spin-glasses. Physical Review
Letters, 43(23):1754, 1979.

[Par80a] Giorgio Parisi. The order parameter for spin glasses: a function on the interval 0-1.
Journal of Physics A: Mathematical and General, 13(3):1101, 1980.

30

https://github.com/AnMaillard/Injectivity_ReLu_layer
https://github.com/AnMaillard/Injectivity_ReLu_layer


[Par80b] Giorgio Parisi. A sequence of approximated solutions to the sk model for spin glasses.
Journal of Physics A: Mathematical and General, 13(4):L115, 1980.

[PKL+22] Michael Puthawala, Konik Kothari, Matti Lassas, Ivan Dokmanic, and Maarten de Hoop.
Globally injective relu networks. Journal of Machine Learning Research, 23(105):1–55,
2022.

[PLDDH22] Michael Puthawala, Matti Lassas, Ivan Dokmanic, and Maarten De Hoop. Universal
joint approximation of manifolds and densities by simple injective flows. In International
Conference on Machine Learning, pages 17959–17983. PMLR, 2022.

[PW17] Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning.
Advances in neural information processing systems, 30, 2017.

[RC21] Brendan Ross and Jesse Cresswell. Tractable density estimation on learned manifolds
with conformal embedding flows. Advances in Neural Information Processing Systems,
34:26635–26648, 2021.

[RUYZ15] Corrado Rainone, Pierfrancesco Urbani, Hajime Yoshino, and Francesco Zamponi. Fol-
lowing the evolution of hard sphere glasses in infinite dimensions under external pertur-
bations: Compression and shear strain. Physical review letters, 114(1):015701, 2015.

[SK75] David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical review
letters, 35(26):1792, 1975.

[ST02] Maria Shcherbina and Brunello Tirozzi. On the volume of the intersection of a sphere
with random half spaces. Comptes Rendus Mathematique, 334(9):803–806, 2002.

[ST03] Mariya Shcherbina and Brunello Tirozzi. Rigorous solution of the Gardner problem.
Communications in mathematical physics, 234(3):383–422, 2003.

[Sto13a] Mihailo Stojnic. Another look at the Gardner problem. arXiv preprint arXiv:1306.3979,
2013.

[Sto13b] Mihailo Stojnic. Negative spherical perceptron. arXiv preprint arXiv:1306.3980, 2013.

[SU09] Plamen Stefanov and Gunther Uhlmann. Linearizing non-linear inverse problems and an
application to inverse backscattering. Journal of Functional Analysis, 256(9):2842–2866,
2009.

[Sub21] Eliran Subag. Following the ground states of Full-RSB spherical spin glasses. Commu-
nications on Pure and Applied Mathematics, 74(5):1021–1044, 2021.

[Sub22] Eliran Subag. Convergence of the free energy for spherical spin glasses. Journal of
Statistical Physics, 189(2):29, 2022.

[SW08] Rolf Schneider and Wolfgang Weil. Stochastic and integral geometry, volume 1. Springer,
2008.

[TAH18] Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi. Precise error analysis of
regularized M -estimators in high dimensions. IEEE Transactions on Information Theory,
64(8):5592–5628, 2018.

[Tal06a] Michel Talagrand. Free energy of the spherical mean field model. Probability theory and
related fields, 134(3):339, 2006.

[Tal06b] Michel Talagrand. The Parisi formula. Annals of mathematics, pages 221–263, 2006.

31



[Tal10] Michel Talagrand. Mean field models for spin glasses: Volume I: Basic examples, vol-
ume 54. Springer Science & Business Media, 2010.

[Tal11] Michel Talagrand. Mean Field Models for Spin Glasses: Volume II: Advanced Replica-
Symmetry and Low Temperature, volume 55. Springer Science & Business Media, 2011.

[TOH15] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. Regularized linear regres-
sion: A precise analysis of the estimation error. In Conference on Learning Theory, pages
1683–1709. PMLR, 2015.

[Urb18] Pierfrancesco Urbani. Statistical physics of glassy systems: tools and applications, 2018.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge university press, 2018.

[vH14] Ramon van Handel. Probability in high dimension. Technical report, PRINCETON
UNIV NJ, 2014.

[XHLJ18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In International Conference on Learning Representations, 2018.

A Proofs
A.1 Proof of Proposition 1.1

Note that if m < n, then x ∈ Rn 7→ Wx ∈ Rm is not injective, Cm,n = Rm, and eq. (2) stands trivially.
We thus assume m ≥ n. Since x ∈ Rn 7→ Wx ∈ Rm is then a.s. injective, WRn is a (random) n-
dimensional subspace of Rm. Moreover, by rotation invariance of the Gaussian distribution, it is
uniformly sampled. Thus it is enough to show that pm,n = P[(WRn) ∩ Cm,n = {0}]. In the end, it
suffices to show the following lemma, whose proof elements can be found in [PKL+22, Pal21, Clu22],
which we repeat for completeness:
Lemma A.1
Almost surely under the law of W, the following two statements are equivalent:

(i) φW is injective.

(ii) (WRn) ∩ Cm,n = {0}.

Proof of Lemma A.1 – In the following, we assume that the following event stands:

E(W) := {All choices of n distinct rows of W are linearly independent vectors in Rn}.

It is easy to see that P[E(W)] = 1, since every set of n independent standard Gaussian vectors in Rn

is linearly independent almost surely.

Let us show first that (ii) ⇒ (i). Recall ReLU(x) = max(0, x). Note that for any a ≤ b ∈ R,
ReLU(a) = ReLU(b) implies that ReLU is constant on (a, b). Assume that φW(x) = φW(y). Let
us consider z = (x + y)/2, then φW(z) = φW(x) by the note above. Moreover, for all µ ∈ [m] such
that (Wz)µ > 0, then (Wx)µ = (Wy)µ = (Wz)µ. On the other hand, if (Wz)µ = 0, then necessarily
(Wx)µ = (Wy)µ = 0, since (Wx)µ ≤ 0 ⇔ (Wy)µ ≤ 0. By (ii), Wz has at least n non-negative
coordinates, so the argument above implies that there exists at least n values of µ ∈ [m] such that
(Wx)µ = (Wy)µ. Since E(W) stands, this shows that x = y.
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Let us now show (i) ⇒ (ii). We divide Rn into equivalence classes defined by the relation x ∼ y ⇔
∀µ ∈ [m], (Wx)µ > 0 ⇔ (Wy)µ > 0. These equivalence classes RS are defined by a subset S of [m],
so that for all x ∈ RS , (Wx)µ > 0 ⇔ µ ∈ S. Assume that there exists x ∈ Rn such that Wx ̸= 0
and Wx has strictly less than n positive coordinates, i.e. x ∈ RS with |S| < n. On RS , φW is a
linear transformation with |S| < n linearly independent rows {Wµ}µ∈S . Its image has thus dimension
smaller than n. Therefore, the following result, which implies that RS has dimension n, then implies
that φW is not injective on RS . Having proved the contrapositive, we can then infer (i) ⇒ (ii). □

Lemma A.2
The following statement is true almost surely: for all S ⊆ [m], either RS = {0}, or there exists
x ∈ RS and ε > 0 such that B2(x, ε) ⊆ RS .

Proof of Lemma A.2 – By a union bound over all S ⊆ [m], it suffices to show this statement a.s.
for any fixed S ⊆ [m]. Let us assume that RS ̸= 0. The following statement implies the conclusion of
Lemma A.2:

P
{

∀x ∈ RS , ∃µ /∈ S s.t. Wµ · x = 0
}

= 0. (64)

Indeed, one can then a.s. find an element x ∈ RS such that (Wx)µ > 0 for all µ ∈ S and (Wx)µ < 0
for all µ /∈ S, therefore B2(x, ε) ⊆ RS for sufficiently small ε. We now show eq. (64).

Assume that there exists x ∈ RS\{0}, with ν1, · · · , νkx ∈ [m] all indices such that Wν · x = 0, that
satisfies kx ≥ 1. Note that by E(W) (which stands a.s.) and since x ̸= 0 we must have kx < n.
Thus, since {Wνi}

kx
i=1 are linearly independent on E(W), we can then fix y ∈

(
{Wνi}

kx−1
i=1

)⊥ such
that Wνkx · y < 0. Consider x′ = x + δy with arbitrary δ > 0. By hypothesis, Wνi · x′ = 0 for all
i ∈ [kx − 1]. Moreover, for δ small enough, Wµ · x′ has the same sign as Wµ · x if µ /∈ {ν1, · · · , νkx}.
Finally, Wνkx · x′ = δWνkx · y < 0. In the end, taking δ small enough, we have found x′ ∈ RS with
kx′ = kx − 1. Iterating this procedure, we have shown that a.s. there exists a point x ∈ RS such that
kx = 0, which implies eq. (64). □

A.2 Proof of Lemma 1.2

Let us first recall Cover’s theorem [Cov65]. We use the sign(x) function, with the convention sign(0) =
0. We call a set of vectors {W1, · · · ,Wm} in Rn in general position if it has no linearly independent
subset of size strictly less than n. Cover’s theorem is an exact formula for the number of dichotomies1

of this set that are realizable by a linear separation:

Theorem A.3 (Cover [Cov65])
Let W1, · · · ,Wm ∈ Rn be in general position. Then

∑
ϵ∈{±1}m

1
{

∃x ∈ Sn−1 realizing ∀µ ∈ [m] : sign(Wµ · x) = εµ

}
= 2

n−1∑
k=0

(
m− 1
k

)
.

Let us now show that Theorem A.3 implies Lemma 1.2. We assume α < 3, so in particular we can fix
δ > 0 such that m ≤ (3 − δ)(n− 1) for n large enough. We denote m̃ = m− (n− 1) ≤ (2 − δ)n. Since
W is a Gaussian matrix, the set {Wµ}µ∈[m̃] is a.s. in general position. Moreover, by sign invariance,
for any ϵ ∈ {±1}m we have:

PW
{

∃x ∈ Sn−1 : ∀µ ∈ [m̃], sign(Wµ · x) = εµ

}
= PW

{
∃x ∈ Sn−1 : ∀µ ∈ [m̃], sign(Wµ · x) = −1

}
.

1A dichotomy is a binary labeling of the vectors.
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For ϵ uniformly sampled in {±1}m (independently of W), we denote PW,ϵ the joint probability law
of (W, ϵ), and Pϵ the law of ϵ. The previous remark on sign invariance allows to deduce:

PW
{

∃x ∈ Sn−1 : ∀µ ∈ [m̃], sign(Wµ · x) = −1
}

= PW,ϵ

{
∃x ∈ Sn−1 : ∀µ ∈ [m̃], sign(Wµ · x) = εµ

}
,

= EW
[
Pϵ

(
∃x ∈ Sn−1 : ∀µ ∈ [m̃], sign(Wµ · x) = εµ

∣∣∣W)]
,

= 1
2m̃

× 2
n−1∑
k=0

(
m̃− 1
k

)
,

by Theorem A.3. Since m̃ ≤ (2 − δ)n, it is then elementary to check that this implies

lim
n→∞

PW
{

∃x ∈ Sn−1 : ∀µ ∈ [m̃], sign(Wµ · x) = −1
}

= 1.

The proof is then finished by noticing that if x satisfies sign(Wµ · x) = −1 for all µ ∈ [m̃], it must
satisfy EW(x) ≤ m− m̃ < n, and using eq. (4).

A.3 Proof of Theorem 1.4

It is easy to see that if W,W′ are two matrices for which W′
ν = Wν for all ν ∈ [m]\{µ}, then

|Φn(W, β) − Φn(W′, β)| ≤ 2β
n
.

The theorem is then a simple consequence of McDiarmid’s inequality (see e.g. Theorem 6.2 of [BLM13]).

A.4 Proof of Corollary 1.5

By a dominated convergence argument, we have:

∂β{EWΦn(W, β)} = − 1
n
EW

{∫
Sn−1 µn(dx)EW(x) e−βEW(x)∫

Sn−1 µn(dx) e−βEW(x)

}
.

Therefore

−β2∂β{EWΦn(W, β)/β} = 1
n
EW

{∫
Sn−1 µn(dx)βEW(x) e−βEW(x)∫

Sn−1 µn(dx) e−βEW(x)

}
+ EWΦn(W, β).

Recall the definition of the Gibbs measure Pβ,W in eq. (5). It is easy to see that the previous equation
relates directly to the entropy of Pβ,W, i.e.

β2∂β{EWΦn(W, β)/β} = 1
n
EW

∫
dPβ,W(x) log dPβ,W

dµn
(x) = EWDKL(Pβ,W∥µn) ≥ 0.

In the language of statistical physics, this is a rewriting of the fact that the temperature derivative
of the free energy is given by (minus) the entropy. In particular, for any n, β 7→ −EWΦn(W, β)/β is
non-increasing, and in the limit this shows that β 7→ −Φ(α, β)/β is non-increasing. The positivity of
this function follows from Φn(W, β) ≤ 0, since EW(x) ≥ 0.

Let us now assume that there exists some β < ∞ such that −Φ(α, β) < β. In particular, fixing δ > 0,
for n large enough we have EWΦn(W, β) ≥ −β + δ. Using Theorem 1.4, for large enough n, this
implies

PW[Φn(W, β) ≤ −β] ≤ 2 exp
{

− n[β + EWΦn(W, β)]2

2αnβ2

}
,
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≤ 2 exp
{

− C(α, β)n
}
,

for some C(α, β) > 0. In particular, using eq. (9) and Proposition 1.1:

pm,n = PW
[

min
x∈Sn−1

EW(x) ≥ n
]

≤ PW
[
Φn(W, β) ≤ −β

]
≤ 2 exp

{
− C(α, β)n

}
. (65)

The claim follows.

A.5 Proof of Theorem 1.8

Remark – In what follows we usually consider m = αn with α > 0, and the proof can be straight-
forwardly generalized to the original assumption m/n → α > 0. For lightness of the presentation, we
assume the simplified statement we described.

First, note that given Lemma 1.2, we can assume α ≥ 3 in what follows. Using Proposition 1.1, we
want to characterize

G(W) := min
x∈Sn−1

eW(x) = min
x∈Sn−1

1
n

m∑
µ=1

1{Wµ · x > 0},

in which W = {Wµ}m
µ=1

i.i.d.∼ N (0, In). The minimum of this function is reached since it takes discrete
values. Introducing an auxiliary variable zµ := Wµ · x, and a Lagrange multiplier λ ∈ Rm to fix this
relation, the problem is equivalent by strong duality to

G(W) = min
x∈Sn−1

inf
z∈Rm

sup
λ∈Rm

{
λ⊺Wx − λ⊺z + 1

n

m∑
µ=1

1{zµ > 0}
}
,

= inf
z∈Rm

min
x∈Sn−1

sup
λ∈Rm

{
λ⊺Wx − λ⊺z + 1

n

m∑
µ=1

1{zµ > 0}
}
. (66)

Note that the infimum over z in eq. (66) is actually done over z ∈ WSn−1, since the supremum over λ
becomes +∞ for z ̸= Wx. Letting ∥W∥op := maxx∈Sn−1 ∥Wx∥2, we know by classical concentration
inequalities (see e.g. [Ver18] - Theorem 4.4.5) and since m = αn, that P[∥W∥op ≥ K

√
n] ≤ e−n, for

some constant K > 1 (that might depend on α). Let us denote B(K) := {z ∈ Rm : ∥z∥2 ≤ K
√
n}.

By the argument above and the law of total probability, for all t > 0,

P[G(W) ≤ t] ≤ P[GK(W) ≤ t] + e−n, (67)

with

GK(W) := inf
z∈B(K)

min
x∈Sn−1

sup
λ∈Rm

{
λ⊺Wx − λ⊺z + 1

n

m∑
µ=1

1{zµ > 0}
}
. (68)

Moreover, we will approximate 1{z > 0} by continuous functions; we let, for any δ ≥ 0:

ℓδ(x) :=


0 if x ≤ 0,
1 if x > δ,

x/δ if x ∈ (0, δ].
(69)

Since ℓδ(x) ≤ 1{x > 0}, it is clear that:

GK(W) ≥ Gδ,K(W) := inf
z∈B(K)

min
x∈Sn−1

sup
λ∈Rm

{
λ⊺Wx − λ⊺z + 1

n

m∑
µ=1

ℓδ(zµ)
}
. (70)

We now make use of the Gaussian min-max theorem [Gor88, TOH15]:
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Proposition A.4 (Gaussian min-max theorem)
Let W ∈ Rm×n be an i.i.d. standard normal matrix, and g ∈ Rm,h ∈ Rn two independent vectors
with i.i.d. N (0, 1) coordinates. Let Sv,Su be two compact subsets respectively of Rn and Rm, and
let ψ : Sv × Su → R be a continuous function. We define the two optimization problems:

C(W) := min
v∈Sv

max
u∈Su

{
u⊺Wv + ψ(v,u)

}
,

C(g,h) := min
v∈Sv

max
u∈Su

{
∥u∥h⊺v + ∥v∥g⊺u + ψ(v,u)

}
.

Then, for all t ∈ R, one has

PW[C(W) ≤ t] ≤ 2Pg,h[C(g,h) ≤ t]. (71)

Remark I – It is easy to see from the proof of [Gor88, TOH15] that the statement of the theorem
also holds if W is a block matrix of the form

W =
(

W1 0
0 0

)
,

with W1 ∈ Rm1×n1 having i.i.d. N (0, 1) elements. Denoting u⊺Wv = u⊺
1W1v1, the definition of the

auxiliary problem that appears in the theorem is then modified as:

C(g,h) := min
v∈Sv

max
u∈Su

{
∥u1∥h⊺v1 + ∥v1∥g⊺u1 + ψ(v,u)

}
, (72)

for g ∼ N (0, Im1), h ∼ N (0, In1).

Remark II – The full result of [TOH15] actually includes the proof of a converse bound to eq. (71)
when the function ψ is convex-concave, and the sets Su,Sw are convex. Here, we do not expect such
a converse bound to be true, since the solution is conjecturally described by the full-RSB equations,
and we will see that the upper bound of eq. (71) corresponds to the replica-symmetric (RS) solution.

Let us first state a lemma that simplifies the auxiliary problem:
Lemma A.5 (Auxiliary problem simplification)
For any δ > 0, and any A ∈ (0,∞], we define the auxiliary optimization problem, for g ∈ Rm,h ∈ Rn:

CA,δ(g,h) := inf
z∈Rm

min
x∈Sn−1

max
∥λ∥≤A

{
∥λ∥h⊺x + g⊺λ − λ⊺z + 1

n

m∑
µ=1

ℓδ(zµ)
}
. (73)

Then A 7→ CA,δ(g,h) is non-decreasing and one has:

lim
A→∞

CA,δ(g,h) = min
z∈Rm

∥z∥≤∥h∥

{ 1
n

m∑
µ=1

ℓδ(gµ − zµ)
}
. (74)

Note that we added a constraint over ∥λ∥ in the auxiliary problem, so that the set of λ considered is
compact. This allows to deduce, using Proposition A.4 (and Remark I below) in eqs. (70) and (67):
Lemma A.6
For all δ > 0, and all t ∈ R, one has

PW[G(W) ≤ t] ≤ 2Pg,h[Cδ(g,h) ≤ t] + e−n,

with Cδ(g,h) the RHS of eq. (74), and g,h vectors with i.i.d. N (0, 1) coordinates.
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Lemmas A.5 and A.6 are proven in Section A.6. We are now ready to prove Theorem 1.8. Note that
by weak duality:

Cδ(g,h) = inf
z∈Rm

sup
κ≥0

{κ
n

(∥z∥2 − ∥h∥2) + 1
n

m∑
µ=1

ℓδ(gµ − zµ)
}
,

≥ sup
κ≥0

inf
z∈Rm

{κ
n

(∥z∥2 − ∥h∥2) + 1
n

m∑
µ=1

ℓδ(gµ − zµ)
}

:= Mδ(g,h).

Therefore P[Cδ(g,h) ≤ t] ≤ P[Mδ(g,h) ≤ t]. Moreover, by ∥z∥2 =
∑
z2

µ, one has:

Mδ(g,h) = sup
κ≥0

{
− κ

n
∥h∥2 + 1

n

m∑
µ=1

inf
z∈R

{κz2 + ℓδ(gµ − z)}
}
. (75)

Let us show

Mδ(g,h) P→ Mδ := sup
κ≥0

{
− κ+ α

∫
R

Dx
[

inf
z∈R

{κz2 + ℓδ(x− z)}
]}
. (76)

We can assume ∥h∥2/n ≥ 1/2, an event that has probability 1 − on(1). Denoting f(κ,g,h) the
maximized function in eq. (75), we then have1 f(κ,g,h) ≤ 2α − κ/2 and f(0,g,h) ≥ 0, so that we
can write Mδ(g,h) = max0≤κ≤4α f(κ,g,h). Letting

f∞(κ) := −κ+ α

∫
R

Dx
[

inf
z∈R

{κz2 + ℓδ(x− z)}
]
,

we have then for all κ ∈ [0, 4α]:

|f(κ,g,h) − f∞(κ)| ≤ 4α
∣∣∣∥h∥2

n
− 1

∣∣∣+ α

m

∣∣∣∣∣
m∑

µ=1
(Xµ − E[Xµ])

∣∣∣∣∣, (77)

Xµ := inf
z∈R

{κz2 + ℓδ(gµ − z)}.

Note that {Xµ} are i.i.d. random variables, and one shows easily that Xµ ∈ [0, 1], so by Hoeffding’s
inequality, for all t > 0:

P
[

1
m

∣∣∣∣∣
m∑

µ=1
(Xµ − E[Xµ])

∣∣∣∣∣ ≥ t

]
≤ 2e−2mt2

.

Plugging it in eq. (77) and using the concentration of ∥h∥2/n, we reach that for all t > 0:

lim
n→∞

sup
κ∈[0,4α]

P[|f(κ,g,h) − f∞(κ)| ≥ t] = 0.

It is elementary to check that this implies max0≤κ≤4α f(κ,g,h) P→ max0≤κ≤4α f∞(κ), and therefore
eq. (76). By Lemma A.6 we have then shown that for any t, δ > 0,

Mδ > t ⇒ lim
n→∞

P[G(W) > t] = 1. (78)

We will then conclude by considering the limit δ → 0:
1Indeed, infz∈R{κz2 + ℓδ(x − z)} ≤ ℓδ(x) ≤ 1.
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Lemma A.7
We have limδ→0 Mδ = M, with

M := sup
κ≥0

{
− κ+ α

∫
R

Dx
[

inf
z∈R

{κz2 + 1{x > z}}
]}
,

= sup
κ≥0

{
− κ+ α

∫ ∞

1/
√

κ
Dx+ ακ

∫ 1/
√

κ

0
Dxx2

}
. (79)

Moreover, the maximum in eq. (79) is reached in κ⋆ such that:

1 = α

∫ 1/
√

κ⋆

0
Dxx2.

And the limit is then given by:

M = α

∫ ∞

1/
√

κ⋆
Dx.

We recognize the replica-symmetric prediction of eq. (37), with κ = (2χRS)−1! By Lemma A.7 and
eq. (78), we showed that M > t implies that P[G(W) > t] → 1 as n → ∞. Applying it for t = 1 ends
the proof of Theorem 1.8.

A.6 Proof of Lemmas A.5, A.6 and A.7

Proof of Lemma A.5 – First note that in eq. (73), writing λ = τe with ∥e∥ = 1, one can perform
the supremum over e:

CA,δ(g,h) = inf
z∈Rm

min
x∈Sn−1

max
τ∈[0,A]

{
τh⊺x + τ∥g − z∥ + 1

n

m∑
µ=1

ℓδ(zµ)
}
.

The maximum over τ ∈ [0, A] and the minimum over x can be carried out explicitly:

CA,δ(g,h) = inf
z∈Rm

{ 1
n

m∑
µ=1

ℓδ(zµ) + min
x∈Sn−1

[A(h⊺x + ∥g − z∥)1{h⊺x + ∥g − z∥ > 0}]
}
,

= inf
z∈Rm

{ 1
n

m∑
µ=1

ℓδ(zµ) +A(−∥h∥ + ∥g − z∥)1{−∥h∥ + ∥g − z∥ > 0}
}
.

Letting z′ = g − z, this yields:

CA,δ(g,h) = min
{

min
z∈Rm

∥z∥≤∥h∥

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ)
]
, inf

z∈Rm

∥z∥>∥h∥

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ) +A(∥z∥ − ∥h∥)
]}
.

We now show that:

lim
A→∞

inf
z∈Rm

∥z∥>∥h∥

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ) +A(∥z∥ − ∥h∥)
]

≥ min
z∈Rm

∥z∥≤∥h∥

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ)
]
, (80)

which ends the proof. Notice that the LHS of eq. (80) is obviously a non-decreasing function of A, so
that it indeed has a limit (possibly +∞). Moreover, we can restrict the infimum to ∥z∥ ≤ ∥h∥ +α/A,
since trivially for all A one has (recall ℓδ ≤ 1):

inf
z∈Rm

∥h∥<∥z∥≤∥h∥+α/A

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ) +A(∥z∥ − ∥h∥)
] (a)

≤ inf
z∈Rm

∥h∥<∥z∥≤∥h∥+α/A

[
α+A(∥z∥ − ∥h∥)

]
,
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≤ α
(b)
≤ inf

z∈Rm

∥z∥>∥h∥+α/A

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ) +A(∥z∥ − ∥h∥)
]
,

in which we used in (a) and (b) that ℓδ(x) ∈ [0, 1]. We let ε > 0, and for all A > 0 we fix z̃(A) ∈ Rm

with ∥z̃(A)∥ ∈ (∥h∥, ∥h∥ + α/A] such that:

1
n

m∑
µ=1

ℓδ(gµ − z̃(A)
µ ) +A(∥z̃(A)∥ − ∥h∥) ≤ inf

z∈Rm

∥z∥>∥h∥

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ) +A(∥z∥ − ∥h∥)
]

+ ε.

Since ∥z̃(A)∥ ≤ ∥h∥+α/A, we can extract a converging subsequence z(k) = z̃A(k) such that ∃ limk→∞ z(k) =:
z∗, and ∥h∥ < ∥z(k)∥ ≤ ∥h∥ + α/A(k), with A(k) → ∞. Therefore ∥z∗∥ = ∥h∥. Moreover:

m∑
µ=1

ℓδ(gµ − z∗
µ) = lim

k→∞

m∑
µ=1

ℓδ(gµ − z(k)
µ ),

≤ lim inf
k→∞

[ 1
n

m∑
µ=1

ℓδ(gµ − z(k)
µ ) +A(k)(∥z(k)∥ − ∥h∥)

]
,

≤ lim inf
k→∞

{
inf

z∈Rm

∥z∥>∥h∥

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ) +A(k)(∥z∥ − ∥h∥)
]}

+ ε,

≤ lim
A→∞

inf
z∈Rm

∥z∥>∥h∥

[ 1
n

m∑
µ=1

ℓδ(gµ − zµ) +A(∥z∥ − ∥h∥)
]

+ ε.

Letting ε > 0 be arbitrarily small, the claim of eq. (80) follows. □

Proof of Lemma A.6 – Recall eq. (70). In particular, for any A, δ,K > 0 we have:

GK(W) ≥ GA,δ,K(W) := inf
z∈B(K)

min
x∈Sn−1

max
∥λ∥≤A

{
λ⊺Wx − λ⊺z + 1

n

m∑
µ=1

ℓδ(zµ)
}
. (81)

By eq. (67) and eq. (81), we have:

PW[G(W) ≤ t] ≤ PW[GK(W) ≤ t] + e−n ≤ PW[GA,δ,K(W) ≤ t] + e−n. (82)

Using Proposition A.4 (since all sets are compact and functions involved are continuous, see in par-
ticular Remark I below it) we have, for all t ∈ R:

PW[GA,δ,K(W, z) ≤ t] ≤ 2Pg,h[CA,δ,K(g,h, z) ≤ t],

in which CA,δ,K(g,h) is defined as in eq. (73), restricting furthermore the infimum to z ∈ B(K). In
particular, CA,δ,K(g,h) ≥ CA,δ(g,h). Therefore by eq. (82):

PW[G(W) ≤ t] ≤ 2Pg,h[CA,δ(g,h) ≤ t] + e−n. (83)

Note that Pg,h[CA,δ(g,h) ≤ t] = Eg,h[1{CA,δ(g,h) ≤ t}], and moreover by Lemma A.51:

lim
A→∞

1{CA,δ(g,h) ≤ t} = 1{Cδ(g,h) ≤ t}.

Taking the A → ∞ limit in eq. (83) and using the dominated convergence theorem ends the proof of
Lemma A.6. □
1We use there the fact that A 7→ CA,δ(g, h) is non-decreasing

39



Proof of Lemma A.7 – For δ ≥ 0, we define

fδ(κ) := −κ+ α

∫
R

Dx
[

inf
z∈R

{κz2 + ℓδ(x− z)}
]
,

so that Mδ = supκ≥0 fδ(κ) for δ > 0, and M = supκ≥0 f0(κ). Notice first that eq. (79) follows from
the following identity, that can be easily checked:

inf
z∈R

{κz2 + 1{z < x}} = 1{
√
κx ≥ 1} + 1{

√
κx ∈ (0, 1)}κx2.

Lemma A.7 will follow if we can show:

lim
δ→0

sup
κ≥0

|fδ(κ) − f0(κ)| = 0. (84)

Notice that for all δ > 0 and all x ∈ R, we have 1{x > δ} ≤ ℓδ(x) ≤ 1{x > 0}. In particular,

inf
z∈R

{κz2 + 1{z < x− δ}} ≤ inf
z∈R

{κz2 + ℓδ(x− z)} ≤ inf
z∈R

{κz2 + 1{z < x}}.

One computes easily the left and right sides of this inequality:
inf
z∈R

{κz2 + ℓδ(x− z)} ≤ 1{
√
κx ≥ 1} + 1{

√
κx ∈ (0, 1)}κx2,

inf
z∈R

{κz2 + ℓδ(x− z)} ≥ 1{
√
κ(x− δ) ≥ 1} + 1{

√
κ(x− δ) ∈ (0, 1)}κ(x− δ)2.

Therefore we reach:

|fδ(κ) − f0(κ)| ≤ α

∫ 1/
√

κ+δ

1/
√

κ
Dx+ ακ

∫ 1/
√

κ

0

dx√
2π

x2
[
e−x2/2 − e−(x+δ)2/2

]
,

≤ α

∫ δ

0
Dx+ α

∫ 1/
√

κ

0

dx√
2π

[
e−x2/2 − e−(x+δ)2/2

]
,

≤ α

∫ δ

0
Dx+ α

∫ ∞

0

dx√
2π

[
e−x2/2 − e−(x+δ)2/2

]
,

≤ 2α
∫ δ

0
Dx,

which goes to 0 as δ → 0, uniformly in κ. This ends the proof. □

A.7 Improving over a standard use of Gordon’s inequality?

We give here a brief and informal description of the improvements made in [Sto13b, MZZ24] over
the standard use of Gordon’s inequality. The starting point of this improvement is to use Gordon’s
inequality in the form of stochastic domination, cf. e.g. Theorem 1 of [TOH15]. This form implies
that for G a Gaussian i.i.d. matrix and z ∼ N (0, 1), g,h ∼ N (0, Id), defining the min-max problems

ξ̂ := min
w

max
u

[u⊤Gw + ψ(w,u)],

ξ := min
w

max
u

[u⊤Gw + ψ(w,u) + z∥u∥∥w∥],

ξlin. := min
w

max
u

[∥g∥u⊤h + ∥h∥w⊤g + ψ(w,u)],

then for any c ≥ 0, we have
E[exp{−cξ}] ≤ E[exp{−cξlin.}].

For our purposes, we would like to obtain an upper bound for P[ξ̂ ≤ t], cf. eq. (70). In the settings
of [Sto13b, MZZ24], the vectors w,u are unit-normed, so that ξ = ξ̂ + z, and therefore

E[e−cξ̂] = E[e−cξ]
E[e−cz] ≤ E[exp{−cξlin.}]

E[e−cz] .
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Markov’s inequality yields then:

P[ξ̂ ≤ t] ≤ ectE[e−cξ̂] ≤ ectE[exp{−cξlin.}]
E[e−cz] .

The authors of [Sto13b, MZZ24] use this bound and optimize it over c ≥ 0. However, in our setting
the vectors are not unit-normed, cf eq. (70). Instead, we use in Proposition A.4 a form of Gordon’s
inequality that is weaker than stochastic domination, but that allows to directly compare ξ̂ and ξlin.:

P[ξ̂ ≤ t] ≤ 2P[ξlin. ≤ t].

This technicality prevents us from directly applying the inequality used in [Sto13b, MZZ24]: neverthe-
less, similar improvements over the standard application of the min-max inequality are likely possible,
and we leave it as an open question for future work.

B Replica-symmetric supplementary calculations
B.1 Zero-temperature limit of the replica-symmetric solution

In this section, we derive eqs. (36) and (37). Our arguments will sometimes be informal, and a rigorous
treatment would demand more care.

Recall that we have the expansion of eq. (35), with χRS the zero-temperature susceptibility of the
system. In this section, we often drop the RS subscript on quantities to lighten the notations. We use
the expansion of H(x) =

∫∞
x Du for large x ≫ 1:

H(x) = e− x2
2

√
2π

[1
x

+ Ox→∞
( 1
x3

)]
. (85)

Computation of f⋆
RS(α) – We start by deriving eq. (37). As one can check from eq. (32) that

ΦRS(α, β) is a differentiable function of β, by L’Hospital’s rule we have f⋆
RS(α) = limβ→∞ e⋆

RS(α, β),
with e⋆

RS(α, β) := −∂βΦ(α, β). We have from eq. (35):

√
q

1 − q
=
√
β

χ
+ O(β−1/2),

We compute the limit of the integrand in eq. (34) (changing variables ξ → −ξ):

e−βH
(

− ξ
√

q
1−q

)
1 − (1 − e−β)H

(
− ξ

√
q

1−q

) ≃
e−βH

(
− ξ

√
β
χ

)
1 − (1 − e−β)H

(
− ξ

√
β
χ

) .
We separate three cases, and use the expansion of eq. (85) to reach that at leading order in β:

e−βH
(

− ξ
√

β
χ

)
1 − (1 − e−β)H

(
− ξ

√
β
χ

) ≃



√
χ√

2πβ|ξ|
e

−β− βξ2
2χ →β→∞ 0 if ξ < 0,

ξ
√

2πβ
√
χ

e
−β+ βξ2

2χ →β→∞ 0 if ξ ∈ (0,
√

2χ),

1 if ξ >
√

2χ.

(86)

Using the pointwise limit above, we reach (as we mentioned above, a more careful argument would
need to be carried out to make this expansion rigorous)

e⋆(α, β) ≃ α

∫ ∞

√
2χ

Dξ = αH[
√

2χ].
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In the end, we reach eq. (37):

f⋆
RS(α) = lim

β→∞
e⋆

RS(α, β) = αH[
√

2χRS].

Computing χ – There now remains to find χ as a function of α, from eq. (33). Plugging in the
expansion of eq. (35) we find (changing ξ → −ξ):

1
√
χ

= −α lim
β→∞

1√
β

∫
Dξ

(1 − e−β)ξH ′
(

− ξ
√

q
1−q

)
1 − (1 − e−β)H

(
− ξ

√
q

1−q

) . (87)

In the same way as in eq. (86), we can show:

− 1√
β

(1 − e−β)ξH ′
(

− ξ
√

q
1−q

)
1 − (1 − e−β)H

(
− ξ

√
q

1−q

) ≃



ξ√
2πβ

e
− βξ2

2χ →β→∞ 0 if ξ < 0,

ξ2
√
χ

if ξ ∈ (0,
√

2χ),

ξ√
2πβ

e
β− βξ2

2χ →β→∞ 0 if ξ >
√

2χ.

(88)

Therefore, we reach from eq. (87) that, as β → ∞:

α

∫ √
2χ

0
Dξ ξ2 = 1,

which is eq. (36).

B.2 Stability of the replica-symmetric solution

In this section we follow Appendix 4 of [EVdB01] (see also e.g. [Urb18]) to characterize the stability
of the RS solution in replica space. This gives rise to the so-called de Almeida-Thouless conditions
[dAT78, GD88], which is a criterion for stability expressed in terms of so-called replicon eigenvalues.

We start again from the general expression of eq. (27): Φ(α, β; r) = supQGr(Q), with

Gr(Q) := 1
2 log det Q + α log

∫
Rr

dz
(2π)r/2√

det Q
e− 1

2 z⊺Q−1z−β
∑r

a=1 θ(za) = G1,r(Q) + αG2,r(Q). (89)

In what follows, we compute the Hessian of Gr(Q) taken at the replica-symmetric point.

B.2.1 The derivatives of G1,r

The derivatives of G1,r(Q) can be worked out in terms of the matrix elements of Q−1 (here a < b and
c < d): 

∂G1,r

∂Qab
= Q−1

ab ,

∂2G1,r

∂Qab∂Qcd
= −[Q−1

ac Q
−1
bd +Q−1

ad Q
−1
bc ].

Recall that at the replica symmetric point with Qab = q and Qaa = 1 we have
Q−1

aa = 1 + (r − 2)q
(1 − q)[1 + (r − 1)q] ,

Q−1
ab = − q

(1 − q)[1 + (r − 1)q] .
(90)
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Therefore (taking the notations of [EVdB01]):

[
∂2G1,r

∂Qab∂Qcd

]
RS

=


P1 if a = c ; b = d,

Q1 if a = c ; b ̸= d or b = c or a ̸= c ; b = d or a = d,

R1 if all indices are distinct,
(91)

in which P1, Q1, R1 are defined as:

P1 := −
(

1 + (r − 2)q
(1 − q)[1 + (r − 1)q]

)2

−
(

q

(1 − q)[1 + (r − 1)q]

)2

,

Q1 := −
(

1 + (r − 2)q
(1 − q)[1 + (r − 1)q]

)(
− q

(1 − q)[1 + (r − 1)q]

)
−
(

q

(1 − q)[1 + (r − 1)q]

)2

,

R1 := −2
(

q

(1 − q)[1 + (r − 1)q]

)2

.

We now take the limit r ↓ 0. With an abuse of notation, we still denote the limits P1, Q1, R1:

P1 = −1 + 4q(1 − q) − q2

(1 − q)4 ,

Q1 = q(1 − q) − 2q2

(1 − q)4 ,

R1 = − 2q2

(1 − q)4 .

(92)

B.2.2 The derivatives of G2,r

We now turn to G2,r(Q), that we rewrite using a Gaussian transformation:

G2,r(Q) = log
∫
Rr

dudv
(2π)r

e
− 1

2
∑

a,b
Qabvavb−β

∑r

a=1 θ(ua)+i
∑r

a=1 uava

. (93)

This form is more suitable for computing the Hessian with respect to Q. In order to write the formulas
compactly, we introduce the following average for any function of {va}:

⟨g({va})⟩r :=
{∫

Rr du dv g({va}) e− 1
2
∑

a,b
Qabvavb−β

∑r

a=1 θ(ua)+i
∑r

a=1 uava

∫
Rr du dv e− 1

2
∑

a,b
Qabvavb−β

∑r

a=1 θ(ua)+i
∑r

a=1 uava

}
RS

.

With this definition, we have from eq. (93):[
∂2G2,r

∂Qab∂Qcd

]
RS

= ⟨vavbvcvd⟩ − ⟨vavb⟩⟨vcvd⟩, (94)

in which a < b and c < d. One can easily see that this Hessian has the same “replica-symmetric”
structure as the one of G1,r:

[
∂2G2,r

∂Qab∂Qcd

]
RS

=


P2 if a = c ; b = d,

Q2 if a = c ; b ̸= d or b = c or a ̸= c ; b = d or a = d,

R2 if all indices are distinct.
(95)

We compute these three terms separately in the limit r → 0. In order to simplify the results, we
introduce the notation E⟨g(v)⟩, with E the expectation over ξ ∼ N (0, 1), and

⟨g(v)⟩ :=
∫

dudv g(v) e− 1−q
2 v2−βθ(u)+iv[u−√

qξ]∫
dudv e− 1−q

2 v2−βθ(u)+iv[u−√
qξ]

.
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From this definition and eq. (94), one can check (using the same trick to decouple the replicas we used
in the RS calculation, cf. Section 2.3) that we have, as r → 0:

P2 = E[⟨v2⟩2] − E[⟨v⟩2]2,
Q2 = E[⟨v2⟩⟨v⟩2] − E[⟨v⟩2]2,
R2 = E[⟨v⟩4] − E[⟨v⟩2]2.

(96)

B.2.3 de Almeida-Thouless condition for replica-symmetric stability

Classical replica studies [EVdB01] show that for a Hessian having the form of eqs. (91) or (95), the
linear stability of the RS local maximum is given by the sign of the “replicon” eigenvalue P − 2Q+R.
More precisely, the AT condition for the stability of the RS solution in replica space reads here:

λ3 = [P1 − 2Q1 +R1] + α[P2 − 2Q2 +R2] ≤ 0.

By eqs. (92) and (96) we get:

1
(1 − q)2 ≥ αE

[(
⟨v2⟩ − ⟨v⟩2)2]. (97)

In order to make eq. (97) more explicit, we compute the right-hand side using the identity ⟨v2⟩−⟨v⟩2 =
−q−1∂2

ξ log Z(ξ), with

Z(ξ) :=
∫ dudv

2π e− 1−q
2 v2−βθ(u)+iv[u−√

qξ].

This integral is easy to work out:

log Z(ξ) = log
∫ du√

2π(1 − q)
e

−βθ(u)− 1
2(1−q) (u−√

qξ)2
= log

[
1 − (1 − e−β)H

(
− ξ

√
q

1 − q

)]
.

Let us define fβ(h) := log(1−(1−e−β)H[−h/
√

1 − q]), so that log Z(ξ) = fβ(√qξ). Then ⟨v2⟩−⟨v⟩2 =
−f ′′

β (√qξ). The AT condition for the stability of the replica-symmetric solution is then expressed easily
as a function of (α, q) at any β ≥ 0 as

1
α

≥ (1 − q)2
∫

Dξf ′′
β (√qξ)2. (98)

B.2.4 The β → ∞ limit

We now take the limit β → ∞ in eq. (98), introducing the zero-temperature susceptibility χRS = χ
(cf. eq. (35)). Using the same expansions as in eqs. (86) and (88) we have as β → ∞:

1
β
fβ(h) ≃


0 if h < 0,
−1 if h >

√
2χ,

− h2

2χ otherwise .
(99)

Therefore, we have at large β, that f ′′
β (h) ≃ −βχ−11{h ∈ (0,

√
2χ)}. Since (1 − q)2 ≃ χ2/β2, the RS

stability condition (98) becomes, in the β → ∞ limit:

α

∫ √
2χ

0
Dξ ≤ 1. (100)

However, recall that in the zero-temperature limit, the RS susceptibility χ is given by the solution to
eq. (36):

α

∫ √
2χ

0
Dξ ξ2 = 1,
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which can be turned easily by integration by parts into:

α

∫ √
2χ

0
Dξ = 1 + α

√
χ

π
e−χ > 1,

in which the inequality holds in all the “UNSAT” phase α > 2 for which χ < ∞. Therefore, eq. (100)
is never satisfied for any α > 2: at zero-temperature, the replica-symmetric solution is never linearly
stable!

C A replica-symmetric lower bound
High-dimensional concentration on energy level sets – Let us first describe physical reasons
(at a heuristic level) for the concentration of the energy under the Gibbs measure of eq. (5), for any
β ≥ 0. As we mentioned in Section 1, proving this property is highly non-trivial. While we did not
need to assume this concentration to hold in the rest of the paper, it will be important in this part to
describe the derivation of a replica-symmetric lower bound for the injectivity threshold.
At fixed W, the distribution of intensive energies is described by a probability density Pβ(e) given by:

Pβ(e) :=
∫

dPβ,W(x) δ
(EW(x)

n
− e

)
= e−nβe

Zn(W, β)

∫
µn(dx) δ

(EW(x)
n

− e
)
. (101)

One can show (using properties of the uniform measure µn and the fact that the energy is extensive)
that the “entropic” term on the right scales exponentially with n, that is that for any e ∈ [0, α], one
has a well-defined F (e) := limn→∞(1/n) log

∫
µn(dx) δ(EW(x)/n − e) ∈ [−∞, 0]. In mathematical

terms, for x ∼ µn, EW(x)/n satisfies a large deviation principle in the scale n, with rate function
−F (e). Therefore, by eq. (101), Pβ(e) has large deviations in the scale n around a value e⋆(β), i.e. we
have the following behavior:

e⋆(β) := arg max
e

[−βe+ F (e)],

Pβ(e) ≃ exp
{
n
(

− βe+ F (e) − [−βe⋆(β) + F (e⋆(β))]
)}
.

(102)

In particular, the probability (under the Gibbs measure) of having a configuration with energy e such
that |e− e⋆(β)| > ε is exponentially small in n for any ε > 0. Therefore, we expect that at any β ≥ 0,
all the mass of the Gibbs measure concentrates (as n → ∞) around the level set with intensive energy
e⋆(β), given thus also by the mean energy under the Gibbs measure [Ell06]. Note that we discarded
the dependency of e⋆ on W: the concentration with respect to W can be justified (but not proven!)
using the concentration of Φn(W, β) in Theorem 1.4. Indeed, note that the average energy under the
Gibbs measure is precisely given by a derivative of the free energy:∫

dPβ,W(x)EW(x) = − ∂

∂β

[
log Zn(W, β)

]
.

Therefore, one expects that the concentration of the free energy transfers to the derivatives, and thus
that the energy level also concentrates as a function of W. Summing up, the function e⋆(α, β) (we
explicit its dependency on α and β) is – conjecturally – equal to the following limit:

e⋆(α, β) = p-lim
n→∞

1
n

∫
dPβ,W(x)EW(x) = −∂βΦ(α, β).

in which the limit is again in probability over the randomness induced by W. Furthermore, in the
limit β → ∞ – as we argued in the main text – we expect the Gibbs measure to concentrate its mass
around the global minima of EW, and therefore that

lim
β→∞

e⋆(α, β) = p-lim
n→∞

{ 1
n

min
x∈Sn−1

EW(x)
}
. (103)

The lower bound – By eq. (4) and eq. (103), e⋆(α, β = ∞) ≥ 1 ⇔ α ≥ αinj
1. Since e⋆(α, β) is a

1Assuming that α 7→ e⋆(α, β = ∞) is continuous and strictly increasing, which we always observe, see Fig. 1.
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decreasing function of β and e⋆(α, β = 0) = α/2, this implies that for any α ∈ (2, αinj] there exists
β⋆(α) ∈ [0,∞] such that

β⋆(α) := sup{β ≥ 0 : e⋆(α, β) ≥ 1}.

Moreover, it is easy to see that β⋆(α) is a non-decreasing function of α. In particular, if for all
β < β⋆(α) the RS solution is stable (in the sense of the dAT condition described above, and derived in
Appendix B.2), then the replica-symmetric ansatz will yield the exact solution for all β ∈ [0, β⋆(α)).
We denote αdAT the largest such α:

αdAT := sup{α |α > 2 and the RS solution is stable for all β < β⋆(α)}.

Recall that αinj is, according to our criterion, equal to:

αinj = inf{α : lim
β→∞

e⋆(α, β) ≥ 1} = inf{α : β⋆(α) = ∞}.

However, we know that for β → ∞ the RS solution is never stable for α > 2 (see Appendix B.2), so for
all α > 2, if β⋆(α) = ∞ then α > αdAT. In particular, we get the lower bound αdAT ≤ αinj. We stress
that an important property of αdAT is that it can be computed solely from the RS solution (and its
stability analysis), and might thus be more amenable to a rigorous analysis than the replica symmetry
breaking upper bounds. Recall that the stability condition for the RS solution is given by eq. (98), in
which q is the overlap given by the RS calculation, i.e. by eq. (33). A numerical evaluation of eq. (98),
available in the attached code [Mai23], yields αdAT ≃ 5.3238, which implies the lower bound presented
in eq. (39).

D One-step replica symmetry breaking
D.1 Derivation of the 1-RSB free entropy

We perform here, for completeness of our presentation, the textbook calculation of the spherical
perceptron free entropy at the one-RSB level. We start again from eq. (27), which we rewrite using a
Gaussian transformation as:

Φ(α, β, r) = sup
Q

[1
2 log det Q + α log

∫
Rr

dudv
(2π)r

e
− 1

2
∑

a,b
Qabvavb−β

∑r

a=1 θ(ua)+i
∑r

a=1 uava]
. (104)

We assume a 1RSB ansatz given in eq. (41), with q1 > q0, and m ∈ {1, · · · , r} with m | r the Parisi
parameter (i.e. the size of the diagonal blocks in the ultrametric Q). More precisely we have, with
k := r/m: 

Qaa = 1,

Qab = q1 if
⌊a
k

⌋
=
⌊ b
k

⌋
,

Qab = q0 otherwise.

(105)

The entropic contribution – We focus on the first term of eq. (104). It is elementary algebra to
check that under the ansatz of eq. (105), the spectrum of Q is:

Sp(Q) = {1 − q1}r−k ∪ {1 −mq0 + (m− 1)q1}k−1 ∪ {1 + (r −m)q0 + (m− 1)q1}.

In particular, this yields:

log det Q = r
m− 1
m

log(1 − q1) + r −m

m
log[1 −mq0 + (m− 1)q1] + log[1 + (r −m)q0 + (m− 1)q1].
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And thus:

∂r[log det Q]r=0 = m− 1
m

log(1 − q1) + 1
m

log[1 −mq0 + (m− 1)q1] + q0
[1 −mq0 + (m− 1)q1] . (106)

The interaction contribution – We focus now on the second term αG2,r(Q) in eq. (104), with:

G2,r(Q) := log
∫
Rr

dudv
(2π)r

e
− 1

2
∑

a,b
Qabvavb−β

∑r

a=1 θ(ua)+i
∑r

a=1 uava

.

Under the 1-RSB ansatz, it becomes:

G2,r(Q) = log
∫
Rr

dudv
(2π)r

e− 1−q1
2
∑

a
(va)2− q0

2

(∑
a

va
)2

− q1−q0
2
∑k−1

x=0

(∑m

l=1 vmx+l
)2

−
∑

a
[βθ(ua)−iuava].

Introducing Gaussian transformations based on the formula e−x2/2 =
∫

Dz e−izx to decouple the
replicas, we obtain:

G2,r(Q) = log
∫

Dξ
k−1∏
x=0

∫
Dzx

∫
Rr

dudv
(2π)r

exp
{

− 1 − q1
2

∑
a

(va)2 − i
√
q0ξ

∑
a

va

− i
√
q1 − q0

k−1∑
x=0

zx

m∑
l=1

vmx+l − β
∑

a

θ(ua) + i
∑

a

uava
}
,

= log
∫

Dξ
{∫

Dz
[ ∫ dudv

2π exp
{

− 1 − q1
2 v2 − iv[√q0ξ +

√
q1 − q0z] − βθ(u) + iuv

}]m} r
m

.

Using this Gaussian transformation trick, we were able to decouple replicas and therefore obtain an
expression that is analytic in r. This allows to take the r ↓ 0 limit (keeping m fixed), and to reach:

∂r
[
G2,r(Q)

]
r=0

= 1
m

∫
Dξ log

{∫
Dz
[ ∫ dudv

2π exp
{

− 1 − q1
2 v2 + iv[u− √

q0ξ −
√
q1 − q0z] − βθ(u)

}]m}
.

Performing the Gaussian integrals, and recall the definition of H(x) :=
∫∞

x Du, we reach:

∂r
[
G2,r(Q)

]
r=0 = 1

m

∫
Dξ log

{∫
Dz
[
1 − (1 − e−β)H

(
−

√
q0ξ +

√
q1 − q0z√

1 − q1

)]m}
. (107)

Combining eq. (106) and eq. (107), we reach eq. (45).

D.2 Zero-temperature limit

Recall that in the β → ∞ limit we have the scaling (see e.g. [FPS+17])

m ∼ cm

β
and 1 − q1 ∼ χ1RSB

β
, (108)

while q0 has a limit in (0, 1) as β → ∞. In the following of this section, we write χ1RSB = χ to lighten
the notations. The asymptotics of the determinant term in eq. (45) can be worked out:

m− 1
2m log(1 − q1) + 1

2m log[1 −mq0 + (m− 1)q1] + q0
2[1 −mq0 + (m− 1)q1]

≃ β

2
[ q0
χ+ cm(1 − q0) + 1

cm
log

(χ+ cm(1 − q0)
χ

)]
.
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The limit of the other term in eq. (45) can also be computed, using that:[
1 − (1 − e−β)H

(
−

√
q0ξ +

√
q1 − q0ξ1√

1 − q1

)]m

= exp{mfβ(u)},

with u := √
q0ξ0 +

√
1 − q0ξ1, and fβ(h) := log(1 − (1 − e−β)H[−h/

√
1 − q1]). We described the

expansion of fβ(h)/β for large β in eq. (99) (simply replacing χRS by χ1RSB). We reach then:

[
1 − (1 − e−β)H

(
−

√
q0ξ +

√
q1 − q0ξ1√

1 − q1

)]m

≃


1 if u < 0,
e−cm if u >

√
2χ,

e
− cmu2

2χ if u ∈ (0,
√

2χ).

(109)

Anticipating on what follows, we introduce the auxiliary functions (in which u = u(ξ0, ξ1) := √
q0ξ0 +√

1 − q0ξ1): 

n(ξ0) :=
∫

u≤0
Dξ1 + e−cm

∫
u>

√
2χ

Dξ1 +
∫

0<u<
√

2χ
Dξ1e

− cm
2χ

u2
,

a(ξ0) :=
∫

0<u<
√

2χ
Dξ1 e

− cm
2χ

u2
u,

b(ξ0) :=
∫

0<u<
√

2χ
Dξ1 e

− cm
2χ

u2
u2,

c(ξ0) := e−cm

∫
u>

√
2χ

Dξ1 + 1
2χ

∫
0<u<

√
2χ

Dξ1 u
2 e− cm

2χ
u2
.

(110)

By integration by parts, all these functions can be expressed in terms of elementary functions and
H(x) :=

∫∞
x Dξ. Moreover, note that we have the identities:

∂q0n(ξ0) = − cm

2χ(1 − q0)
[ ξ0√

q0
a(ξ0) − b(ξ0)

]
, (111a)

∂χn(ξ0) = cm

2χ2 b(ξ0), (111b)

∂cmn(ξ0) = −c(ξ0). (111c)

Eqs. (111b) and (111c) can be obtained directly from the definition of eq. (110). For eq. (111a), we
found more convenient to differentiate the finite-β integral one can write for n(ξ0) using eq. (109),
and then take its large β limit. We leave the derivation of these equations to the reader. Using the
expansion of eq. (109), we obtain the limit of the second term of eq. (45):∫

Dξ0 log
{∫

Dξ1

[
1 − (1 − e−β)H

(
−

√
q0ξ0 +

√
q1 − q0ξ1√

1 − q1

)]m}]
≃
∫

Dξ0 logn(ξ0).

In the end, we have computed the limit of the free energy at the 1-RSB level, i.e. f⋆
1RSB(α) :=

− limβ→∞ Φ1RSB(α, β)/β:

f⋆
1RSB(α) = − q0

2[χ+ cm(1 − q0)] − 1
2cm

log
(χ+ cm(1 − q0)

χ

)
− α

cm

∫
Dξ0 logn(ξ0), (112)

in which one must implicitly maximize over (cm, q0, χ). Note that an equivalent expression can be
obtained using the limit of the average energy, since e⋆

1RSB(α, β = ∞) = limβ→∞[−∂βΦ1RSB(α, β)] =
f⋆

1RSB(α). Performing expansions in a similar way to the RS computations described in Appendix B.1,
we reach:

f⋆
1RSB(α) = e⋆

1RSB(α, β = ∞) = α

∫
Dξ0

1
n(ξ0)e

−cm

∫
u>

√
2χ

Dξ1. (113)

Let us emphasize that eq. (113) is an identity involving the parameters (cm, q0, χ), which have to be
found by maximizing eq. (112).
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D.3 Numerical procedure

Let us summarize here the equations that allow to find the 1-RSB prediction for the injectivity
threshold, using the set of auxiliary functions of eq. (110). One simply proceeds by derivation of the
limit of the free energy functional given in eq. (112) with respect to (q0, χ, cm), using eq. (111). More
precisely, at a given value of α > 2, one must find q0 ∈ (0, 1) and χ, cm > 0 satisfying the following
set of three equations:

q0
[χ+ (1 − q0)cm]2 = α

cmχ(1 − q0)

∫
Dξ0

1
n(ξ0)

[ ξ0√
q0
a(ξ0) − b(ξ0)

]
,

χ+ (1 − q0)2cm

χ[(1 − q0)cm + χ]2 = α

χ2

∫
Dξ0

b(ξ0)
n(ξ0) ,

cm(1 − q0)[χ+ cm(1 − 2q0)]
2[χ+ cm(1 − q0)]2 − 1

2 log χ+ cm(1 − q0)
χ

= α

∫
Dξ0

{
logn(ξ0) + cm

c(ξ0)
n(ξ0)

}
.

(114)

Once one has found the solution to eq. (114), we can obtain the large-β limit of the energy either from
eq. (112) or eq. (113).

Following the statistical physics folklore, in order to implement an iterative scheme to solve eq. (114),
we use auxiliary variables. Namely, we iterate the first two equations of eq. (114) as:

At
0 = α

cmχt(1 − qt
0)

∫
Dξ0

1
nt(ξ0)

[ ξ0√
qt

0

at(ξ0) − bt(ξ0)
]
,

At
1 = α

(χt)2

∫
Dξ0

bt(ξ0)
nt(ξ0) ,

qt+1
0 = F1(At

0, A
t
1, c

t
m),

χt+1 = F2(At
0, A

t
1, c

t
m),

(115)

in which we added a time subscript for the auxiliary functions to highlight their dependency on
qt

0, χ
t, ct

m. Moreover, the functions F1, F2 are defined as the only roots (in q0, χ) of the equations

A0 = q0
[χ+ (1 − q0)cm]2 and A1 = χ+ (1 − q0)2cm

χ[(1 − q0)cm + χ]2 ,

such that q0 ∈ (0, 1) and χ ≥ 0. Note that this implies that

χ = A0cm(1 − q0)2

q0A1 −A0
. (116)

Therefore, in order for the solution to exist we must have A0 < A1, and then the solution satisfies
q0 > A0/A1. The remaining equation on q0 can be written as:

A0 = (A1q0 −A0)2

q0c2
m(1 − q0)2(A1 −A0)2 . (117)

We solve eq. (117) on q0 with a polynomial equations solver, and consider the unique solution in (0, 1)
such that the corresponding χ in eq. (116) satisfies χ ≥ 0, i.e. such that q0 > A0/A1.

At a given iteration t, we iterate eq. (115) for the value cm = ct
m. We then do a binary search to solve

the last equation of eq. (114) and find ct+1
m . We found this procedure to converge very quickly (see

the attached code [Mai23]), and it yields the 1RSB curves in Fig. 1 and the prediction of eq. (46).
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E Details of the FRSB computation
In this section we derive the full RSB conjecture for the free entropy Φ(α, β). Our computation is
extremely close to the one of [FPS+17], and we refer to this work (and the lecture notes [Urb18]) for
more details on the technicalities of the derivation.

Recall the form of the r-th moment of the partition function, written as a function of the overlap
matrix (without any assumption on the form of the saddle point), that is eq. (27). Note that by using
the Gaussian integration formula, we can rewrite Iβ(Q) so as to obtain:

Φ(α, β; r) = sup
Q

[1
2 log det Q + α log

∫
Rr

dudv
(2π)r

e
− 1

2
∑

a,b
Qabvavb−β

∑r

a=1 θ(ua)+i
∑r

a=1 uava]
. (118)

Let us now perform the replica method under the full-RSB ansatz described in Fig. 3.

E.1 Entropic contribution

We start with the first “entropic” term in eq. (118). Its expression under a full-RSB ansatz is given
in eq. (23) of [FPS+17], itself taken from Appendix A.II of [MP91]. However the derivation is itself
very interesting and will be useful for the other term in eq. (118), so we first detail it here.

Derivation for r > 0 – We focus on the entropic term, which we may write as:

1
2 log det Q = − log

∫
Rr

du
(2π)r/2 exp

{
− 1

2u⊺Qu
}
. (119)

We fix a k-RSB ansatz, cf. Fig. 3, and we will take in the end the limit k → ∞. We have in the r ↓ 0
limit m−1 := r ≤ m0 ≤ m1 ≤ · · · ≤ mk−1 ≤ mk = 1, and the parameters q0 ≤ q1 ≤ qk ≤ qk+1 = 1.
Recall that in this ansatz, the hierarchical overlap matrix {Qab} can be written as:

Q =
k+1∑
i=0

(qi − qi−1)J(r)
mi−1 ,

with J (r)
m the block-diagonal matrix with r/m blocks of size m, each diagonal block being the all-ones

matrix. In order to compute the integral of eq. (119), we use a simple yet very powerful identity
introduced in [Dup81], and valid for any matrix (not necessarily a hierarchical RSB matrix) {Qab}:

exp
{

− 1
2

r∑
a,b=1

Qabuaub

}
= exp

(
1
2

r∑
a,b=1

Qab
∂2

∂ha∂hb

)[
r∏

c=1
exp(−iuchc)

]
h=0

. (120)

This identity can be shown by Taylor-expanding the exponential involving the differential operator.
Using it in eq. (119) we get:

−1
2 log det Q = log

∫
Rr

du
(2π)r/2 exp

(
1
2

r∑
a,b=1

Qab
∂2

∂ha∂hb

)[
r∏

c=1
exp(−iuchc)

]
h=0

. (121)

Note that u does not appear in the differential operator, so that one can exchange the differential oper-
ator and the integral over u. Integrating with respect to u yields then, using the Fourier representation
of the delta distribution (we denote ∂a = ∂/∂ha):

− 1
2 log det Q = log

{
(2π)r/2 exp

(
1
2

r∑
a,b=1

Qab∂a∂b

)[
r∏

c=1
δ(hc)

]
h=0

}
,

= log
{

(2π)r/2 exp
(

1
2

k+1∑
i=0

(qi − qi−1)
r∑

a,b=1
(J(r)

mi−1)ab∂a∂b

)[
r∏

c=1
δ(hc)

]
h=0

}
,
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= log
{

(2π)r/2 exp
(

1
2

k∑
i=0

(qi − qi−1)
r∑

a,b=1
(J(r)

mi−1)ab∂a∂b

)
exp

(
1 − qk

2

r∑
a=1

∂2
a

)[
r∏

c=1
δ(hc)

]
h=0

}
. (122)

We use now the crucial identity, for any ω ≥ 0 and smooth function f , and which can be shown by
Taylor-expanding f around h inside the integral on the right hand side:

exp
(ω

2 ∂
2
h

)
f [h] = [γω ⋆ f ](h) =

∫ dz√
2πω

e− z2
2ω f(h− z). (123)

Here we denoted γω(x) = e−x2/(2ω)/
√

2πω, and γ0(x) = δ(x). Using eq. (123) inside eq. (122) we
reach:

− 1
2 log det Q = log

{
(2π)r/2 exp

(
1
2

k∑
i=0

(qi − qi−1)
r∑

a,b=1
(J(r)

mi−1)ab∂a∂b

)[
r∏

c=1
γ1−qk

(hc)
]

h=0

}
. (124)

We will iteratively apply the differential operator in the exponential, starting from i = 0 up to i = k.
We will make use of another important identity, which is just a consequence of simple differential
calculus combined with eq. (123), and valid for any p, n ∈ N and smooth R(h1, · · · , hn):

[( n∑
a=1

∂

∂ha

)p
R(h1, · · · , hn)

]
ha=h

= ∂p

∂hp
[h 7→ R(h, h, · · · , h)],

exp
(
ω

2
( n∑

a=1
∂a

)2
)

[R(h1, · · · , hn)]ha=h = e
ω
2

∂2
∂h2R(h, · · · , h) = γω ⋆ [h 7→ R(h, · · · , h)].

(125)

Let us now come back to eq. (124). We separate the term i = 0, and we have, with eq. (123):

exp
(

1
2

k∑
i=0

(qi − qi−1)
r∑

a,b=1
(J(r)

mi−1)ab∂a∂b

)[
r∏

c=1
γ1−qk

(hc)
]

h=0

= exp
(
q0
2
(∑

a

∂a

)2
)

[Ξ(h)]h=0 = γq0 ⋆ [h 7→ Ξ(h, · · · , h)]h=0, (126)

with Ξ(h) defined as:

Ξ(h) := exp
(

1
2

k∑
i=1

(qi − qi−1)
r∑

a,b=1
(J(r)

mi−1)ab∂a∂b

)[
r∏

c=1
γ1−qk

(hc)
]
.

Note that Ξ(h) factorizes over the inner diagonal blocks of size m0, and we have Ξ(h, · · · , h) =
ζ(h)r/m0 , with

ζ(h) := exp
(

1
2

k∑
i=1

(qi − qi−1)
r/m0∑
a,b=1

(J(r/m0)
mi−1/m0

)ab∂a∂b

)[
m0∏
c=1

γ1−qk
(hc)

]
hc=h

. (127)

Therefore, putting it back into eq. (126) and using eq. (125), we have:

exp
(

1
2

k∑
i=0

(qi − qi−1)
r∑

a,b=1
(J(r)

mi−1)ab∂a∂b

)[
r∏

c=1
γ1−qk

(hc)
]

h=0

= [γq0 ⋆ ζ
r/m0 ](h = 0),

with ζ(h) defined in eq. (127). This procedure can then be repeated iteratively on the diagonal blocks,
all the way to the innermost ones. Eq. (124) then becomes:

− 1
2 log det Q = log

[
(2π)r/2 γq0 ⋆ g

r/m0(m0, h = 0)
]
, (128)
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with the functions g(mi, h) iteratively defined as:{
g(mk = 1, h) = γ1−qk

(h),
g(mi−1, h) = γqi−qi−1 ⋆ g

mi−1/mi(mi, h).
(129)

We now take the k → ∞ (Full RSB) limit in eq. (129). In this limit we can approximate any function
q(x) (see Fig. 3), and taking for (mi)k

i=0 a regular grid on x ∈ [0, 1], we have m0 → 0, mk−1 → 1,
and for all i = 0, · · · , k − 1, we have mi → x and mi − mi−1 = dx. Moreover qk → q(1), q0 → q(0),
and qi+1 − qi = q̇(x)dx. We sometimes also use the notation qm = q(0), qM = q(1). To make things
clearer, we will denote derivatives w.r.t. x with dots, and the ones w.r.t. h with the usual prime. The
second line of eq. (129) becomes, at first order in dx (recall the crucial eq. (123)), for x ∈ (0, 1):

g(x, h) − dx ġ(x, h) = e
q̇(x)

2 dx ∂2
h

[
g − dx

x
g log g

]
(x, h) =

(
1 + q̇(x)

2 dx ∂2
h

)[
g − dx

x
g log g

]
(x, h).

Comparing the terms at first order in dx, we reach the PDE:

ġ(x, h) = − q̇(x)
2 g′′(x, h) + 1

x
g log g(x, h), x ∈ (0, 1). (130)

It is convenient to rewrite eq. (130) in terms of f(x, h) := (1/x) log g(x, h), which yields the Parisi
PDE : 

f(1, h) = log γ1−q(1)(h),

ḟ(x, h) = − q̇(x)
2
[
f ′′(x, h) + xf ′(x, h)2], x ∈ (0, 1).

(131)

The boundary condition in the first line was given by eq. (129): g(1, h) = γ1−q(1)(h).

Remark: universality of the Parisi PDE – As can be already hinted by the calculation above
and the method of [Dup81], the Parisi PDE described in eq. (131) is actually extremely general: the
specificities of the term that we wish to compute only appear in the boundary conditions at x = 1,
while the evolution equation is only dependent on the ultrametric structure of the problem. We will
see a clear example of this when computing the energetic contribution to the free entropy.

The r → 0 limit – Taking the r → 0 limit in eq. (128) yields finally:

−1
2∂r[log det Q]r=0 = log 2π

2 + γqm ⋆ f(0, h = 0).

Solution to the Parisi PDE for the entropic contribution – Fortunately, with the boundary
condition that we have here, the Parisi PDE of eq. (131) is analytically solvable. Indeed g(x, h) always
remains (up to a scaling) a centered Gaussian function of h, or equivalently we can look for a solution
in the form

f(x, h) = 1
x

logC(x) + 1
x

log γω(x)(h),

with ω(1) = 1 − q(1) and C(1) = 1. This yields after some algebra simple ODEs on ω,C that are
easily verified to be solved by:

ω(x) = 1 − xq(x) −
∫ 1

x q(u)du
x

= λ(x)
x

,

logC(x) = x

2

∫ 1

x

du
u2 [1 + log 2πω(u)].

We took the notation λ(x) defined in eq. (48). In particular, for every x ∈ (0, 1), we have:

γqm ⋆ f(x, h = 0) = 1
2

∫ 1

x

du
u2

[
1 + log 2πλ(u)

u

]
− 1

2x log
[
2πλ(x)

x

]
− qm

2λ(x) .
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We can take the limit of this equation as x → 0. With our notations, we have λ(0) = 1 − ⟨q⟩,
λ(1) = 1 − qM and λ̇(q) = −uq̇(u). By integration by parts, we reach:

γqm ⋆ f(x, h = 0) = 1
2

∫ 1

x

du
u

[−uq̇(u)
λ(u) − 1

u

]
− 1

2[1 + log 2π(1 − qM )] + 1
2x − qm

2λ(x) ,

= −1
2

∫ 1

x
du q̇(u)
λ(u) − 1

2 log 2π(1 − qM ) − qm

2λ(x) .

Final result for the entropic contribution – Therefore, taking the limit x → 0, we have

∂r[log det Q]r=0 = − log 2π − 2γqm ⋆ f(0, h = 0) = log(1 − qM ) + qm

1 − ⟨q⟩
+
∫ 1

0
du q̇(u)
λ(u) . (132)

Note that eq. (132) is also equivalent to a formula given in Appendix II of [MP91] as can be seen by
integration by parts:

∂r
[
log det Q

]
r=0 = log(1 − ⟨q⟩) + qm

1 − ⟨q⟩
−
∫ 1

0

dx
x2 log λ(x)

1 − ⟨q⟩
. (133)

In the IPP, one uses λ(0) = 1 − ⟨q⟩, λ(1) = 1 − qM , and λ(u) = λ(0) + O(u2).

E.2 Energetic contribution

The second part of the free entropy is the energetic contribution, i.e. αG2,r(Q), with

G2,r(Q) := log
∫
Rr

dudv
(2π)r

e
− 1

2
∑

a,b
Qabvavb−β

∑r

a=1 θ(ua)+i
∑r

a=1 uava

.

Again using the identity of eq. (120), we have:

G2,r(Q) = log
∫
Rr

dudv
(2π)r

e−β
∑r

a=1 θ(ua)+i
∑r

a=1 uava

e
1
2
∑

a,b
Qab∂a∂b

[
r∏

a=1
e−ivaha

]
h=0

,

= log e
1
2
∑

a,b
Qab∂a∂b

[
r∏

a=1
e−β

∑r

a=1 θ(ha)
]

h=0

.

One can notice that this equation is extremely similar to eq. (122), but the function δ(h) has been
replaced with e−βθ(h). However, the whole procedure that we described above to obtain the Parisi
PDE does not change at all, since it did not depend on the specifics of this function: the PDE itself
remains the same, only the boundary condition at x = 1 will be different. In the end, this yields:

∂r[G2,r(Q)]r=0 = γq(0) ⋆ f(x = 0, h = 0),

with f(x, h) given as the solution to the Parisi PDE with specific boundary condition at x = 1:
f(1, h) = log[γ1−q(1) ⋆ e

−βθ](h),

ḟ(x, h) = − q̇(x)
2
[
f ′′(x, h) + xf ′(x, h)2], x ∈ (0, 1).

(134)

Note that one can equivalently write this PDE in terms of the parameter q rather than x by a change
of variable q = q(x), as described e.g. in [Urb18].

53



E.3 Recovering the RS result from the full RSB equations

In this paragraph we show that eq. (53) is equivalent to eq. (33). We denote q0 = q coherently with
the RS computation. One computes easily that

γ1−q ⋆ e
−βθ(h) = 1 − (1 − e−β)H

( −h√
1 − q

)
.

In particular, we have: [
γ1−q ⋆ e

−βθ
]′

(h) = 1 − e−β

√
1 − q

H ′
( −h√

1 − q

)
.

Therefore eq. (53) reads:

q

(1 − q)2 = α

∫
dh e

− h2
2q

(1 − q)
√

2πq

{ (1 − e−β)H ′
(

−h√
1−q

)
1 − (1 − e−β)H

(
−h√
1−q

)}2

,

or equivalently:

q

1 − q
= α

∫
Dξ
{ (1 − e−β)H ′

(
ξ
√

q
1−q

)
1 − (1 − e−β)H

(
ξ
√

q
1−q

)}2

. (135)

Since H ′(x) = −e−x2/2/
√

2π, letting f(ξ) := 1 − (1 − e−β)H[ξ
√
q/(1 − q)] we can rewrite eq. (135)

and use an integration by parts:

q

1 − q
= −α(1 − e−β)

√
1 − q

q

∫
dξ e

− ξ2
2(1−q)

2π
[

− f ′(ξ)
f(ξ)2

]
,

= −α(1 − e−β)
√

1 − q

q

∫
dξ e

− ξ2
2(1−q)

2π
ξ

1 − q

1
f(ξ) ,

= α(1 − e−β)
√

1
q(1 − q)

∫
Dξ

ξH ′
(
ξ
√

q
1−q

)
1 − (1 − e−β)H

(
ξ
√

q
1−q

) ,
which is equivalent to eq. (33).

F Technicalities of the algorithmic FRSB procedure
F.1 Technicalities of the derivation of the algorithmic procedure

We give here some details on the arising of eqs. (59)-(62). Recall that here all the quantities are
considered at zero-temperature, with the scaling of eq. (54).

• Eq. (59) is a general relation between q−1, f and Λ when eq. (51) is satisfied. It is explained for
instance in [FPS+17], see eq. (B.4).

• Eq. (60) is a consequence of the general relation between q−1(x) (the function corresponding to the
overlap matrix Q−1) and q(x) in the full RSB ansatz, which is (see e.g. eq. (B.9) in [FPS+17]):

1
λ(x) − 1

λ(0) = −xq−1(x) +
∫ x

0
dy q−1(y) and λ(0) =

√
− q(0)
q−1(0) .

Discretization of this relation yields eq. (60).
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• One can invert eq. (48) to obtain q(x) as a function of λ(x) via:

q(x) = 1 − λ(x)
x

+
∫ 1

x

dy
y2 λ(y).

It is the discretization of this equation that yields eq. (61).

• Eq. (62) is a consequence of the boundary condition of eq. (51a) taken at x = 1, followed by a
change of variable from x to q in the parameters of the functions Λ, f, λ. After these procedures,
eq. (51a) becomes, for the unrescaled variables and any β ≥ 0:

q(0)
λ(q(0))2 +

∫ q(1)

q(0)

dp
λ(p)2 = α

∫
dhΛ(q(1), h)f ′(q(1), h)2.

After taking the β → ∞ limit, this yields for the variables that are rescaled as β → ∞ according to
eq. (54) (dropping the ∞ subscript):

q0
λ(q0)2 +

∫ 1

q0

dp
λ(p)2 = α

∫
dhΛ(1, h)f ′(1, h)2.

Moreover, f ′(1, h) = −(h/χ)1{h ∈ (0,
√

2χ)}. Therefore, rescaling then t = h/
√

2χ (and using the
abusive notation Λ(1, h) = Λ(1, t)) we have:

q0
λ(q0)2 +

∫ 1

q0

dp
λ(p)2 = 23/2α

√
χ

∫ 1

0
dtΛ(1, t) t2. (136)

We focus on the left-hand side of this last equation, in the k-RSB ansatz. We first use that
λ(q) = χ +

∫ 1
q dp x(p), a simple consequence of eq. (48), after change of variables and rescaling.

Therefore, we have:

∫ 1

q0

dp
λ(p)2 =

k−1∑
i=0

∫ qi+1

qi

dp[
χ+

∑k−1
j=i+1(qj+1 − qj)xj + (qi+1 − p)xi

]2 ,
=

k−1∑
i=0

(qi+1 − qi)[
χ+

∑k−1
j=i+1(qj+1 − qj)xj

][
χ+

∑k−1
j=i (qj+1 − qj)xj

] .
Using the convention q−1 = 0 and x−1 = 0, we therefore reach from eq. (136) that:

k∑
i=0

(qi − qi−1)[
χ+

∑k
j=i+1(qj − qj−1)xj−1

][
χ+

∑k
j=i(qj − qj−1)xj−1

] = 23/2α
√
χ

∫ 1

0
dtΛ(1, t) t2,

which is precisely eq. (62).

F.2 Numerical results of the procedure

In Fig. 6 we present the results of typical iterations of the algorithmic procedure described above.
For different values of α and the RSB parameter k we show the evolution of the estimates of f⋆(α),
the susceptibility χ, and the function q(x), along the iterations. In all the cases implemented we see
power-law convergence to the solution, and very consistent results when varying the parameters used
in the algorithm (in particular increasing k).
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Figure 6: Illustration of the convergence of the Full RSB procedure for different values of α, for
k = 200, c = 30, H = 40 (see Section F.3 for the definitions of H, c). On the left we show the
convergence of χ and f⋆(α) along the iterations, as well as (in inset) the evolution of the error
∥qt −qt−1∥∞ up to the threshold 10−4 we took for convergence. On the right, we show the evolution of
q(x) along the iterations. We find very consistent behaviors when varying the parameter k, indicating
that our simulations indeed capture well the Full RSB limit. We use xmax = 10, well validated by the
functions q(x) we obtain.
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F.3 Some details on the implementation of convolutions

F.3.1 Convolutions via DFTs

In order to implement the algorithmic procedure of Section 3.2, we use a discrete Fourier transform
approach. We refer to [Get13] for a review on Gaussian convolution algorithms. The goal is to compute
the convolution of a centered Gaussian γω with variance ω > 0 and a function f(h):

γω ⋆ f(h) =
∫

dz γω(z) f(h− z).

We fix N ∈ N⋆ and H > 0, and we consider a grid hµ = µH/N , with µ ∈ {−N, · · · , N}. In order to
leverage analytical formulas for the DFT of the Gaussian, we use a Shannon-Whittaker interpolation
for f , i.e. we approximate f as:

f(h) ≃
N∑

ν=−N

fν φ
[Nh
H

− ν
]
,

with φ(x) = sinc(x) = sin(πx)/(πx). Since φ(ν) = 0 for all ν ∈ Z⋆, and φ(0) = 1, we have fµ = f(hµ).
This approximation transfers into an approximation for γω ⋆ f as:

γω ⋆ f(h) ≃
N∑

ν=−N

fν (γω ⋆ φν)(h),

with φν(h) := φ(Nh/H−ν). Thus, we have, with (γω⋆f)µ = γω⋆f(hµ), and using φν(x) = φ0(x−hν):

(γω ⋆ f)µ ≃
N∑

ν=−N

fν(γω ⋆ φν)µ =
N∑

ν=−N

fν(γω ⋆ φ0)µ−ν . (137)

Note that we naturally extended (γω ⋆ φ0)µ to all µ ∈ Z, since these coefficients have an analytic
expression. In the same way, we extend fν = 0 if |ν| > N . For a general sequence (fν)N

ν=−N , we define
its Discrete Fourier Transform (DFT) as, for k ∈ {0, · · · , 2N}:

f̂k =
N∑

µ=−N

e− 2πik(µ+N)
2N+1 fµ = e− 2πikN

2N+1

N∑
µ=−N

e− 2πikµ
2N+1 fµ,

fµ = 1
2N + 1e

2πikN
2N+1

2N∑
k=0

e
2πikµ
2N+1 f̂k.

(138)

Taking the DFT of eq. (137), one finds:

γ̂ω ⋆ fk ≃ e
2πikN
2N+1 f̂k (γ̂ω ⋆ φ0)k. (139)

Moreover, we define the Fourier transform as f̃(ξ) :=
∫

dx f(x) e−2iπxξ, and have then easily φ̃0(ξ) =
(H/N)1{|ξ| ≤ N/(2H)}. The Fourier transform of the convolution is f̃ ⋆ g(ξ) = f̃(ξ)g̃(ξ). This yields,
via inverse Fourier transformation:

(γω ⋆ φ0)µ = H

N

∫
|ξ|≤ N

2H

dξ e−2π2ωξ2+ 2iπHµξ
N =

∫
|ξ|≤ 1

2

dξ e− 2π2N2ωξ2

H2 +2iπµξ.

Therefore, we have by eq. (138):

(γ̂ω ⋆ φ0)k = e− 2πikN
2N+1

∫
|ξ|≤ 1

2

dξ e− 2π2N2ωξ2

H2
N∑

µ=−N

e− 2πikµ
2N+1 +2iπµξ.
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Taking N ≫ 1, the term on the right is well approximated by the Dirac comb:

N∑
µ=−N

e− 2πikµ
2N+1 +2iπµξ ≃

∑
n∈Z

δ
(
ξ − k

2N + 1 − n
)
.

However, since |ξ| ≤ 1/2 and k ∈ {0, · · · , 2N}, this implies:

(γ̂ω ⋆ φ0)k ≃
N→∞

e− 2πikN
2N+1 ×


e

− 2π2N2ω
H2

[
k

2N+1

]2

if k ≤ N,

e
− 2π2N2ω

H2

[
k

2N+1 −1
]2

if k > N.

Plugging it back into eq. (139), we finally obtain the formula we use for the DFT of the convolution
γω ⋆ f :

γ̂ω ⋆ fk ≃ f̂k ×


e

− 2π2N2ω
H2

[
k

2N+1

]2

if k ≤ N,

e
− 2π2N2ω

H2

[
k

2N+1 −1
]2

if k > N.

F.3.2 Taking a large enough value of N

Note that in order for the Gaussian convolutions to be numerically well-defined, we need the spacing
in the grid we take on h to be much smaller than the standard deviation of the Gaussians, that is we
need for any (q(x), q(x) + dx q̇(x)):

H

N
≪
√

dx q̇(x)
2χ .

Note that, as shown in [FPS+17], and as one can also verify from Fig. 4, we have the following scaling
as x → ∞: q(x) ∼ 1 −A/x2, with A > 0. Therefore, q̇(xmax) ∼ 2A/x3

max. Since we take dx ∼ xmax/k
in our numerical procedure, we have that in order for our procedure to be valid we need

H

N
≪
√

A

kχx2
max

.

In practice, we find typically χ/A ∼ 10−1, so that we will impose N ≫ N0, with

N0 :=
√
kH xmax.

In practice, we consider N = cN0 (we often take c = 30) with a constant c ≫ 1 in order to be well
into the regime N ≫ N0, and still have a reasonable computational time.

F.4 Bounds on the injectivity threshold

Let us detail the results of our numerical computation of αFRSB
inj , illustrated in Fig. 5. For a given

value of all parameters of the algorithm detailed in Section 3.2, we ran Brent’s method to find the
zero of f⋆

FRSB(α) − 1, with a tolerance of 10−4 on the value of α. For all values of α, we iterated
the FRSB equations until ∥qt+1 − qt∥∞ ≤ ϵ = 10−5. We ran this procedure for different values of
k ∈ {30, 50, 100, 200}, xmax ∈ {10, 11, 12, 13, 14, 15}, H ∈ {40, 60}, and c = 30 (recall that H and c
are defined in Section F.3). In Fig. 5 the runs with different values of H and c are aggregated.
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G “Escape through a mesh” theorem: an alternative proof
of Theorem 1.8

In this appendix, we provide an alternative proof of Theorem 1.8 using Gordon’s “escape through a
mesh” theorem [Gor88]. This seminal result establishes upper bounds on the probability of a random
set intersecting a fixed set. In an earlier version of this paper, we applied Gordon’s “mesh” theorem to
derive a highly suboptimal bound, αinj ≲ 23.54, due to loose estimates in our calculations. During the
review process, however, we refined this approach, ultimately achieving the same replica-symmetric
upper bound as that obtained through Gordon’s min-max inequality.
For m ≥ 1, we denote am := E[∥g∥2], for g ∼ N (0, Im). One can easily show the bound [Ver18]:

m√
m+ 1

≤ am ≤
√
m. (140)

Moreover, for a closed set S ⊆ Rm, we define its Gaussian width as

ω(S) := Emax
x∈S

[g · x].

We are now ready to state Gordon’s “escape through a mesh” theorem.

Theorem G.1 ([Gor88])
Let S ⊆ Sm−1 be a closed subset such that ω(S) < am−n. Let V be a uniformly-sampled random
n-dimensional subspace of Rm. Then

P
[
V ∩ S = ∅

]
≥ 1 − 7

2 exp
{

− 1
18
(
am−n − ω(S)

)2}
.

Applying this theorem to Proposition 1.1, we directly reach
Corollary G.2
Assume that am−n −ω(Cm,n ∩Sm−1) → ∞ as m,n → ∞. Then pm,n → 1, i.e. φW is injective w.h.p.

We can now state the core of our argument, which is an upper bound for the Gaussian width ω(Cm,n ∩
Sm−1), and is proven in Appendix G.1.
Proposition G.3
Assume α > 2. Then

lim sup
m→∞

ω(Cm,n ∩ Sm−1)2

n
≤ α

(
1 −

∫ tα

0
Dxx2

)
, (141)

where recall that Dx := e−x2/2dx/
√

2π is the standard Gaussian measure. Moreover, tα is the
unique value of t ≥ 0 such that ∫ ∞

tα

Dx = 1
α
. (142)

Notably – as discussed below – we expect that our proof can be improved by classical concentration
arguments, to yield that eq. (141) holds as an equality for lim(ω2/n), although we do not require it to
prove Theorem 1.8. Since am−n ≥

√
α− 1

√
n(1−o(1)) by eq. (140), Proposition G.3 and Corollary G.2

imply that pm,n → 1 whenever

α− 1 > α

(
1 −

∫ tα

0
Dxx2

)
,
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i.e. whenever α > αmesh
inj with αmesh

inj the solution to
α

∫ tα

0
Dxx2 = 1,∫ ∞

tα

Dx = 1
α
.

(143)

We recognize in eq. (143) the replica-symmetric threshold prediction of eqs. (36) and (37), with
t =

√
2χRS. Thus, αmesh

inj = αRS
inj , and this ends our alternative proof of Theorem 1.8.

G.1 Proof of Proposition G.3

We denote ω = ω(Cm,n ∩ Sm−1). By weak duality, we have

ω = E sup
x∈Cm,n

inf
λ∈R

[
g · x − λ

2 (∥x∥2 − 1)
]
,

≤ E inf
λ∈R

sup
x∈Cm,n

[
g · x − λ

2 (∥x∥2 − 1)
]
,

≤ E inf
λ>0

sup
x∈Cm,n

[
g · x − λ

2 (∥x∥2 − 1)
]
.

An element x ∈ Cm,n can be parametrized by a subset S ⊆ [m] with |S| < n, and a set of values {xµ},
with xµ > 0 for µ ∈ S and xµ ≤ 0 for µ /∈ S. This yields:

ω ≤ E inf
λ>0

max
S⊆[m]
|S|<n

[λ
2 +

∑
µ∈S

sup
x>0

(
xgµ − λ

2x
2
)

+
∑
µ/∈S

sup
x≤0

(
xgµ − λ

2x
2
)]
,

≤ E inf
λ>0

max
S⊆[m]
|S|<n

[λ
2 + 1

2λ
∑
µ∈S

g2
µ1{gµ ≥ 0} + 1

2λ
∑
µ/∈S

g2
µ1{gµ ≤ 0}

]
,

≤ E
[(

max
S⊆[m]
|S|<n

[∑
µ∈S

g2
µ1{gµ ≥ 0} +

∑
µ/∈S

g2
µ1{gµ ≤ 0}

])1/2]
.

We used that infλ>0[λ+T/λ] = 2
√
T , for T > 0. Since the law of g is invariant under permutation of

the indices, we can assume g1 ≥ g2 ≥ · · · ≥ gp ≥ 0 > gp+1 ≥ · · · ≥ gm, with p = p(g) ∈ [m]. It is then
straightforward to check that:

max
S⊆[m]
|S|<n

[∑
µ∈S

g2
µ1{gµ ≥ 0} +

∑
µ/∈S

g2
µ1{gµ ≤ 0}

]
=

n−1∑
µ=1

g2
µ1{gµ ≥ 0} +

m∑
µ=p+1

g2
µ.

Therefore

1√
n
ω ≤ E

√√√√ 1
n

n−1∑
µ=1

g2
µ1{gµ ≥ 0} + 1

n

m∑
µ=p+1

g2
µ ≤

√√√√ 1
n
E

n−1∑
µ=1

g2
µ1{gµ ≥ 0} + 1

n
E

m∑
µ=p+1

g2
µ. (144)

Note that – although it is not needed in what follows – a careful analysis based on concentration
would show that the first and second inequalities of eq. (144) actually hold as equalities, up to a
multiplicative term 1 + o(1) as n,m → ∞. The second term inside the square root in eq. (144) can be
computed easily:

1
n
E

m∑
µ=p+1

g2
µ = 1

n
E

m∑
µ=1

g2
µ1{gµ < 0} = m

2n −−−−→
m→∞

α

2 . (145)
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We now show:

lim
m→∞

1
m
E

n−1∑
µ=1

g2
µ1{gµ ≥ 0} =

∫ ∞

tα

Dxx2 = 1
2 −

∫ tα

0
Dxx2, (146)

with tα defined in eq. (142). Combining eqs. (145) and (146) in eq. (144) ends the proof of Propo-
sition G.3. To prove eq. (146) we rely on the following technical lemma, proven in Appendix G.2.

Lemma G.4

Let m ≥ 1, and z1, · · · , zm
i.i.d.∼ N (0, 1). Denote as g1 ≥ · · · ≥ gm the non-increasing ordering of

(zµ)m
µ=1. For β ≥ 1, let tβ ∈ R be the unique solution to β

∫∞
tβ

Dx = 1. Then, for any β ∈ [1,∞), if
n ∈ {1, · · · ,m} with m/n → β as m → ∞:

(i) gn
a.s.−−−−→

m→∞
tβ.

(ii) We have

lim
δ↓0

lim sup
m→∞

1
m
E

 ∑
(1−δ)n≤µ≤n

g2
µ

 = 0.

By the law of large numbers and the triangular inequality,∣∣∣∣∣∣ 1
m
E

n−1∑
µ=1

g2
µ1{gµ ≥ 0} −

∫ ∞

tα

Dxx2

∣∣∣∣∣∣ ≤ 1
m
E

∣∣∣∣∣∣
n−1∑
µ=1

g2
µ1{gµ ≥ 0} −

m∑
µ=1

g2
µ1{gµ ≥ tα}

∣∣∣∣∣∣+ o(1),

≤ 1
m
E

n−1∑
µ=1

g2
µ1{gµ < tα}

︸ ︷︷ ︸
:=I1

+ 1
m
E

m∑
µ=n

g2
µ1{gµ ≥ tα}︸ ︷︷ ︸
:=I2

+o(1).

We now show that I1, I2 → 0. Letting δ > 0 and Aδ := {g⌈(1−δ)n⌉ < tα}, then P[Aδ] → 0 by (i) of
Lemma G.4. By the Cauchy-Schwarz inequality:

I1 = 1
m
E

n−1∑
µ=1

g2
µ1{gµ < tα}1{Aδ} + 1

m
E

n−1∑
µ=1

g2
µ1{gµ < tα}1{g⌈(1−δ)n⌉ ≥ tα},

≤
√
P[Aδ] [E(∥g∥4)]1/2

m
+ 1
m
E

n∑
µ=⌈(1−δ)n⌉

g2
µ.

We then deduce that I1 → 0 as m → ∞ since E(∥g∥4) = O(m2) and by taking the δ ↓ 0 limit using
(ii) of Lemma G.4. The proof that I2 → 0 follows exactly the same lines. Together, this implies
eq. (146), which ends the proof of Proposition G.3 as detailed above.

G.2 Proof of Lemma G.4

We start with (i). Let µ̂g := (1/m)
∑m

µ=1 δzµ = (1/m)
∑m

µ=1 δgµ . By definition of gn, µ̂g((gn,∞)) =
(n− 1)/m. If ξ ∼ N (0, 1), by the Glivenko-Cantelli theorem:

|µ̂g((gn,∞)) − P[ξ > gn]| ≤ sup
θ∈R

|µ̂g((θ,∞)) − P[ξ > θ]| a.s.−−−−→
m→∞

0.

Therefore since n/m → 1/β:

P[ξ > gn] =
∫ ∞

gn

Dx a.s.−−−−→
m→∞

1
β
.
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Since t 7→
∫∞

t Dx is a smooth and strictly decreasing function, this implies that gn
a.s.−−−−→

m→∞
tβ.

We now prove (ii). For any t ∈ (0, 1) we have by Jensen’s inequality and the union bound:

1
m
E

∑
(1−δ)n≤µ≤n

g2
µ ≤ 2

tm
logE exp

{
t

2
∑

(1−δ)n≤µ≤n

g2
µ

}
≤ 2
tm

logE max
I⊆[m]
|I|=δn

exp
{
t

2
∑
µ∈I

g2
µ

}
,

≤ 2
tm

log
∑

I⊆[m]
|I|=δn

E exp
{
t

2
∑
µ∈I

g2
µ

}
,

≤ 2
tm

log
[(

m

δn

)
(1 − t)−δn/2

]
.

Taking t = 1/2 and using the bound
(p

k

)
≤ 2pH(k/p) with H(q) := −q log q − (1 − q) log(1 − q) the

binary entropy function, yields (recall that m/n → β):

1
m
E

∑
(1−δ)n≤µ≤n

g2
µ ≤ 4H

(
δ

β

)
log 2 + 2δ

β
log 2 + o(1).

Taking the limit m → ∞ followed by δ → 0 ends the proof.
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