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Spencer’s theorem

Random signs

Hoeffding’s inequality Union bound 

Can we beat random signings ? 

• The scaling         is optimal (up to constants) 

• Bansal ‘10: polynomial-time algorithms

Theorem (Spencer ’85) 

is sufficient for

Komlós conjecture (70s)

Digression

Best-known result

Banaszczyk ‘98

Hard result
Hoeffding’s inequality
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Theorem: 

Random Spencer: the symmetric binary perceptron

What about random vectors ? 

Aubin&al ’19 ; Abbe&al ’22 ; Gamarnik&al ’22 ; … 

Given                                             , can we find                      such that            

•  

•  

➢ There is a sharp satisfiability threshold.

➢ The annealed free energy is correct:

➢ Much more detailed properties are known: 

Structure of solution space, performance of solving algorithms, … 

Barbier&al ’24 ; El Alaoui & Gamarnik ’24 ; …
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❑ Matrix analog of the SBP

❑ Trivial bound: if            ,
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➢ Sharp satisfiability transitions ?

➢ Structure of solution space ? 

➢ Polynomial-time solving algorithms ? 
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Average-case matrix discrepancy: “Random Matrix Spencer”

What about random matrices ? 

Given                                                  , can we find                      such that            

Also introduced in [Kunisky & Zhang ’23]

❑ Matrix analog of the SBP

❑ Trivial bound: if            ,

(                             recovers the Symmetric Binary Perceptron)

Semicircle

➢ Sharp satisfiability transitions ?

Goals

This talk
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➢ Prove

Ben Arous & Guionnet ’97; 
Dean&Majumdar ’06 ’08; 

Tricomi’ 85; 
Dean&Majumdar ’06 ’08; 
Vivo&al ’07, …

Classical tools of logarithmic 
potential theory

Saff&Totik’13; Ben Arous & Guionnet ‘97
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➢ Upper bound on

➢ Discrete Laplace’s method over the overlap                       in                                                  .  

❖ Crude upper bound for    far from    :                                                           .

❖ For small   , upper bounding

Approximation of                    by smooth functions

❑ Log-Sobolev inequality for 
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➢ Explicit computation:

➢ Lower bound in Laplace’s method: 

• Upper bound on                         .
• Discrete Laplace’s method.
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Technical assumption: 
uniform continuity of             
in            as

Non-concentration of       on            .

Theorem



Failure of the second moment method

• Purple region:        provably does not concentrate on its average

• The phase diagram is more complex than in the Symmetric Binary Perceptron ! 

12
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