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Learning from long sequences of high-
dimensional tokens, and extensive-width 

neural networks



❖ Exact threshold for approximate ellipsoid fitting of random points  (arXiv:2310.05787) 

❖ Bayes-optimal learning of an extensive-width neural network from quadratically many samples 
(arXiv:2408.03733, NeurIPS ’24)

❖ Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens (arXiv:2410.03733)
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Solvable models of learning

High-dimensional statistics / machine learning

Data Model

Algorithms

Example: language modeling

RNN / 
Transformer 

/ …

Sequences of 
tokens

Gradient descent 
(and variants)

A rigorous theory describing learning in these models
Objectives:

Build solvable models that retain the key ingredients

What is the simplest exactly solvable model that exhibits advantages in 
learning from long sequences of high-dimensional tokens ?

Why is it advantageous to present 
the data as long sequences of 

high-dimensional tokens ?
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Bilinear Sequence Regression (BSR)

The most basic regression model is 

What is the simplest exactly solvable model that exhibits advantages in 
learning from long sequences of high-dimensional tokens ?

The simplest regression model for vectorized data                is (generalized) linear regression                

rank/width of the model

: length of the sequences

: embedding dimension of tokens
: sequence of        -dimensional tokens

Also called Matrix Sensing

Bilinear Sequence Regression (BSR)

Like linear regression is a base model for non-sequential data, BSR is a toy base model for sequences of 
tokens 

Erba, Troiani, Biggio, M. & Zdeborová ‘24
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: token space

: sequence space

Recht&al ’10, Gunasekar&al ’17, …



Setting

Learning from data

Teacher-student

Scalings

Low-rank/width [Schülke&al ‘16]
Optimal gen. error, and 
optimal algorithm (AMP)

High-dimensional

Long sequences of high-
dimensional tokens 

Number of samples

For non-trivial gen. 
error

Extensive-width

Related to extensive-
width neural networks

“Generic”

Ex: 
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Talks of Guilhem & Jean



Objectives

Training dataset 

Teacher-student model

Objectives

Bayes-optimal generalization error

❑ Sharp thresholds ? Phase transitions ?

❑ Efficiently achievable ? Hard phases ? ❑ Performance of GD-based algorithms ?

❑ Is GD an implicit nuclear-norm minimizer ? 
Gunasekar&al ‘17

Bhojanapalli&al ‘16

Comparison to minimal nuclear-norm estimator 

Recht&al ‘10

“Generic”

Ex: 
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Comparison to vectorized data ? (linear regression)



Result I : Bayes-optimal error

[Xu, M., Krzakala, Zdeborová ‘25]

❑ Easy-to-evaluate formula for the Bayes-optimal 

generalization error

❑ Derivation via the replica method of stat. physics

❑ Paper with proofs in preparation 

Scaling regime

solves the self-consistent equation

Analytical form using free probability tools
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Benaych-Georges ‘09



Derivation: a symmetric variant to BSR

Bilinear Sequence Regression (BSR)

A symmetric variant

“Extensive-width sign retrieval”

Extensive-width 2-layer NN with a 
quadratic activation 

rank-1

Example 

High-dimensional limit
Same objectives as BSR

M., Troiani, Martin, Krzakala & Zdeborová ‘24
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Cf Jean’s talk on Tuesday



Proof ideas (1)

Step 1 : “Gaussian universality” 

Universality of Bayes-optimal 
generalization error 

Wishart matrix

Developed for the analysis of 
ellipsoid fitting [M. & Bandeira ’23]

Uniform Central Limit Theorem for 
1-dimensional projections

Satisfied e.g. by                  ,                          (extensive-width sign retrieval) 

The “generic” assumption on
Gaussian matrix

Gaussian matrix

from from
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To compute           we  pretend the data is a Gaussian matrix



Proof ideas (2)

Step 2 :

Step 3 :

A (generalized) linear model on      , with…

➢ Gaussian data ➢ Wishart prior

Generalizing [Barbier 
& al ‘19]

An explicit  “replica-symmetric” formula for 

[Bun & al ‘16 ; M., Krzakala & al 
’22 ; Pourkamali & al ‘23 ; 

Semerjian ‘24 ; …]

❑ The optimal estimator is spectral :

❑ Analytical expressions for          and the asymptotic MMSE   

Involves … Scalar estimation problem involving 

Denoising problem : 

Gaussian (GOE) matrix

Combining all steps…
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[Barbier & al ‘19]:  
i.i.d. priors

Guilhem’s talk



Result II : The GAMP-RIE algorithm

GAMP RIE

An explicit easy-to-implement polynomial-time algorithm

Universality                   also holds “at the level of algorithms”

Informal hypothesis

Generalized linear model 
w. Gaussian data

[Donoho&al ’09 ; 
Rangan ’11 ; …]

Generalized Approximate Message Passing (GAMP)

MSE-optimal algorithm

(Wishart)

Example 

Similar algorithm in non-symmetric 
model (Bilinear Sequence Regression)

Non-symmetric denoising in [Troiani, Erba, 
Krzakala, M. & Zdeborová ’22]
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Each GAMP iteration solves

[Bun & al ’16 ; …]
Rotationally-Invariant Estimator (RIE)

Known “optimal shrinkage” function

Guilhem’s talk



Objectives

Bayes-optimal generalization error

Objectives

❑ Sharp thresholds ? Phase transitions ?

❑ Efficiently achievable ? Hard phases ?

Comparison to linear regression on vectorized data ?

❑ Performance of GD-based algorithms ?

❑ Is GD an implicit nuclear-norm minimizer ? 
Comparison to minimal nuclear-norm estimator 

Gunasekar&al ‘17

Bhojanapalli&al ‘16

Recht&al ‘10

Bilinear Sequence Regression (BSR) / 
Extensive-rank matrix sensing
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Bayes-optimal error

➢ Weak recovery threshold in the low-rank limit.

➢ Matches the                    , then                limiting curve.

Perfect recovery threshold

Matches a naïve “counting argument”

Low-rank limitLinear regression limit
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Rescaled



Minimal nuclear-norm estimator

Bayes-optimal perfect recovery

Perfect recovery of the minimal nuclear norm estimator

[Donoho, Gavish & Montanari ’13]

Suboptimality of the min-nuclear 
norm estimator
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Absence of hard phase

Bilinear Sequence Regression

GAMP-RIE Algorithm

Bayes-optimal error

No computational-to-statistical gap / 
hard phase in extensive-width regime

Extensive-width sign retrieval

For                    there is a hard phase !

cf. [Barbier & al ’19] for 
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Empirical performance of gradient descent

For any    , AGD seems to reach the 
Bayes-optimal MMSE

Despite non-convexity 
of the problem!

❑ Similar results in extensive-width 
phase retrieval.

❑ No longer true when adding noise 
to      .
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GAMP-RIE

Error of the Bayes-optimal (BO) estimator

BO = Error of posterior sampler

Gradient descent

Averaged Gradient descent
Averaged over many initializations

➢                 for GAMP/GD runs
➢ Random initializiation
➢ Cross-validated learning rate

Gradient descent (final training loss value)



Does GD do implicit nuclear norm regularization ? 

Suggestion: GD with small initialization has an implicit bias towards the minimal nuclear norm estimator (MNNE) 

Gunasekar, Woodworth, Bhojanapalli, Neyshabur & Srebro ‘17

What about 
overparametrized settings GD does not reach the MNNE

Norm of 
initialization

Learning rate
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Summary

Bilinear Sequence Regression (BSR)

Most basic model for learning from long 
sequences of high-dimensional tokens

1. Analytical formula for the Bayes-optimal generalization error. 

2. Optimal algorithm (GAMP-RIE), no computational-statistical gap. 

3. Gap between BO error and linear regression and MNNE

4. (Averaged) Gradient descent seems to sample from the posterior 
in the noiseless setting, despite non-convexity !

THANK YOU !
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❖ Theoretical analysis of GD properties / 
implicit regularization

❖ For extensive-width 2-layer NNs: beyond 
quadratic activation ?

❖ Overparametrization                  ? 

❖ Correlations between tokens ?

Cf Jean’s talk on Tuesday
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