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Part I: Fitting ellipsoids to random points



Fitting ellipsoids to random points

Does     exist ?

Ellipsoid Fitting Property

Principal axes of                   Eigenspaces of
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❖ Low-rank matrix decomposition

❖ Independent Components Analysis 

❖ Discrepancy of random matrices

❖ Neural networks with quadratic activations 

Saunderson & al ’12 ; ’13 ; ’13 

Some motivations

Podosinnikova & al ’19

More on that later !

Potechin & al ‘22



The ellipsoid fitting conjecture

Open conjecture 

Saunderson, James, et al. SIAM Journal 
on Matrix Analysis and Applications 2012

: Solutions exist: No solutions: No simulation

Ellipsoid fitting is a semidefinite program

Convex problem + efficient solvers
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The ellipsoid fitting conjecture: what is known

“spectral” constraint

“disordered” model

We see EFP as a Random Constraint Satisfaction Problem

Progress on lower bounds Saunderson & al ‘13 Potechin & al ’22 
Kane & al ‘22

Bandeira, M., Mendelson 
& Paquette ‘ 23 ; Hsieh & 
al ‘23 ; Tulsiani & Wu ‘23 

Conjecture

This talk 

…

: Rigorous

Dimension counting
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Volume of solutions / “Partition function”

Set of ellipsoid fits

Statistical physics of ellipsoid fitting

Ellipsoid Fitting Property
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[M. & Kunisky ‘23]Replica calculation of 

• Analytical derivation of the threshold  

• Shape (spectrum) of typical ellipsoid fits

• Extensions to non–Gaussian vectors 

Connections to “HCIZ” integrals in random matrix theory [Matytsin ’94 ; Guionnet&al’02]



• “Gaussian universality” lemma :

Gaussian matrix

I:

uniformly randomly oriented

[Goldt & al ‘22, Montanari & Saeed ‘22, 
Hu & Lu ‘22, …]

Mathematical physics for ellipsoid fitting   [M. & Bandeira ’23]

Two-steps proof

II:

Extensions of Gordon’s min-max theorem 
[Gordon ‘88, Amelunxen & al’14] 

• Random convex geometry tools for

Theorem: The problem associated to        is  
• SAT (whp) if

• UNSAT (whp) if  

Gaussian width
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Theorem 

EFP 

Mathematical physics for ellipsoid fitting   [M. & Bandeira ’23]

“Gaussian universality” lemmaI: II: Random convex geometry tools

EFP      : EFP EFP      
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➢ Strengthen proof to exact ellipsoid fitting ? 

➢ Extension to other high-dimensional semidefinite programs ? 

➢ What does it have to do with learning in neural networks ?? 



Part II : Learning in neural networks
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A two-layer neural network with quadratic activation [M., Troiani, Martin, Krzakala, Zdeborová ’24]

Learning from data

Cui&al ‘23 • If                   , the optimal error can be reached by linear regression…

• But there are              weights to learn…  

High-dimensional limitTeacher network

What happens for

Bayes-optimal generalization error
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Replica method

The rigorous path

All roads lead to Rome
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Taking the long road

Can be generalized to noisy pre-activationsStep 0: 

Goal: planted “ellipsoid fitting-like” problem

Step 1 : “Gaussian universality” 

Universality of Bayes-optimal 
generalization error 

Same scaling regime as ellipsoid fitting ! 

Leverages our ellipsoid fitting 
analysis [M. & Bandeira ’23] Gaussian matrix

from from
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Taking the long road

Step 2 :

Step 3 :

Just a (generalized) linear model on      , with…

➢ Gaussian data ➢ Wishart prior

Generalization of 
[Barbier & al ’19]

“Replica-symmetric” formula for 

[Bun & al ‘16 ; M., Krzakala & al 
’22 ; Pourkamali & al ‘23 ; 

Semerjian ‘24 ; …]

❑ The optimal estimator is spectral :

❑ Analytical expressions for          and the asymptotic MMSE   

Involves … 
Scalar estimation problem involving 

Denoising problem : 

10

Gaussian (GOE) matrix



Taking the long road

➢ Easy-to-evaluate formula for the Bayes-optimal 
generalization error

➢ Not a fully rigorous theorem, some mathematical 
subtleties in Steps 1 and 2

Combining all steps…

Marchenko-Pastur Semicircle

solves the self-consistent equation
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Optimal generalization error Intensive width                  ;    Sample complexity 

Matches a naïve “counting argument”

Perfect recovery threshold

Noiseless setting : 
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The GAMP-RIE algorithm
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(Wishart)

: Noise channel

GAMP RIE

An explicit easy-to-implement polynomial-time algorithm

Universality                      also holds “at the level of algorithms”

Informal hypothesis

Generalized linear model 
w. Gaussian data

Each GAMP iteration solves

[Bun & al ’16 ; …]
Rotationally-Invariant Estimator (RIE)

Known “optimal shrinkage” function

[Donoho&al ’09 ; 
Rangan ’11 ; …]

Generalized Approximate Message Passing (GAMP)

MSE-optimal algorithm



Absence of hard phase Intensive width                  ;    Sample complexity 

For                     there is a hard phase !

No computational-to-statistical gap / 
hard phase

cf. [Barbier & al ’19] for 
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Gradient descent : noiseless case

➢ For             (             ), the problem is convex 

over

➢ For           , non-convex problem. Still, 

naïve GD reaches optimal error !

, where

The landscape of            trivializes in this regime 
[Du & Lee ’18 ; Soltanolkotabi & al ‘18 ; Venturi & al ‘19]

For any    , AGD seems to reach the 
Bayes-optimal MMSE
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No longer true for noisy pre-activations. 

AGD = Averaged over 
many initializations

Intensive width                  ;    Sample complexity 



Summary

❖ Other activations ? (beyond quadratic) 
Other architectures ? 

❖ Theoretical analysis of GD properties ?

❖ … 

1. Analytical formula for the Bayes-optimal generalization error. 

2. Optimal algorithm (GAMP-RIE), no computational-statistical gap. 

3. (Averaged) Gradient descent seems to sample from the posterior 
for noiseless pre-activations, even in the non-convex regime             !

;
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THANK YOU !

Not true for noisy case
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