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Abstract

Heuristic tools from statistical physics have been used in the past to locate the phase transitions and
compute the optimal learning and generalization errors in the teacher-student scenario in multi-layer neural
networks. In this contribution, we provide a rigorous justi�cation of these approaches for a two-layers
neural network model called the committee machine, under a technical assumption. We also introduce a
version of the approximate message passing (AMP) algorithm for the committee machine that allows to
perform optimal learning in polynomial time for a large set of parameters. We �nd that there are regimes
in which a low generalization error is information-theoretically achievable while the AMP algorithm fails
to deliver it; strongly suggesting that no e�cient algorithm exists for those cases, and unveiling a large
computational gap.
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1 Introduction
While the traditional approach to learning and generalization follows the Vapnik-Chervonenkis [1] and
Rademacher [2] worst-case type bounds, there has been a considerable body of theoretical work on calculating
the generalization ability of neural networks for data arising from a probabilistic model within the framework
of statistical mechanics [3, 4, 5, 6, 7]. In the wake of the need to understand the e�ectiveness of neural
networks and also the limitations of the classical approaches [8], it is of interest to revisit the results that have
emerged thanks to the physics perspective. This direction is currently experiencing a strong revival, see e.g.
[9, 10, 11, 12].

Of particular interest is the so-called teacher-student approach, where labels are generated by feeding
i.i.d. random samples to a neural network architecture (the teacher) and are then presented to another neural
network (the student) that is trained using these data. Early studies computed the information theoretic
limitations of the supervised learning abilities of the teacher weights by a student who is given m independent
n-dimensional examples with α≡m/n= Θ(1) and n → ∞ [3, 4, 7]. These works relied on non-rigorous
heuristic approaches, such as the replica and cavity methods [13, 14]. Additionally no provably e�cient
algorithm was provided to achieve the predicted learning abilities, and it was thus di�cult to test those
predictions, or to assess the computational di�culty.

Recent developments in statistical estimation and information theory —in particular of approximate
message passing algorithms (AMP) [15, 16, 17, 18], and a rigorous proof of the replica formula for the optimal
generalization error [11]— allowed to settle these two missing points for single-layer neural networks (i.e.
without any hidden variables). In the present paper, we leverage on these works, and provide rigorous
asymptotic predictions and corresponding message passing algorithm for a class of two-layers networks.

2 Summary of contributions and related works
While our results hold for a rather large class of non-linear activation functions, we illustrate our �ndings on a
case considered most commonly in the early literature: the committee machine. This is possibly the simplest
version of a two-layers neural network where all the weights in the second layer are �xed to unity, and we
illustrate it in Fig. 1. Denoting Yµ the label associated with a n-dimensional sample Xµ, and W ∗il the weight
connecting the i-th coordinate of the input to the l-th node of the hidden layer, it is de�ned by:

Yµ = sign
[ K∑

l=1

sign
( n∑

i=1

XµiW
∗
il

)]
. (1)

We concentrate here on the teacher-student scenario: The teacher generates i.i.d. data samples with i.i.d.
standard Gaussian coordinatesXµi ∼ N (0, 1), then she/he generates the associated labelsYµ using a committee
machine as in (1), with i.i.d. weights W ∗il unknown to the student (in the proof section we will consider the
more general case of a distribution for the weights of the form

∏n
i=1 P0({W ∗il}Kl=1), but in practice we consider

the fully separable case). The student is then given the m input-output pairs (Xµ, Yµ)mµ=1 and knows the
distribution P0 used to generate W ∗il . The goal of the student is to learn the weights W ∗il from the available
examples (Xµ, Yµ)mµ=1 in order to reach the smallest possible generalization error (i.e. to be able to predict the
label the teacher would generate for a new sample not present in the training set).

There have been several studies of this model within the non-rigorous statistical physics approach in
the limit where α ≡ m/n = Θ(1), K = Θ(1) and n → ∞ [19, 20, 21, 22, 6, 7]. A particularly interesting
result in the teacher-student setting is the specialization of hidden neurons (see sec. 12.6 of [7], or [23] in the
context of online learning): For α < αspec (where αspec is a certain critical value of the sample complexity),
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Figure 1: The committee machine is one of the simplest models belonging to the considered model class (2), and
on which we focus to illustrate our results. It is a two-layers neural network with activation sign functions
f (1), f (2) = sign and weights W (2) �xed to unity. It is represented for K = 2.

the permutational symmetry between hidden neurons remains conserved even after an optimal learning, and
the learned weights of each of the hidden neurons are identical. For α > αspec, however, this symmetry gets
broken as each of the hidden units correlates strongly with one of the hidden units of the teacher. Another
remarkable result is the calculation of the optimal generalization error as a function of α.

Our �rst contribution consists in a proof of the replica formula conjectured in the statistical physics
literature, using the adaptive interpolation method of [24, 11], that allows to put several of these results on a
rigorous basis. This proof uses a technical unproven assumption. Our second contribution is the design of
an AMP-type of algorithm that is able to achieve the optimal generalization error in the above limit of large
dimensions for a wide range of parameters. The study of AMP —that is widely believed to be optimal between
all polynomial algorithms in the above setting [25, 26, 27, 28]— unveils, in the case of the committee machine
with a large number of hidden neurons, the existence a large hard phase in which learning is information-
theoretically possible, leading to a good generalization error decaying asymptotically as 1.25K/α (in the
α = Θ(K) regime), but where AMP fails and provides only a poor generalization that does not go to zero
when increasing α. This strongly suggests that no e�cient algorithm exists in this hard region and therefore
there is a computational gap in learning such neural networks. In other problems where a hard phase was
identi�ed its study boosted the development of algorithms that are able to match the predicted thresholds and
we anticipate this will translate to the present model.

We also want to comment on a related line of work that studies the loss-function landscape of neural
networks. While a range of works show under various assumptions that spurious local minima are absent
in neural networks, others show under di�erent conditions that they do exist, see e.g. [29]. The regime of
parameters that is hard for AMP must have spurious local minima, but the converse is not true in general. It
might be that there are spurious local minima, yet the AMP approach succeeds. Moreover, in all previously
studied models in the Bayes-optimal setting the (generalization) error obtained with the AMP is the best
known and other approaches, e.g. (noisy) gradient based, spectral algorithms or semide�nite programming,
are not better in generalizing even in cases where the “student” models are overparametrized. Of course in
order to be in the Bayes-optimal setting one needs to know the model used by the teacher which is not the
case in practice.
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3 Main technical results

3.1 A general model

While in the illustration of our results we shall focus on the model (1), all our formulas are valid for a broader
class of models: Given m input samples (Xµi)

m,n
µ,i=1, we denote W ∗il the teacher-weight connecting the i-th

input (i.e. visible unit) to the l-th node of the hidden layer. For a generic function ϕout : RK ×R→ R one can
formally write the output as

Yµ = ϕout

({ 1√
n

n∑

i=1

XµiW
∗
il

}K
l=1
, Aµ

)
or Yµ ∼ Pout

(
·
∣∣∣
{ 1√

n

n∑

i=1

XµiW
∗
il

}K
l=1

)
, (2)

where (Aµ)mµ=1 are i.i.d. real valued random variables with known distribution PA, that form the probabilistic
part of the model, generally accounting for noise.

For deterministic models the second argument is simply absent (or is a Dirac mass). We can view altern-
atively (2) as a channel where the transition kernel Pout is directly related to ϕout. As discussed above, we
focus on the teacher-student scenario where the teacher generates Gaussian i.i.d. data Xµi ∼ N (0, 1), and i.i.d.
weights W ∗il ∼ P0. The student then learns W ∗ from the data (Xµ, Yµ)mµ=1 by computing marginal means of
the posterior probability distribution (5).

Di�erent scenarii �t into this general framework. Among those, the committee machine is obtained when
choosing ϕout(h) = sign(

∑K
l=1 sign(hl)) while another model considered previously is given by the parity

machine, when ϕout(h) =
∏K
l=1 sign(hl), see e.g. [7] and sec. H for the numerical results in the case K = 2.

A number of layers beyond two has also been considered, see [22]. Other activation functions can be used, and
many more problems can be described, e.g. compressed pooling [30, 31] or multi-vector compressed sensing
[32].

3.2 Two auxiliary inference problems

Denote SK the �nite dimensional vector space of K ×K matrices, S+
K the convex set of semi-de�nite positive

K × K matrices, S++
K for positive de�nite K × K matrices, and ∀N ∈ S+

K we set S+
K(N) ≡ {M ∈

S+
K s.t. N −M ∈ S+

K}. Note that S+
K(N) is convex and compact.

Stating our results requires introducing two simpler auxiliary K-dimensional estimation problems:
• The �rst one consists in retrieving a K-dimensional input vector W0 ∼ P0 from the output of a Gaussian
vector channel with K-dimensional observations

Y0 = r1/2W0 + Z0 ,

Z0 ∼ N (0, IK×K) and the “channel gain” matrix r ∈ S+
K . The posterior distribution on w = (wl)

K
l=1 is

P (w|Y0) =
1

ZP0

P0(w)eY
ᵀ
0 r

1/2w− 1
2
wᵀrw , (3)

and the associated free entropy (or minus free energy) is given by the expectation over Y0 of the log-partition
function

ψP0(r) ≡ E lnZP0

and involves K dimensional integrals.
• The second problem considers K-dimensional i.i.d. vectors V,U∗ ∼ N (0, IK×K) where V is considered to
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be known and one has to retrieve U∗ from a scalar observation obtained as

Ỹ0 ∼ Pout( · |q1/2V + (ρ− q)1/2U∗)

where the second moment matrix ρ ≡ E[W0W
ᵀ
0 ] is in S+

K (where W0 ∼ P0) and the so-called “overlap matrix”
q is in S+

K(ρ). The associated posterior is

P (u|Ỹ0, V ) =
1

ZPout

e−
1
2
uᵀu

(2π)K/2
Pout

(
Ỹ0|q1/2V + (ρ− q)1/2u

)
, (4)

and the free entropy reads this time
ΨPout(q; ρ) ≡ E lnZPout

(with the expectation over Ỹ0 and V ) and also involves K dimensional integrals.

3.3 The free entropy

The central object of study leading to the optimal learning and generalization errors in the present setting is
the posterior distribution of the weights:

P ({wil}n,Ki,l=1 | {Xµi, Yµ}m,nµ,i=1) =
1

Zn

n∏

i=1

P0({wil}Kl=1)
m∏

µ=1

Pout

(
Yµ

∣∣∣
{ 1√

n

n∑

i=1

Xµiwil

}K
l=1

)
, (5)

where the normalization factor is nothing else than a partition function, i.e. the integral of the numerator over
{wil}n,Ki,l=1. The expected1 free entropy is by de�nition

fn ≡
1

n
E lnZn . (6)

The replica formula gives an explicit (conjectural) expression of fn in the high-dimensional limit n,m→∞
with α = m/n �xed. We show in sec. B how the heuristic replica method [13, 14] yields the formula. This
computation was �rst performed, to the best of our knowledge, by [19] in the case of the committee machine.
Our �rst contribution is a rigorous proof of the corresponding free entropy formula using an interpolation
method [33, 34, 24], under a technical Assumption 1.

In order to formulate our results, we add an (arbitrarily small) Gaussian regularization noise Zµ
√

∆ to the
�rst expression of the model (2), where ∆ > 0, Zµ ∼ N (0, 1), which thus becomes

Yµ = ϕout

({ 1√
n

n∑

i=1

XµiW
∗
il

}K
l=1
, Aµ

)
+ Zµ

√
∆ , (7)

so that the channel kernel is (u ∈ RK )

Pout(y|u) =
1√

2π∆

∫

R
dPA(a)e−

1
2∆

(y−ϕout(u,a))2
. (8)

Let us de�ne the replica symmetric (RS) potential as

fRS(q, r) = fRS(q, r; ρ) ≡ ψP0(r) + αΨPout(q; ρ)− 1

2
Tr(rq), (9)

1The symbol E will generally denote an expectation over all random variables in the ensuing expression (here {Xµi, Yµ}).
Subscripts will be used only when we take partial expectations or if there is an ambiguity.
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where α ≡ m/n, and ΨPout(q; ρ) and ψP0(r) are the free entropies of the two simpler K-dimensional
estimation problems (3) and (4).

All along this paper, we assume the following hypotheses for our rigorous statements:

(H1) The prior P0 has bounded support in RK .
(H2) The activation ϕout : RK × R→ R is a bounded C2 function with bounded �rst and second derivatives

w.r.t. its �rst argument (in RK-space).
(H3) For all µ = 1, . . . ,m and i = 1, . . . , n we have i.i.d. Xµi ∼ N (0, 1).

We �nally rely on a technical hypothesis, stated as Assumption 1 in section 5.3.

Theorem 3.1 (Replica formula). Suppose (H1), (H2) and (H3), and Assumption 1. Then for the model (7) with
kernel (8) the limit of the free entropy is:

lim
n→∞

fn ≡ lim
n→∞

1

n
E lnZn = sup

r∈S+
K

inf
q∈S+

K(ρ)

fRS(q, r) . (10)

This theorem extends the recent progress for generalized linear models of [11], which includes the case
K = 1 of the present contribution, to the phenomenologically richer case of two-layers problems such as the
committee machine. The proof sketch based on an adaptive interpolation method recently developed in [24] is
outlined in sec. 5 and the details can be found in sec. A.

Remark 3.2 (Relaxing the hypotheses). Note that, following similar approximation arguments as in [11], the
hypothesis (H1) can be relaxed to the existence of the second moment of the prior; thus covering the Gaussian case,
(H2) can be dropped (and thus include model (1) and its sign(·) activation) and (H3) extended to data matrices X
with i.i.d. entries of zero mean, unit variance and �nite third moment. Moreover, the case ∆ = 0 can be considered
when the outputs are discrete, as in the committee machine (1), see [11]. The channel kernel becomes in this case
Pout(y|u) =

∫
dPA(a)1(y − ϕout(u, a)) and the replica formula is the limit ∆ → 0 of the one provided in

Theorem 3.1. In general this regularizing noise is needed for the free entropy limit to exist.

3.4 Learning the teacher weights and optimal generalization error

A classical result in Bayesian estimation is that the estimator Ŵ that minimizes the mean-square error with the
ground-truth W ∗ is given by the expected mean of the posterior distribution. Denoting q∗ the extremizer in
the replica formula (10), we expect from the replica method that in the limit n→∞,m/n = α, and with high
probablity, Ŵ ᵀW ∗/n→ q∗. We refer to proposition 5.3 and to the proof in sec. A for the precise statement,
that remains rigorously valid only in the presence of an additional (possibly in�nitesimal) side-information.
From the overlap matrix q∗, one can compute the Bayes-optimal generalization error when the student tries to
classify a new, yet unseen, sample Xnew. The estimator of the new label Ŷnew that minimizes the mean-square
error with the true label is given by computing the posterior mean of ϕout(Xneww) (Xnew is a row vector).
Given the new sample, the optimal generalization error is then

1

2
EX,W ∗

[(
Ew|X,Y

[
ϕout(Xneww)

]
− ϕout(XnewW

∗)
)2] −−−→

n→∞
εg(q

∗), (11)

where w is distributed according to the posterior measure (5) (note that this Bayes-optimal computation di�ers
from the so-called Gibbs estimator by a factor 2, see sec. C). In particular, when the data X is drawn from
the standard Gaussian distribution on Rm×n, and is thus rotationally invariant, it follows that this error only
depends on wᵀW ∗/n, which converges to q∗. Then a direct algebraic computation gives a lengthy but explicit
formula for εg(q∗), as shown in sec. C.
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3.5 Approximate message passing, and its state evolution

Our next result is based on an adaptation of a popular algorithm to solve random instances of generalized linear
models, the Approximate Message Passing (AMP) algorithm [15, 16], for the case of the committee machine and
models described by (2).

The AMP algorithm can be obtained as a Taylor expansion of loopy belief-propagation (see sec. F) and
also originates in earlier statistical physics works [35, 36, 37, 38, 39, 26]. It is conjectured to perform the best
among all polynomial algorithms in the framework of these models. It thus gives us a tool to evaluate both the
intrinsic algorithmic hardness of the learning and the performance of existing algorithms with respect to the
optimal one in this model.

Algorithm 1 Approximate Message Passing for the committee machine
Input: vector Y ∈ Rm and matrix X ∈ Rm×n:
Initialize: gout,µ = 0,Σi = IK×K for 1 ≤ i ≤ n and 1 ≤ µ ≤ m at t = 0.
Initialize: Ŵi ∈ RK and Ĉi, ∂ωgout,µ ∈ S+

K for 1 ≤ i ≤ n and 1 ≤ µ ≤ m at t = 1.
repeat

Update of the mean ωµ ∈ RK and covariance Vµ ∈ S+
K :

ωtµ =
n∑
i=1

(Xµi√
n
Ŵ t
i −

X2
µi

n

(
Σt−1
i

)−1
ĈtiΣ

t−1
i gt−1

out,µ

)
| V t

µ =
n∑
i=1

X2
µi

n Ĉti

Update of gout,µ ∈ RK and ∂ωgout,µ ∈ S+
K :

gtout,µ = gout(ω
t
µ, Yµ, V

t
µ) | ∂ωg

t
out,µ = ∂ωgout(ω

t
µ, Yµ, V

t
µ)

Update of the mean Ti ∈ RK and covariance Σi ∈ S+
K :

T ti = Σt
i

( m∑
µ=1

Xµi√
n
gtout,µ −

X2
µi

n ∂ωg
t
out,µŴ

t
i

)
| Σt

i = −
( m∑
µ=1

X2
µi

n ∂ωg
t
out,µ

)−1

Update of the estimated marginals Ŵi ∈ RK and Ĉi ∈ S+
K :

Ŵ t+1
i = fw(Σt

i, T
t
i ) | Ĉt+1

i = fc(Σ
t
i, T

t
i )

t = t+ 1
until Convergence on Ŵ , Ĉ .
Output: Ŵ and Ĉ .

The AMP algorithm is summarized by its pseudo-code in Algorithm 2, where the update functions gout,
∂ωgout, fw and fc are related, again, to the two auxiliary problems (3) and (4). The functions fw(Σ, T ) and
fc(Σ, T ) are respectively the mean and variance under the posterior distribution (3) when r → Σ−1 and
Y0 → Σ1/2T , while gout(ωµ, Yµ, Vµ) is given by the product of V −1/2

µ and the mean of u under the posterior
(4) using Ỹ0 → Yµ, ρ− q → Vµ and q1/2V → ωµ (see sec. F for more details). After convergence, Ŵ estimates
the weights of the teacher-neural network. The label of a sample Xnew not seen in the training set is estimated
by the AMP algorithm as

Y t
new =

∫
dy
( K∏

l=1

dzl
)
y Pout(y|{zl}Kl=1)N (z;ωtnew, V

t
new) , (12)

where ωtnew =
∑n

i=1Xnew,iŴ
t
i is the mean of the normally distributed variable z ∈ RK , and V t

new = ρ−qtAMP

is the K ×K covariance matrix (see below for the de�nition of qtAMP). We provide a demonstration code of
the algorithm on GitHub [40].

AMP is particularly interesting because its performance can be tracked rigorously, again in the asymptotic
limit when n → ∞, via a procedure known as state evolution (a rigorous version of the cavity method in
physics [14]), see [18]. State evolution tracks the value of the overlap between the hidden ground truthW ∗ and

8
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Figure 2: Generalization error and order parameter for a committee machine with two hidden neurons (K = 2)
with Gaussian weights (left), binary/Rademacher weights (right). These are shown as a function of the ratio
α = m/n between the number of samplesm and the dimensionality n. Lines are obtained from the state evolution
(SE) equations (dominating solution is shown in full line), data-points from the AMP algorithm averaged over 10
instances of the problem of size n = 104. q00 and q01 denote diagonal and o�-diagonal overlaps, and their values
are given by the labels on the far-right of the �gure.

the AMP estimate Ŵ t, de�ned as qtAMP ≡ limn→∞(Ŵ t)ᵀW ∗/n, via the iteration of the following equations:

qt+1
AMP = 2∇ψP0(rtAMP) , rt+1

AMP = 2α∇ΨPout(q
t
AMP; ρ) . (13)

See sec. G for more details and note that the �xed points of these equations correspond to the critical points of
the replica free entropy (10).

Let us comment further on the convergence of the algorithm. In the large n limit, and if the integrals
are performed without errors, then the algorithm is guaranteed to converge. This is a consequence of the
state evolution combined with the Bayes-optimal setting. In practice, of course, n is �nite and integrals are
approximated. In that case convergence is not guaranteed, but is robustly achieved in all the cases presented
in this paper. We also expect (by experience with the single layer case) that if the input-data matrix is not
random (which is beyond our assumptions) then we will encounter convergence issues, which could be �xed
by moving to some variant of the algorithm such as VAMP [41].

9



0 5 10 15

α̃

0.0

0.1

0.2

0.3

0.4

0.5

G
en
er
al
iz
at
io
n
er
ro
r
ǫ g
(α̃
)

Non-specialized
hidden units

Specialized
hidden units

Computational gap

0 5 10 15

α̃

0.0

0.2

0.4

0.6

0.8

1.0

O
ve
rl
ap

q

Bayes optimal ǫg(α̃)
AMP ǫg(α̃)

Spinodal
1st order specialization

SE q00
SE q01

Figure 3: (Left) Bayes optimal and AMP generalization errors and (right) diagonal and o�-diagonal overlaps q00,
q01 for a committee machine with a large number of hidden neurons K and Gaussian weights, as a function of the
rescaled parameter α̃ = α/K . Solutions corresponding to global and local minima of the replica free entropy are
respectively represented with full and dashed lines. The dotted line marks the spinodal at α̃Gspinodal ' 7.17, ie the
apparition of a local minimum in the replica free entropy, associated to a solution with specialized hidden units.
The dotted-dashed line shows the �rst order specialization transition at α̃Gspec ' 7.65, at which the specialized
�xed point becomes the global minimum. For α̃ < α̃Gspec, AMP reaches the Bayes optimal generalization error
and overlaps, corresponding to a non-specialized solution. However, for α̃ > α̃Gspec, the AMP algorithm does not
follow the optimal specialized solution and is stuck in the non-specialized solution plateau, represented with
dashed lines. Hence it unveils a large computational gap (yellow area).

4 From two to more hidden neurons, and the specialization
phase transition

4.1 Two neurons

Let us now discuss how the above results can be used to study the optimal learning in the simplest non-trivial
case of a two-layers neural network with two hidden neurons, that is when model (1) is simply

Yµ = sign
[

sign
( n∑

i=1

XµiW
∗
i1

)
+ sign

( n∑

i=1

XµiW
∗
i2

)]
,

and is represented in Fig. 1, with the convention that sign(0) = 0. We remind that the input-data matrix X
has i.i.d. N (0, 1) entries, and the teacher-weights W ∗ used to generate the labels Y are taken i.i.d. from P0.

In Fig. 2 we plot the optimal generalization error as a function of the sample complexity α = m/n. In
the left panel the weights are Gaussian (for both the teacher and the student), while in the right panel they
are binary/Rademacher. The full line is obtained from the �xed point of the state evolution (SE) of the AMP
algorithm (13), corresponding to the extremizer of the replica free entropy (10). The points are results of
the AMP algorithm run till convergence averaged over 10 instances of size n = 104. In this case and with
random initial conditions the AMP algorithm did converge in all our trials. As expected we observe excellent
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agreement between the SE and AMP.
In both left and right panels of Fig. 2 we observe the so-called specialization phase transition. Indeed

(13) has two types of �xed points: a non-specialized �xed point where every matrix element of the K ×K
order parameter q is the same (so that both hidden neurons learn the same function) and a specialized �xed
point where the diagonal elements of the order parameter are di�erent from the non-diagonal ones. We
checked for other types of �xed points for K = 2 (one where the two diagonal elements are not the same),
but have not found any. In terms of weight-learning, this means for the non-specialized �xed point that the
estimators for both W1 and W2 are the same, whereas in the specialized �xed point the estimators of the
weights corresponding to the two hidden neurons are di�erent, and that the network “�gured out” that the
data are better described by a model that is not linearly separable. The specialized �xed point is associated
with lower error than the non-specialized one (as one can see in Fig. 2). The existence of this phase transition
was discussed in statistical physics literature on the committee machine, see e.g. [20, 23].

For Gaussian weights (Fig. 2 left), the specialization phase transition arises continuously at αGspec(K =

2) ' 2.04. This means that for α < αGspec(K = 2) the number of samples is too small, and the student-neural
network is not able to learn that two di�erent teacher-vectors W1 and W2 were used to generate the observed
labels. For α > αGspec(K = 2), however, it is able to distinguish the two di�erent weight-vectors and the
generalization error decreases fast to low values (see Fig. 2). For completeness we remind that in the case
of K = 1 corresponding to single-layer neural network no such specialization transition exists. We show
in sec. E that it is absent also in multi-layer neural networks as long as the activations remain linear. The
non-linearity of the activation function is therefore an essential ingredient in order to observe a specialization
phase transition.

The right part of Fig. 2 depicts the �xed point reached by the state evolution of AMP for the case of binary
weights. We observe two phase transitions in the performance of AMP in this case: (a) the specialization phase
transition at αBspec(K = 2) ' 1.58, and for slightly larger sample complexity a transition towards perfect
generalization (beyond which the generalization error is asymptotically zero) at αBperf(K = 2) ' 1.99. The
binary case withK = 2 di�ers from the Gaussian one in the fact that perfect generalization is achievable at �nite
α. While the specialization transition is continuous here, the error has a discontinuity at the transition of perfect
generalization. This discontinuity is associated with the 1st order phase transition (in the physics nomenclature),
leading to a gap between algorithmic (AMP in our case) performance and information-theoretically optimal
performance reachable by exponential algorithms. To quantify the optimal performance we need to evaluate
the global extremum of the replica free entropy (not the local one reached by the state evolution). In doing
so that we get that information theoretically there is a single discontinuous phase transition towards perfect
generalization at αBIT(K = 2) ' 1.54.

While the information-theoretic and specialization phase transitions were identi�ed in the physics literature
on the committee machine [20, 21, 3, 4], the gap between the information-theoretic performance and the
performance of AMP —that is conjectured to be optimal among polynomial algorithms— was not yet discussed
in the context of this model. Indeed, even its understanding in simpler models than those discussed here, such
as the single layer case, is more recent [15, 26, 25].

4.2 More is di�erent

It becomes more di�cult to study the replica formula for larger values of K as it involves (at least) K-
dimensional integrals. Quite interestingly, it is possible to work out the solution of the replica formula in
the large K limit (thus taken after the large n limit, so that K/n vanishes). It is indeed natural to look for
solutions of the replica formula, as suggested in [19], of the form q = qdIK×K + (qa/K)1K1ᵀK , with the
unit vector 1K = (1)Kl=1. Since both q and ρ are assumed to be positive, this scaling implies that 0 ≤ qd ≤ 1

and 0 ≤ qa + qd ≤ 1, as it should, see sec. D. We also detail in this same section the corresponding large K
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expansion of the free entropy for the teacher-student scenario with Gaussian weights. Only the information-
theoretically reachable generalization error was computed [19], thus we concentrated on the analysis of
performance of AMP by tracking the state evolution equations. In doing so, we unveil a large computational
gap.

In the right panel of Fig. 3 we show the �xed point values of the two overlaps q00 = qd + qa/K and
q01 = qa/K and the resulting generalization error, plotted in the left panel. As discussed in [19] it can be
written in a closed form as εg = arccos [2 (qa + arcsin qd) /π] /π, represented in the left panel of Fig. 3. The
specialization transition arises for α = Θ(K) so we de�ne α̃ ≡ α/K . The specialization is now a 1st order
phase transition, meaning that the specialization �xed point �rst appears at α̃Gspinodal ' 7.17 but the free
entropy global extremizer remains the one of the non-specialized �xed point until α̃Gspec ' 7.65. This has
interesting implications for the optimal generalization error that gets towards a plateau of value εplateau ' 0.28

for α̃ < α̃Gspec and then jumps discontinuously down to reach a decay aymptotically as 1.25/α̃. See left panel
of Fig. 3.

AMP is conjectured to be optimal among all polynomial algorithms (in the considered limit) and thus
analyzing its state evolution sheds light on possible computational-to-statistical gaps that come hand in hand
with 1st order phase transitions. In the regime of α = Θ(K) for large K the non-specialized �xed point is
always stable implying that AMP will not be able to give a lower generalization error than εplateau. Analyzing
the replica formula for large K in more details, see sec. D, we concluded that AMP will not reach the optimal
generalization for any α < Θ(K2). This implies a rather sizable gap between the performance that can
be reached information-theoretically and the one reachable tractably (see yellow area in Fig. 3). Such large
computational gaps have been previously identi�ed in a range of inference problems —most famously in the
planted clique problem [27]— but the committee machine is the �rst model of a multi-layer neural network
with realistic non-linearities (the parity machine is another example but use a very peculiar non-linearity) that
presents such large gap.

5 Structure of the proof of Theorem 3.1
All along this section we assume (H1), (H2) and (H3), and all the rigorous statements are implicitely assuming
these hypotheses. We denote K-dimensional column vectors by underlined letters. In particular W ∗i =

(W ∗il)
K
l=1,wi = (wil)

K
l=1. For µ = 1, . . .m, let V µ,U∗µ beK-dimensional vectors with i.i.d.N (0, 1) components.

Let sn ∈ (0, 1/2] a sequence that goes to 0 as n increases, and letM be the compact subset of matrices in
S++
K with eigenvalues in the interval [1, 2]. For all M ∈ snM, 2snIK×K −M ∈ S+

K .

5.1 Interpolating estimation problem

Let ε = (ε1, ε2) ∈ (snM)2. Let q : [0, 1]→ S+
K(ρ) and r : [0, 1]→ S+

K be two “interpolation functions” (that
will later on depend on ε), and

R1(t) ≡ ε1 +

∫ t

0
r(v)dv , R2(t) ≡ ε2 +

∫ t

0
q(v)dv . (14)

For t ∈ [0, 1], de�ne the K-dimensional vector:

St,µ ≡
√

1− t
n

n∑

i=1

XµiW
∗
i +

√
R2(t)V µ +

√
tρ−R2(t) + 2snIK×K U

∗
µ (15)

where matrix square-roots (that we denote equivalently A1/2 or
√
A) are well de�ned. We interpolate with

auxiliary problems related to those discussed in sec. 3; the interpolating estimation problem is given by the
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following observation model, with two types of t-dependent observations:
{
Yt,µ ∼ Pout( · |St,µ), 1 ≤ µ ≤ m,

Y ′t,i =
√
R1(t)W ∗i + Z ′i, 1 ≤ i ≤ n ,

(16)

where Z ′i is (for each i) a K-vector with i.i.d. N (0, 1) components, and Y ′t,i is a K-vector as well. Recall that
in our notation the ∗-variables have to be retrieved, while the other random variables are assumed to be known
(except for the noise variables obviously). De�ne now st,µ by the expression of St,µ but with wi replacing W ∗i
and uµ replacing U∗µ. We introduce the interpolating posterior:

Pt,ε(w, u|Yt, Y ′t , X, V ) =
1

Zn,ε(t)

n∏

i=1

P0(wi)e
− 1

2
‖Y ′t,i−

√
R1(t)wi‖22

m∏

µ=1

e−
1
2
‖uµ‖22

(2π)K/2
Pout(Yt,µ|st,µ) (17)

where the normalization factor Zn,ε(t) equals the numerator integrated over all components of w and u. The
average free entropy at time t is by de�nition

fn,ε(t) ≡
1

n
E lnZn,ε(t) =

1

n
E ln

∫
Du

n∏

i=1

dP0(wi)
m∏

µ=1

Pout(Yt,µ|st,µ)
n∏

i=1

e−
1
2
‖Y ′t,i−

√
R1(t)wi‖22 , (18)

where Du =
∏m
µ=1

∏K
l=1(2π)−1/2e−u

2
µl/2.

The presence of the small “pertubation” ε induces a proportional change in the free entropy of the
interpolating model:

Lemma 5.1 (Perturbation of the free entropy). For all ε ∈ (snM)2 we have for t = 0 that |fn,ε(0) −
fn,ε=(0,0)(0)| ≤ C ′sn for some positive constant C ′. Moreover, |fn − fn,ε=(0,0)(0)| ≤ Csn for some positive
constant C , so that

|fn − fn,ε=(0,0)(0)| = On(1) .

Proof. Let us compute (or directly obtain by the I-MMSE formula for vector channels [42, 43, 44])

∇ε1fn,ε(0) = −1

2
[ρ− E〈Q〉n,0,ε] , (19)

where the K ×K overlap matrix (Qll′) is de�ned below by (23). Note that the r.h.s. of the above equation is
(up to a factor −1/2) the K ×K MMSE matrix. Set uy(x) ≡ lnPout(y|x). Now we compute (by calculations
very similar to the ones used in the proof of the following Proposition 5.2):

∇ε2fn,ε(0) =
1

2n

m∑

µ=1

E
[
∇uYt,µ(St,µ)

〈
∇uYt,µ(st,µ)

〉
n,0,ε

]
. (20)

Note that the r.h.s. of the above equation is symmetric by the Nishimori identity Proposition A.1. By
the mean value theorem we obtain then directly that |fn,ε(0) − fn,ε=(0,0)(0)| ≤ ‖∇ε1fn,ε(0)‖F‖ε1‖F +

‖∇ε2fn,ε(0)‖F‖ε2‖F ≤ C maxi ‖εi‖ ≤ C ′sn.

Using this lemma one veri�es, using in particular continuity and boundedness properties of ψP0 and ΨPout

(see Lemma A.6 in sec. A for details; sec. A gathers the detailed proofs of all the propositions below):
{
fn,ε(0) = fn − K

2 + On(1) ,

fn,ε(1) = ψP0(
∫ 1

0 r(t)dt) + αΨPout(
∫ 1

0 q(t)dt; ρ)− 1
2

∫ 1
0 Tr[ρ r(t)]dt− K

2 + On(1) .
(21)

13



Here On(1)→ 0 in the n,m→∞ limit uniformly in t, q, r, ε.

5.2 Overlap concentration and fundamental sum rule

Notice from (21) that at t = 1 the interpolating estimation problem constructs part of the RS potential (9),
while at t = 0 it is the free entropy (6) of the original model (7) (up to a constant). We thus now want to
compare these boundary values thanks to the identity

fn = fn,ε(0) +
K

2
+ On(1) = fn,ε(1)−

∫ 1

0

dfn,ε(t)

dt
dt+

K

2
+ On(1) . (22)

The next obvious step is therefore to compute the free entropy variation along the interpolation path, see
sec. A.3 for the proof:

Proposition 5.2 (Free entropy variation). Denote by 〈−〉n,t,ε the (Gibbs) expectation w.r.t. the posterior Pt,ε
given by (17). Set uy(x) ≡ lnPout(y|x). For all t ∈ [0, 1] we have

dfn,ε(t)

dt
= −1

2
E
〈

Tr
[( 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ − r(t)
)(
Q− q(t)

)]〉
n,t,ε

+
1

2
Tr [r(t)(q(t)− ρ)] + On(1) ,

where∇ is theK-dimensional gradient w.r.t. the argument of uYt,µ(·), and On(1)→ 0 in the n,m→∞ limit
uniformly in t, q, r, ε. Here, theK×K overlap matrix Q is de�ned as

Qll′ ≡
1

n

n∑

i=1

W ∗ilwil′ . (23)

We will plug this expression in identity (22), but in order to simplify it we need the following crucial
proposition, which says that the overlap concentrates. This property is what is generally refered to as a replica
symmetric behavior in statistical physics.

Proposition 5.3 (Overlap concentration). Assume that for any t ∈ (0, 1) the transformation ε ∈ (snM)2 7→
(R1(t, ε), R2(t, ε)) is a C1 di�eomorphism with a Jacobian determinant greater or equal to 1. Then one can �nd a
sequence sn going to 0 slowly enough such that there exists a constant C(ϕout, S,K, α) > 0 depending only on
the activation ϕout, the support S of the prior P0, the number of hidden neuronsK and the sampling rate α, and
a constant γ > 0 such that (‖ − ‖F is the Frobenius norm):

1

Vol(snM)2

∫

(snM)2

dε

∫ 1

0
dtE

〈∥∥Q− E〈Q〉n,t,ε
∥∥2

F

〉
n,t,ε
≤ C(ϕout, S,K, α)

nγ
.

The proof of this concentration result can be directly adapted from [45]. Using the results of [45] is
straightforward, under the assumption that ε 7→ R(t, ε) is a C1 di�eomorphism with a Jacobian determinant
greater or equal to 1. This Jacobian determinant can be computed from formula (30). To check that it is greater
than one we use Lemma 5.5 and need Assumption 1 stated in paragraph 5.3 below. With a Jacobian determinant
greater than one, we can “replace” (i.e., lower bound) the integrations over R1(t, ε), that naturally appear in
the proof of Proposition 5.3, by integrations over the perturbation matrix ε. This is exactly what has been done
in the K = 1 version of the present model in [11] or in [46] i.e., in the scalar overlap case (see also [47] for a
setting with a matrix overlap as in the present case).

From there we can deduce the following fundamental sum rule which is at the core of the proof:

Proposition 5.4 (Fundamental sum rule). Assume that the interpolation functions r and q are such that the map
ε = (ε1, ε2) 7→ R(t, ε) = (R1(t, ε), R2(t, ε)) given by (14) is a C1 di�eomorphism whose Jacobian determinant
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Jn,ε(t) is greater or equal to 1. Assume that for all t ∈ [0, 1] and ε ∈ (snM)2 we have q(t) = q(t, ε) =

E〈Q〉n,t,ε ∈ S+
K(ρ). Then

fn =
1

Vol(snM)2

∫

(snM)2

dε
{
ψP0

(∫ 1

0
r(t)dt

)
+ αΨPout

(∫ 1

0
q(t, ε)dt; ρ

)

− 1

2

∫ 1

0
Tr[q(t, ε)r(t)]dt

}
+ On(1) . (24)

Proof. Let us denote Vn ≡ Vol(snM)2. The integral over ε is always over (snM)2. Consider the �rst term, i.e.
the Gibbs bracket, in the free entropy derivative given by Proposition 5.2. By the Cauchy-Schwarz inequality

(
E
〈

Tr
[( 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ − r(t)
)(
Q− q(t)

)]〉
n,t,ε

)2

≤ 1

Vn

∫
dε

∫ 1

0
dtE

〈∥∥∥ 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ − r(t)
∥∥∥

2

F

〉
n,t,ε
× 1

Vn

∫
dε

∫ 1

0
dtE

〈∥∥Q− q(t)
∥∥2

F

〉
n,t,ε

.

The �rst term of this product is bounded by some constant C(ϕout, α) that only depend on ϕout and α, see
Lemma A.4 in sec. A.4. The second term is bounded by C(ϕout, S,K, α)n−γ by Proposition 5.3, since we
assumed that for all ε ∈ Bn and all t ∈ [0, 1] we have q(t) = q(t, ε) = E〈Q〉n,t,ε. Therefore from Proposition
5.2 we obtain

1

Vn

∫
dε

∫ 1

0

dfn,ε(t)

dt
dt =

1

2Vn

∫
dε

∫ 1

0
Tr
[
q(t, ε)r(t)− r(t)ρ

]
dt+ On(1) +O(n−γ/2) . (25)

Here the small terms are both going to 0 uniformly w.r.t. to the choice of q and r. When replacing (25) in (22)
and combining it with (21) we reach the claimed identity.

5.3 A technical lemma and an assumption

We give here a technical lemma used in the rest of the proof, and which allows us to detail the unproven
assumption on which we rely to prove Thm 3.1.

Lemma 5.5. The quantity E〈Q〉n,t,ε is a function of (n, t, R(t, ε)). We de�ne F (1)
n (t, R(t, ε)) ≡ E〈Q〉n,t,ε and

F
(2)
n (t, R(t, ε)) ≡ 2α∇ΨPout(E〈Q〉n,t,ε). Fn ≡ (F

(1)
n , F

(2)
n ) is de�ned on the set:

Dn =
{

(t, r1, r2) ∈ [0, 1]× S+
K × S

+
K

∣∣∣(ρt− r2 + 2snIK) ∈ S+
K

}
. (26)

Fn is a continuous function from Dn to S+
K × S

+
K(ρ). Moreover, Fn admits partial derivatives with respect to R1

and R2 on the interior of Dn. For every (t, R(t, ε)) for which they are de�ned, they satisfy:

K∑

l≤l′

∂(F
(1)
n )ll′

∂(R1)ll′
≥ 0. (27)

We can now state the technical assumption on which we rely, and which essentially allows us to derive
that the map ε 7→ R(t, ε) is a C1 di�eomorphism with a Jacobian determinant greater or equal to 1 as it will
become clear in the next section:
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Assumption 1. With the notations of Lemma 5.5,

K∑

l≤l′

∂(F
(2)
n )ll′

∂(R2)ll′
≥ 0.

Proof of Lemma 5.5. The fact that the image domain of Fn is S+
K × S

+
K(ρ) is known from Lemma A.2. The

continuity and di�erentiability of Fn follows from standard theorems of continuity and derivation under the
integral sign (recall that we are working at �nite n). Indeed, the domination hypotheses are easily satis�ed
since we work under (H1) and (H2).

Let us now prove (27). We write the formal di�erential of F (1)
n with respect to R1 as DR1F

(1)
n , which

is a 4-tensor, and our goal is to prove that Tr[DR1F
(1)
n ] ≥ 0, the trace of a 4-tensor over SK A(ij)(kl) being

Tr[A] =
∑

i≤j A(ij)(ij). Then one can write Tr[DR1F
(1)
n ] = Tr[∇∇ᵀΨPout(E〈Q〉n,t,ε) ×∇R1E〈Q〉n,t,ε]. We

know from Lemma A.2 and Lemma A.6 that ∇∇ᵀΨPout(E〈Q〉n,t,ε) is a positive symmetric matrix (when seen
as a linear operator over SK ). Moreover, it is a known result that the derivative ∇R1E〈Q〉n,t,ε is also positive
symmetric, since R1 is the matrix snr of a linear channel (see [42, 43, 44]). Since the product of two symmetric
positive matrices has always positive trace, this shows that Tr[DR1F

(1)
n ] ≥ 0.

5.4 Matching bounds

Proposition 5.6 (Lower bound). Under Assumption 1, the free entropy of model (7) veri�es

lim inf
n→∞

fn ≥ sup
r∈S+

K

inf
q∈S+

K(ρ)

fRS(q, r) .

Proof. Choose �rst r(t) = r ∈ S+
K a �xed matrix. Then R(t) = (R1(t), R2(t)) can be �xed as the solution to

the �rst order di�erential equation:

d

dt
R1(t) = r ,

d

dt
R2(t) = E〈Q〉n,t,ε , and R(0) = ε . (28)

We denote this (unique) solution R(t, ε) = (rt+ ε1,
∫ t

0 q(v, ε; r)dv + ε2). It is possible to check that this ODE
satis�es the hypotheses of the parametric Cauchy-Lipschitz theorem, and that by the Liouville formula the
determinant Jn,ε(t) of the Jacobian of ε 7→ R(t, ε) satis�es (see Lemma A.3 in sec. A)

Jn,ε(t) = exp
(∫ t

0

K∑

l≥l′

∂E〈Qll′〉n,s,ε
∂(R2)ll′

(s,R(s, ε)) ds
)
≥ 1 . (29)

Indeed, this sum of partial derivatives is always positive by Assumption 1. Moreover from (28), q(t, ε; r) =

E〈Q〉n,t,ε, which is in S+
K by Lemma A.2 in sec. A. The fact that the map ε 7→ R(t, ε) is a C1 di�eomorphism is

easily veri�ed by its bijectivity (from the positivity of Jn,ε(t)) combined with the local inversion Theorem. All
the assumptions of Proposition 5.4 are veri.i.d. which then implies, recalling the potential expression (9),

fn =
1

Vol(snM)2

∫

(snM)2

dε fRS

(∫ 1

0
q(v, ε; r)dv, r

)
+ On(1) .

This implies the lower bound as this equality is true for any r ∈ S+
K .
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Proposition 5.7 (Upper bound). Under Assumption 1, the free entropy of model (7) veri�es

lim sup
n→∞

fn ≤ sup
r∈S+

K

inf
q∈S+

K(ρ)

fRS(q, r) .

Proof. We now �x R(t) = (R1(t), R2(t)) as the solution R(t, ε) = (
∫ t

0 r(v, ε)dv + ε1,
∫ t

0 q(v, ε)dv + ε2) to
the following Cauchy problem:

d

dt
R1(t) = 2α∇ΨPout(E〈Q〉n,t,ε) ,

d

dt
R2(t) = E〈Q〉n,t,ε , and R(0) = ε .

We denote this equation as ∂tR(t) = Fn(t, R(t)), R(0) = ε. It is then possible to verify that Fn(R(t), t)

is a bounded C1 function of R(t), and thus a direct application of the Cauchy-Lipschitz theorem implies
that R(t, ε) is a C1 function of t and ε. The Liouville formula for the Jacobian determinant of the map
ε ∈ (snM)2 7→ R(t, ε) ∈ R(t, (snM)2) gives this time (see Lemma A.3 in sec. A)

Jn,ε(t) = exp
(∫ t

0

K∑

l≥l′

{∂(Fn,1)ll′

∂(R1)ll′
(s,R(s, ε)) +

∂(Fn,2)ll′

∂(R2)ll′
(s,R(s, ε))

}
ds
)
≥ 1 . (30)

The fact that this determinant is greater or equal to 1 for all t ∈ [0, 1] follows again from the positivity of this
sum of partials, see Lemma 5.5 and Assumption 1. Identity (30) implies the bijectivity of ε 7→ R(t, ε) which,
combined with the local inversion theorem, makes it a di�eomorphism. Since E〈Q〉n,t,ε and ρ− E〈Q〉n,t,ε are
positive matrices (see Lemma A.2 in sec. A) we also have that q(t, ε) ∈ S+

K(ρ) and since by the di�erential
equation we have r(t, ε) = 2α∇ΨPout(q(t, ε)) and as ∇ΨPout(q) ∈ S+

K (see Lemma A.6 in sec. A), then
r(t, ε) ∈ S+

K too. We have everything needed for applying Proposition 5.4 again which gives in this case

fn =
1

Vol(snM)2

∫
dε
{
ψP0

(∫ 1

0
r(v, ε)dv

)
+αΨPout

(∫ 1

0
q(v, ε)dv; ρ

)
−1

2
Tr

∫ 1

0
q(v, ε)r(v, ε)dv

}
+On(1).

Then by convexity of ψP0 and ΨPout (see Lemma A.6),

fn ≤
1

Vol(snM)2

∫
dε

∫ 1

0
dv
{
ψP0(r(v, ε)dv) + αΨPout(q(v, ε); ρ)− 1

2
Tr[q(v, ε)r(v, ε)]

}
+ On(1)

=
1

Vol(snM)2

∫
dε

∫ 1

0
dv fRS(q(v, ε), r(v, ε)) + On(1) .

We now remark that
fRS(q(v, ε), r(v, ε)) = inf

q∈S+
K(ρ)

fRS(q, r(v, ε)) .

Indeed, for every r ∈ S+
K , the function gr : q ∈ S+

K(ρ) 7→ fRS(q, r) ∈ R (recall (9)) is convex (by Lemma A.6),
and its q-derivative is∇gr(q) = α∇ΨPout(q)− r/2. Since∇gr(v,ε)(q(v, ε)) = 0 by de�nition of r(v, ε), and
S+
K(ρ) is convex, the minimum of gr(v,ε)(q) is necessarily achieved at q = q(v, ε). Therefore

fn ≤
1

Vol(snM)2

∫

(snM)2

dε

∫ 1

0
dv inf

q∈S+
K(ρ)

fRS (q, r(v, ε)) + On(1) ≤ sup
r∈S+

K

inf
q∈S+

K(ρ)

fRS(q, r) + On(1),

which concludes the proof of Proposition 5.7.

Combining these two matching bounds ends the proof of Theorem 3.1.

17



6 Discussion
One of the contributions of this paper is the design of an AMP-type algorithm that is able to achieve the
Bayes-optimal learning error in the limit of large dimensions for a range of parameters out of the so-called
hard phase. The hard phase is associated with �rst order phase transitions appearing in the solution of the
model. In the case of the committee machine with a large number of hidden neurons we identify a large hard
phase in which learning is possible information-theoretically but not e�ciently. In other problems where
such a hard phase was identi�ed, its study boosted the development of algorithms that are able to match the
predicted threshold. We anticipate this will also be the same for the present model. We should, however, note
that for larger K > 2 the present AMP algorithm includes higher-dimensional integrals that hamper the speed
of the algorithm. Our current strategy to tackle this is to combine the large-K expansion and use it in the
algorithm. Detailed account of the corresponding results are left for future work.

We studied the Bayes-optimal setting where the student-network is the same as the teacher-network, for
which the replica method can be readily applied. The method still applies when the number of hidden units in
the student and teacher are di�erent, while our proof does not generalize easily to this case. It is an interesting
subject for future work to see how the hard phase evolves under over-parametrization and what is the interplay
between the simplicity of the loss-landscape and the achievable generalization error. We conjecture that in
the present model over-parametrization will not improve the generalization error achieved by AMP in the
Bayes-optimal case.

Even though we focused in this paper on a two-layers neural network, the analysis and algorithm can be
readily extended to a multi-layer setting, see [22], as long as the number of layers as well as the number of
hidden neurons in each layer is held constant, and as long as one learns only weights of the �rst layer, for which
the proof already applies. The numerical evaluation of the phase diagram would be more challenging than
the cases presented in this paper as multiple integrals would appear in the corresponding formulas. In future
works, we also plan to analyze the case where the weights of the second and subsequent layers (including the
biases of the activation functions) are also learned. This could be done for instance with a combination of EM
and AMP along the lines of [48, 49] where this is done for the simpler single layer case.

Concerning extensions of the present work, an important open case is the one where the number of
samples per dimension α = Θ(1) and also the size of the hidden layer per dimension K/n = Θ(1) as n→∞,
while in this paper we treated the case K = Θ(1) and n → ∞. This other scaling where K/n = Θ(1) is
challenging even for the non-rigorous replica method.
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Supplementary material

A Proof details for Theorem 3.1

A.1 The Nishimori property in Bayes-optimal learning

We �rst state an important property of the Bayesian optimal setting (that is when all hyper-parameters of the
problem are assumed to be known), that is used several times, and is often refered to as the Nishimori identity.

Proposition A.1 (Nishimori identity). Let (X,Y ) ∈ Rn1 ×Rn2 be a couple of random variables. Let k ≥ 1 and
let X(1), . . . , X(k) be k i.i.d. samples (given Y ) from the conditional distribution P (X = · |Y ), independently of
every other random variables. Let us denote 〈−〉 the expectation operator w.r.t. P (X = · |Y ) and E the expectation
w.r.t. (X,Y ). Then, for all continuous bounded function g we have

E〈g(Y,X(1), . . . , X(k))〉 = E〈g(Y,X(1), . . . , X(k−1), X)〉 . (31)

Proof. This is a simple consequence of Bayes formula. It is equivalent to sample the couple (X,Y ) according
to its joint distribution or to sample �rst Y according to its marginal distribution and then to sample X
conditionally to Y from its conditional distribution P (X = · |Y ). Thus the (k + 1)-tuple (Y,X(1), . . . , X(k))

is equal in law to (Y,X(1), . . . , X(k−1), X). This proves the proposition.

As a �rst application of Proposition A.1 we prove the following Lemma which is used in the proof of the
upper bound Proposition 5.7.

Lemma A.2 (Positivity of some matrices). The matrices ρ, E〈Q〉 and ρ− E〈Q〉 are positive de�nite, i.e. in S+
K .

In the application the Gibbs bracket is 〈−〉n,t,ε.

Proof. The statement for ρ follows from its de�nition (in Theorem 3.1). Note for further use that we also
have ρ = 1

nE[W ∗i (W
∗
i )
ᵀ]. Since by de�nition Qll′ ≡ 1

n

∑n
i=1W

∗
ilwil′ in matrix notation we have Q =

1
n

∑n
i=1W

∗
iw
ᵀ
i . An application of the Nishimori identity shows that

E〈Q〉 =
1

n

n∑

i=1

E〈W ∗iw
ᵀ
i 〉 =

1

n

n∑

i=1

E[〈wi〉〈w
ᵀ
i 〉] (32)

which is obviously in S+
K . Finally we note that

E[ρ− 〈Q〉] =
1

n

n∑

i=1

(
E[W ∗i (W

∗
i )
ᵀ]− E[〈wi〉〈w

ᵀ
i 〉]
)

=
1

n

n∑

i=1

E[(W ∗i − 〈wi〉)((W ∗i )ᵀ − 〈w
ᵀ
i 〉)]

where the last equality is proved by an application of the Nishimori identity again. This last expression is
obviously in S+

K , i.e. E〈Q〉 ∈ S+
K(ρ).

A.2 Setting in the Hamiltonian language

We set up some notations which will shortly be useful. Let uy(x) ≡ lnPout(y|x). Here x ∈ RK and y ∈ R.
We will denote by∇uy(x) the K-dimensional gradient w.r.t. x, and∇∇ᵀuy(x) the K ×K matrix of second
derivatives (the Hessian) w.r.t. x. Moreover∇Pout(y|x) and∇∇ᵀPout(y|x) also denote the K-dimensional
gradient and Hessian w.r.t. x. We will also use the matrix identity

∇∇ᵀuYµ(x) +∇uYµ(x)∇ᵀuYµ(x) =
∇∇ᵀPout(Yµ|x)

Pout(Yµ|x)
. (33)
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Finally we will use the matrices w ∈ Rn×K , u ∈ Rm×K , Yt ∈ Rm, Y ′t ∈ Rn×K , X ∈ Rm×n, V ∈ Rm×K ,
W ∗ ∈ Rn×K and U∗ ∈ Rm×K . Like in sec. 5 we adopt the convention that all underlined vectors are
K-dimensional, like e.g. uµ, Uµ, V µ and Y ′t,i.

It is convenient to reformulate the expression of the interpolating free entropy fn,ε(t) in the Hamiltonian
language. We introduce an interpolating Hamiltonian:

Ht(w, u;Yt, Y
′
t , X, V ) ≡ −

m∑

µ=1

uYt,µ(st,µ) +
1

2

n∑

i=1

‖Y ′t,i −R1(t)1/2wi‖22 (34)

where recall that

st,µ ≡
√

1− t
n

n∑

i=1

Xµiwi +
√
R2(t)V µ +

√
tρ−R2(t) + 2snIK×K uµ . (35)

The expression ofHt(W ∗, U∗;Yt, Y ′t , X, V ) is similar to (34), but with w replaced by W ∗ and st,µ given by
(35) replaced by St,µ given by (15). The average free entropy (18) at time t then reads

fn,ε(t) ≡
1

n
E ln

∫

Rn×K
dP0(w)

∫

Rm×K
Du e−Ht(w,u;Yt,Y ′t ,X,V ) (36)

whereDu =
∏m
µ=1

∏K
l=1(2π)−1/2e−u

2
µl/2 and dP0(w) =

∏n
i=1 P0(wi)

∏K
l=1 dwil. To develop the calculations

in the simplest manner it is fruitful to represent the expectations over W ∗, U, Y, Y ′ explicitly as integrals:

fn,ε(t) =
1

n
EX,V

∫
dYtdY

′
t dP0(W ∗)DU∗e−Ht(W ∗,U ;Yt,Y ′t ,X,V ) ln

∫
dP0(w)Du e−Ht(w,u;Yt,Y ′t ,X,V ). (37)

A.3 Free entropy variation: Proof of Proposition 5.2

The proof provided here follows very closely the one in [11] for the case K = 1, so we are more brief and
refer to this paper for more details. We �rst prove that for all t ∈ (0, 1)

dfn,ε(t)

dt
=− 1

2
E
〈

Tr
[( 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ − r(t)
)( 1

n

n∑

i=1

W ∗iw
ᵀ
i − q(t)

)〉
n,t,ε

+
1

2
Tr[r(t)(q(t)− ρ)]− An

2
, (38)

where

An = E
[
Tr
[ 1√

n

m∑

µ=1

∇∇ᵀPout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

( 1√
n

n∑

i=1

(W ∗i (W
∗
i )
ᵀ − ρ)

)] 1

n
lnZn,ε(t)

]
. (39)

Once this is done, we show that An goes to 0 as n→∞ uniformly in t ∈ [0, 1] in order to conclude the proof.
The Hamiltonian (34) t-derivative evaluated at the ground-truth matrices is given by

dHt
dt

(W ∗, U∗;Yt, Y
′
t , X, V ) = −

m∑

µ=1

∇ᵀuYt,µ(St,µ)
dSt,µ
dt
−

n∑

i=1

(dR1(t)1/2

dt
W ∗i

)ᵀ
(Y ′t,i −R1(t)1/2W ∗i )

= −
m∑

µ=1

Tr
[dSt,µ
dt
∇ᵀuYt,µ(St,µ)

]
−

n∑

i=1

Tr
[(dR1(t)1/2

dt

)ᵀ
(Y ′t,i −R1(t)1/2W ∗i )W

∗ᵀ
i

]
(40)
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(where we used that R1(t) is symmetric). The t-derivative of fn,ε(t) thus reads, for 0 < t < 1,

dfn,ε(t)

dt
= − 1

n
E
[dHt
dt

(W ∗, U∗;Yt, Y
′
t , X, V ) lnZn,ε(t)

]

︸ ︷︷ ︸
T1

− 1

n
E
〈dHt
dt

(w, u;Yt, Y
′
t , X, V )

〉
n,t,ε︸ ︷︷ ︸

T2

. (41)

First, we note that T2 = 0. This is a direct consequence of the Nishimori identity Proposition A.1:

T2 =
1

n
E
〈dHt
dt

(w, u;Yt, Y
′
t , X, V )

〉
n,t,ε

=
1

n
E
dHt
dt

(W ∗, U∗;Yt, Y
′
t , X, V ) = 0 . (42)

We now compute T1. Starting from (40) and considering the �rst term only (recall also the expression (15)
for St,µ),

E
[
Tr
[dSt,µ
dt
∇ᵀuYt,µ(St,µ)

]
lnZn,ε(t)

]
= E

[
Tr
[{
−
∑n

i=1XµiW
∗
i

2
√
n(1− t)

+
d

dt

√
R2(t)V µ +

d

dt

√
tρ−R2(t) + 2snIK×K U

∗
µ

}
∇ᵀuYt,µ(St,µ)

]
lnZn,ε(t)

]
. (43)

We then compute the �rst line of the right-hand side of (43). By Gaussian integration by parts w.r.t. Xµi (recall
hypothesis (H3)), and using the identity (33), we �nd after some algebra

− 1

2
√
n(1− t)

E
[
Tr
[ n∑

i=1

XµiW
∗
i∇ᵀuYt,µ(St,µ)

]
lnZn,ε(t)

]

= −1

2
E
[
Tr
[ 1

n

n∑

i=1

W ∗iW
ᵀ
i

∇∇ᵀPout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

]
lnZn,ε(t)

]

− 1

2
E
〈

Tr
[ 1

n

n∑

i=1

W ∗iw
ᵀ
i∇uYt,µ(St,µ)∇ᵀuYt,µ(st,µ)

]〉
n,t,ε

. (44)

Similarly for the second line of the right hand side of (43), we use again Gaussian integrations by parts but
this time w.r.t. V µ, U

∗
µ which have i.i.d. N (0, 1) entries. This calculation has to be done carefully with the

help of the matrix identity

d

dt
M(t) =

√
M(t)

d
√
M(t)

dt
+
d
√
M(t)

dt

√
M(t) (45)

for any M(t) ∈ S+
K , and the cyclicity and linearity of the trace. Applying (45) to M(t) equal to

∫ t
0 q(s)ds and∫ t

0 (ρ− q(s))ds, as well as the identity (33), we reach after some algebra

E
[
Tr
[( d
dt

√
R2(t)V µ +

d

dt

√
tρ−R2(t) + 2snIK×K U

∗
µ

)
∇ᵀuYµ(Sµ,t)

]
lnZn,ε(t)

]

=E
[
Tr
[
ρ
∇∇ᵀPout(Yt,µ|Sµ,t)
Pout(Yt,µ|Sµ,t)

]
lnZn,ε(t)

]
+ E

〈
Tr
[
q(t)∇uYt,µ(Sµ,t)∇ᵀuYt,µ(sµ,t)

]〉
n,t,ε

. (46)

As seen from (40), (41) it remains to compute E[Tr[( ddt
√
R1(t))ᵀ(Y ′t,i −

√
R1(t)W ∗i )W

∗ᵀ
i ] lnZn,ε(t)]. Recall

that Y ′t,i −
√
R1(t)W ∗i = Z ′i ∼ N (0, IK×K). Using Gaussian integration by parts as well as the identity (45)

one obtains

E
[
Tr
[( d
dt

√
R1(t)

)ᵀ
(Y ′t,i −

√
R1(t)W ∗i )W

∗ᵀ
i

]
lnZn,ε(t)

]
= −Tr

[√
R1(t)

(
ρ− E〈W ∗j wj〉n,t,ε

)]
. (47)
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Finaly the term T1 is obtained by putting together (43), (44), (46) and (47).
It now remains to check that An → 0 as n→ +∞ uniformly in t ∈ [0, 1]. The proof from [11] (Appendix

C.2) can easily be adapted so we give here just a few indications for the ease of the reader. First one notices that

E
[∇∇ᵀPout(Yt,µ|St,µ)

Pout(Yµ|St,µ)

∣∣∣W ∗, {St,µ}mµ=1

]
=

∫
dYµ∇∇ᵀPout(Yt,µ|St,µ) = 0 , (48)

so that by the tower property of the conditional expectation one gets

E
[
Tr
[ 1√

n

m∑

µ=1

∇∇ᵀPout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

( 1√
n

n∑

i=1

(W ∗i (W
∗
i )
ᵀ − ρ)

)]]
= 0 . (49)

Next, one shows by standard second moment methods that E[(lnZn,ε(t)/n − fn,ε(t))2] → 0 as n → +∞
uniformly in t ∈ [0, 1] (see [11] for the proof at K = 1, that generalizes straightforwardly for any �nite K).
Then, using this last fact together with (49), and under hypotheses (H1), (H2), (H3), an easy application of the
Cauchy-Schwarz inequality implies An → 0 as n→ +∞ uniformly in t ∈ [0, 1]. This ends the proof. �

A.4 Technical lemmas

Lemma A.3 (Cauchy-Lipschitz Theorem and Liouville Formula). Let

F :

∣∣∣∣∣
[0, 1]× (0,+∞)d → [0,+∞)d

(t, z) 7→ F (t, z)

be a continuous, bounded function. Assume that F admits continuous partial derivatives ∂F∂zi (i = 1, . . . , d) on its
domain of de�nition. Then, for all ε ∈ (0,+∞)d, the Cauchy problem

y(0) = ε and y′(t) = F
(
t, y(t)

)
(50)

admits a unique solution t 7→ y(t, ε). For all t ∈ [0, 1], the mapping zt : ε 7→ y(t, ε) is a di�eomorphism of class
C1, from (0,+∞)d to zt

(
(0,+∞)d

)
. Moreover the determinant J(zt)(ε) of the Jacobian of zt at ε veri�es

J(zt)(ε) = det
((∂yi

∂εj

)
i,j

)
= exp

(∫ t

0

d∑

i=1

∂Fi
∂zi

(
s, y(s, ε)

)
ds
)
. (51)

Thus, in particular, if in addition
∑d

i=1
∂Fi
∂zi
≥ 0 then J(zt)(ε) ≥ 1 for all ε.

Proof. The existence and uniqueness of the solution of (50) follows from the classical Cauchy-Lipschitz
Theorem. The solution is indeed de�ned on all the segment [0, 1] because F is bounded.

Theorem 3.1 from Chapter 5 in [50] gives that y admits continuous partial derivatives ∂y
∂εi

for i = 1, . . . , d,
and Corollary 3.1 from Chapter 5 in the same reference states the Liouville formula (51).

By the Cauchy-Lipschitz Theorem, two solutions of y′(t) = F
(
t, y(t)

)
that are equal at some t ∈ [0, 1]

are equal everywhere. This implies that the mapping zt : ε 7→ y(t, ε) is injective, for all t ∈ [0, 1]. Since y
admits continuous partial derivatives in εi, i = 1, . . . , d, we obtain that zt is of class C1 on (0,+∞)d. Now,
the equation (51) gives that J(zt)(ε) > 0 for all ε ∈ (0,+∞)d. The local inversion Theorem gives then that zt
is a C1 di�eomorphism.
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LemmaA.4 (Boundedness of an overlap �uctuation). Under hypothesis (H2) one can �nd a constantC(ϕ,K,∆) <

+∞ (independent of n, t, ε) such that for any Rn ∈ S+
K we have

E
〈∥∥∥ 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ −Rn
∥∥∥

2

F

〉
n,t,ε
≤ 2Tr(R2

n) + α2C(ϕ,K,∆). (52)

We note that the constant remains bounded as ∆→ 0 and diverges asK → +∞.

Proof. It is easy to see that for symmetric matrices A, B we have Tr(A−B)2 ≤ 2(TrA2 + TrB2). Therefore

E
〈∥∥∥ 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ −Rn
∥∥∥

2

F

〉
n,t,ε

≤ 2Tr(R2
n) + 2E

〈
Tr
( 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ
)2〉

n,t,ε
. (53)

In the rest of the argument we bound the second term of the r.h.s. Using the triangle inequality and then
Cauchy-Schwarz we obtain

E
〈∥∥∥ 1

n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ
∥∥∥

2

F

〉
n,t,ε
≤ E

〈 1

n2

( m∑

µ=1

‖∇uYt,µ(st,µ)∇uYt,µ(St,µ)ᵀ‖F
)2〉

n,t,ε

≤ E
〈 1

n2

( m∑

µ=1

‖∇uYt,µ(st,µ)‖2‖∇uYt,µ(St,µ)ᵀ‖2
)2〉

n,t,ε
. (54)

From the random representation of the transition kernel,

uYt,µ(s) = lnPout(Yt,µ|x) = ln

∫
dPA(aµ)

1√
2π∆

e−
1

2∆
(Yt,µ−ϕ(x,aµ))2

(55)

and thus

∇uYt,µ(x) =

∫
dPA(aµ)(Yt,µ − ϕ(x, aµ))∇ϕ(x, aµ)e−

1
2∆

(Yt,µ−ϕ(x,aµ))2

∫
dPA(aµ)e−

1
2∆

(Yt,µ−ϕ(x,aµ))2
(56)

where∇ϕ is the K-dimensional gradient w.r.t. the �rst argument x ∈ RK . From the observation model we get
|Yt,µ| ≤ sup |ϕ|+

√
∆|Zµ|, where the supremum is taken over both arguments of ϕ, and thus we immediately

obtain for all s ∈ RK

‖∇uYt,µ(x)‖ ≤ (2 sup |ϕ|+
√

∆|Zµ|) sup ‖∇ϕ‖ . (57)

From (57) and (54) we see that it su�ces to check that

m2

n2
E
[(

(2 sup |ϕ|+ |Zµ|)2(sup ‖∇ϕ‖)2
)2] ≤ C(ϕ,K,∆)

where C(ϕ,K,∆) < +∞ is a �nite constant depending only on ϕ,K , and ∆. This is easily seen by expanding
all squares and using that m/n→ α. This ends the proof of Lemma A.4.

Lemma A.5 (Properties of ψP0 ). ψP0 is de�ned as the free entropy of the �rst auxiliary channel (3). We have,
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for any r ∈ S+
K :

ψP0(r) ≡ E ln

∫

RK
dwP0(w)eY

ᵀ
0 r

1/2w− 1
2
wᵀrw.

Then ψP0 is convex and di�erentiable on S+
K , with ∇ψP0(r) ∈ S+

K for any r ∈ S+
K .

Proof. Note that ψP0 is related to the mutual information I(W0;Y0) via the relation I(W0;Y0) = −ψP0(r) +
K
2 + 1

2Tr[rρ]. It is then a known result (see [42, 43, 44]) that the derivative ∇rI(W0;Y0) is given by the
matrix-MMSE, i.e. ∇rI(W0;Y0) = 1

2E [〈w〉 〈w〉ᵀ]. This implies that∇rψP0(r) = 1
2(ρ− E[〈w〉 〈w〉ᵀ]). Using

the Nishimori identity Prop.A.1, we can write it as∇rψP0(r) = 1
2E [(w − 〈w〉)(w − 〈w〉)ᵀ], which is clearly a

positive matrix. It is also known (see for instance Lemma 4 of [42]), that I(W0;Y0) is a concave function of r,
which implies that ψP0 is convex, which ends the proof.

Lemma A.6 (Properties of ΨPout ). Recall that ΨPout is de�ned as the free entropy of the second auxiliary channel
(4). More precisely, for q ∈ S+

K(ρ), we have:

ΨPout(q) ≡ E ln

∫

RK
dw

e−
1
2
‖w‖2

(2π)K/2
Pout

(
Ỹ0|q1/2V + (ρ− q)1/2w

)
.

Then ΨPout is continuous and convex on S+
K(ρ), and twice di�erentiable inside S+

K(ρ). Also,∇ΨPout(q) ∈ S+
K .

Proof. The continuity and di�erentiability of ΨPout is easy, and exactly similar to the �rst part of the proof of
Proposition 18 of [11]; it just follows from the hypothesis (H2) which allows to use continuity and di�erentiation
under the expectation, because all the domination hypotheses are easily veri�ed.

One can compute the gradient and Hessian matrix of ΨPout(q), for q inside S+
K(ρ), using Gaussian

integration by parts and the Nishimori identity. The calculation is tedious and essentially follows the steps of
Proposition 11 of [11]. Recall that u

Ỹ0
(x) ≡ lnPout(Ỹ0|x). We de�ne the average 〈−〉sc (where sc stands for

“scalar channel”) as

〈g(w)〉sc ≡
∫
RK DwPout(Ỹ0|(ρ− q)1/2w + q1/2V )g(w)
∫
RK DwPout(Ỹ0|(ρ− q)1/2w + q1/2V )

, (58)

for any continuous bounded function g. One arrives at:

∇ΨPout(q) =
1

2
E
〈
∇u

Ỹ0

(
(ρ− q)1/2W ∗ + q1/2V

)
∇u

Ỹ0

(
(ρ− q)1/2w + q1/2V

)ᵀ 〉
sc
. (59)

Note that this gradient is actually a symmetric matrix of size K ×K , as it is a gradient w.r.t. q, which is itself
a matrix of size K . The Hessian∇∇ᵀΨPout with respect to q is thus a 4-tensor. One can compute in the same
way:

∇∇ᵀΨPout(q) =
1

2
E
[(〈∇∇ᵀPout(Ỹ0|(ρ− q)1/2w + q1/2V )

Pout(Ỹ0|(ρ− q)1/2w + q1/2V )

〉
sc

(60)

−
〈
∇u

Ỹ0

(
(ρ− q)1/2W ∗ + q1/2V

)
∇u

Ỹ0

(
(ρ− q)1/2w + q1/2V

)ᵀ 〉
sc

)⊗2]
.

In this expression, ⊗2 means the “tensorized square” of a matrix, i.e. for any matrix M of size K ×K , M⊗2 is
a 4-tensor with indices M⊗2

l0l1l2l3
= Ml0l1Ml2l3 . From this expression, it is clear that the Hessian of ΨPout is

always positive, when seen as a matrix with rows and columns in SK , and thus ΨPout is convex, which ends
the proof of Lemma A.6.
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B Replica calculation
Our goal here is to provide an heuristic derivation of the replica formula of Theorem 3.1 using the replica
method, a powerful non-rigorous tool from statistical physics of disordered systems [13, 14]. This computation
is necessary to properly “guess” the formula that we then prove using the adaptive interpolation method. The
reader interested in the replica approach to neural networks and the commitee machine is invited to look as
well to some of the classical papers [51, 36, 20, 21, 19, 5].

The replica trick makes use of the formula, for a random variable x ∈ Rn and a strictly positive function
fn : Rn → R that depends on n:

lim
n→∞

1

n
E ln fn = lim

p→0+
lim
n→∞

1

np
lnEfpn. (61)

Note that the inversion of the two limits here is non-rigorous. Computing the moments Efp can often
be done for integers p ∈ N, and one can conjecture from it its value for every p > 0, before taking the limit
p→ 0+ in (61) by analytical continuation of the value for integer p.

In our calculation, we will use this formula to compute the free entropy of our system, f ≡ limn→∞ fn.
We will thus need the moments of the partition function, for integer p:

EZpn = E



∫

Rn×RK
dw

n∏

i=1

P0 ({wil
}
K
l=1

) m∏

µ=1

Pout


Yµ

∣∣∣
{

1√
n

n∑

i=1

Xµiwil

}K

l=1





p

,

= E




p∏

a=1

∫

Rn×RK
dwa

n∏

i=1

P0 ({wail
}
K
l=1

) m∏

µ=1

Pout


Yµ

∣∣∣
{

1√
n

n∑

i=1

Xµiw
a
il

}K

l=1




 .

The outer expectation is done over Xµi ∼ N (0, 1), w? and Y . Writing w? as w0 we have:

EZpn = EX
∫

Rm
dY

p∏

a=0

[∫

Rn×RK
dwa

n∏

i=1

P0

(
{wail}Kl=1

)

×
m∏

µ=1

Pout


Yµ

∣∣∣
{

1√
n

n∑

i=1

Xµiw
a
il

}K

l=1



]
.

To perform the average over X , we notice that, since it is an i.i.d. standard Gaussian matrix, then for every
a, µ, l, Zaµl ≡ n−1/2

∑n
i=1Xµiw

a
il follows a Gaussian multivariate distribution, with zero mean. This naturally

leads to introduce its covariance tensor, which is equal to:

EZaµlZbνl′ = δµνΣal
bl′

= δµνQ
al
bl′ , (62)

Qalbl′ ≡
1

n

n∑

i=1

wailw
b
il′ . (63)

For every a, b, Qab ∈ RK×K is the overlap matrix, and Σ is of size size (p+ 1)K × (p+ 1)K . Introducing δ
functions for �xing Q, we arrive at :

E [Zpn] =
∏

(a,r)

∫

R
dQarar

∏

{(a,r);(b,r′)}

∫

R
dQarbr′

[
Iprior({Qarbr′})× Ichannel({Qarbr′})

]
, (64)
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with:

Iprior({Qarbr′}) =

p∏

a=0

[∫

Rn×K
dwaP0(wa)

]
 ∏

{(a,l);(b,l′)}

δ

(
Qalbl′ −

1

n

n∑

i=1

wailw
b
il′

)
 , (65)

Ichannel({Qarbr′}) =

∫

Rm
dY

p∏

a=0

∫

Rm×K
dZa

p∏

a=0

Pout(Y |Za)e−
m
2

ln det Σ−mK(p+1)
2

ln 2π

exp


−1

2

m∑

µ=1

∑

a,b

∑

l,l′

ZaµlZ
b
µl′(Σ

−1)al
bl′


 . (66)

By Fourier expanding the delta functions in Iprior, and performing a saddle-point method, one obtains:

lim
n→∞

1

n
lnE [Zpn] = extrQ,Q̂

[
H(Q, Q̂)

]
, (67)

in which (recall α ≡ limn→∞m/n) :

H(Q, Q̂) ≡ 1

2

p∑

a=0

∑

l,l′

QalalQ̂
al
al −

1

2

∑

a6=b

∑

l,l′

Qalbl′Q̂
al
bl′ + ln I + α ln J, (68)

in which we de�ned:

I ≡
p∏

a=0

∫

RK
dwaP0(wa) exp


−1

2

p∑

a=0

∑

l,l′

Q̂alal′w
a
l w

a
l′ +

1

2

∑

a6=b

∑

l,l′

Q̂albl′w
a
l w

b
l′


 , (69)

J ≡
∫

R
dy

p∏

a=0

∫

RK

dZa

(2π)K(p+1)/2

Pout(y|Za)√
det Σ

exp


−1

2

p∑

a,b=0

K∑

l,l′=1

Zal Z
b
l′(Σ

−1)al
bl′


 . (70)

Our goal is to express H(Q, Q̂) as an analytical function of p, in order to perform the replica trick. To do
so, we will assume that the extremum of H is attained at a point in Q, Q̂ space such that a replica symmetry
property is veri�ed. More concretely, we assume:

∃Q0 ∈ RK×K s.t ∀a ∈ [|0, p|] ∀(l, l′) ∈ [|1,K|]2 Qalal′ = Q0
ll′ , (71)

∃q ∈ RK×K s.t ∀(a < b) ∈ [|0, p|]2 ∀(l, l′) ∈ [|1,K|]2 Qalbl′ = qll′ , (72)

and samely for Q̂0 and q̂. Note that Q0 is by de�nition a symmetric matrix, while q is also symmetric by our
assumption of replica symmetry. Under this ansatz, we obtain:

H(Q0, Q̂0, q, q̂) =
p+ 1

2
Tr[Q0Q̂0]− p(p+ 1)

2
Tr[qq̂] + ln I + α ln J. (73)

Remains now to compute an expression for I and J that is analytical in p, in order to take the limit p→ 0+.
This can be done easily, using the identity, for any symmetric positive matrix M ∈ RK×K and any vector
x ∈ RK : exp (xᵀ(M/2)x) =

∫
RK Dξ exp

(
ξᵀM1/2x

)
, in which Dξ is the standard Gaussian measure on RK .
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We obtain:

I =

∫

RK
Dξ
[∫

RK
dw P0(w) exp

[
−1

2
wᵀ(Q̂0 + q̂)w + ξᵀq̂1/2w

]]p+1

, (74)

J =

∫

R
dy

∫

RK
Dξ
[∫

RK
dZPout

{
y|(Q0 − q)1/2Z + q1/2ξ

}]p+1

. (75)

Our assumptions must be consistent in the sense that extrQ,Q̂
[
limp→0+ H(Q, Q̂)

]
= 0 (because EZ0

n = 1).

In the p→ 0+ limit, one easily gets J = 1 and I =
∫
RK dw P0(w) exp

[
−1

2w
ᵀQ̂0w0

]
. This implies that the

optimal overlap parameters satisfy Q̂0 = 0 and Q0
ll′ = EP0 [wlwl′ ]. In the end, we obtain the �nal formula for

the free entropy:

lim
n→∞

fn = extrq,q̂
{
−1

2
Tr[qq̂] + IP + αIC

}
, (76)

IP ≡
∫

RK
Dξ
∫

RK
dw0P0(w0) exp

[
−1

2
(w0)ᵀq̂w0 + ξᵀq̂1/2w0

]

× ln

[∫

RK
dwP0(w) exp

[
−1

2
wᵀq̂w + ξᵀq̂1/2w

]]
,

IC ≡
∫

R
dy

∫

RK
Dξ
∫

RK
DZ0Pout

{
y|(Q0 − q)1/2Z0 + q1/2ξ

}

× ln

[∫

RK
DZPout

{
y|(Q0 − q)1/2Z + q1/2ξ

}]
.

A known ambiguity of the replica method is that its result is given as an extremum, here over the set
S+
K(Q0) of positive symmetric matrices, such that (Q0 − q) is also a positive matrix. It is easy to show that

this form gives back the form given in Theorem 3.1, by assuming that this extremum is realized as a supq̂ infq .
Note that in the notations of Theorem 3.1, Q0 is denoted ρ and q̂ is denoted R.

C Generalization error
We detail here two di�erent possible de�nitions of the generalization error, and how they are related in our
system. Recall that we wish to estimate W ∗ from the observation of ϕout(XW

∗). In the following, we denote
E for the average over the (quenched) W ∗ and the data X , and 〈−〉 for the Gibbs average over the posterior
distribution of W . One can naturally de�ne the Gibbs generalization error as:

εGibbs
g ≡ 1

2
EW ∗,X

〈
[ϕout (XW )− ϕout (XW ∗)]2

〉
, (77)

and de�ne the Bayes-optimal generalization error as:

εBayes
g ≡ 1

2
EW ∗,X

[(
〈ϕout (XW )〉 − ϕout (XW ∗)

)2]
. (78)
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Using the Nishimori identity A.1, one can show that:

εBayes
g =

1

2
EX,W ∗

[
ϕout (XW ∗)2

]
+

1

2
EX,W ∗

[
〈ϕout (XW )〉2

]

− EX,W ∗ 〈ϕout (XW ∗)ϕout (XW )〉 ,

=
1

2
EX,W ∗

[
ϕout (XW ∗)2

]
− 1

2
EX,W ∗ 〈ϕout (XW ∗)ϕout (XW )〉 .

Using again the Nishimori identity one can write:

εGibbs
g = EX,W ∗

[
ϕout (XW ∗)2

]
− EX,W ∗ 〈ϕout (XW ∗)ϕout (XW )〉 ,

which shows that εGibbs
g = 2εBayes

g . Note �nally that since the distribution of X is rotationally invariant, the
quantity EX [ϕout (XW ∗)ϕout (XW )] only depends on the overlap q ≡W ᵀW ∗. As the overlap is shown to
concentrate under the Gibbs measure by Proposition 5.3, and as we expect that the value it concentrates on
is the optimum q∗ of the replica formula (such fact is proven, e.g., for random linear estimation problems in
[52]), the generalization error can itself be evaluated as a function of q∗. Examples where it is done include
[53, 3, 19, 11].

C.1 The generalization error at K = 2

In this subsection alone, we go back to the K = 2 case, instead of the K →∞ limit. From the de�nition of
the generalization error (see sec. C), one can directly give an explicit expression of this error in the K = 2

case. Recall our committee-symmetric assumption on the overlap matrix, which here reads

q =

(
qd + qa

2
qa
2

qa
2 qd + qa

2

)
.

For concision, we denote here sign(x) = σ(x). One obtains from (78):

1

2
− 2εBayes,K=2

g =

∫

R4

Dxσ [σ(x1) + σ(x2)] (79)

× σ

{
σ

[
(
qa
2

+ qd)x1 +
qa
2
x2 + x3

√
1− q2

a

2
− qaqd − q2

d

]

+σ


qa

2
x1 + (

qa
2

+ qd)x2 − x3
qa(qd + qa

2 )√
1− q2

a
2 − qaqd − q

2
d

+ x4

√√√√(1− q2
d)(1− (qa + qd)2)

1− q2
a
2 − qaqd − q

2
d





 .

Note that one could possibly simplify this expression by using an appropriate orthogonal transformation on x.
These integrals were then computed using Monte-Carlo methods to obtain the generalization error in the left
and middle plots of Fig. 2.

D The large K limit in the committee symmetric setting

We consider the large K limit2 for a sign activation function, and for di�erent priors on the weights. Since the
output is a sign, the channel is simply a delta function. We assume a committee symmetric solution, i.e. the

2A similar limit has been derived in the context of coding with sparse superposition codes [54]. There the large input alphabet
limit of the mutual information is considered after the thermodynamic limit n→∞ corresponding to the large codeword limit in this
coding context.
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matrices q and q̂ (q and R in the notations of Theorem 3.1) are of the type q = qd1K + qa
K 1K1ᵀK , with the unit

vector 1K = (1)Kl=1, and similarly for q̂. In the large K limit, this scaling of the order parameters is natural.
Indeed, assume that the covariance of the prior is Q0 = 1K (Q0 = ρ in the notations of Theorem 3.1). Since
both q and (Q0 − q) are assumed to be positive matrices, it is easily shown to imply that 0 ≤ qd ≤ 1 and
0 ≤ qa + qd ≤ 1.

D.1 Large K limit for sign activation function

In the following, we considerQ0 = σ21K . We are interested here in computing the leading order term in IC of
(76). Note that replacing σ2 by 1 in this equation only amounts to replacing q by q/σ2, so we can assume σ2 = 1

without loss of generality. We (abusively) write IC in (76) as IC =
∑

y=±1

∫
RK Dξ IC(y, ξ) log IC(y, ξ), with

the de�nition

IC(y, ξ) ≡
∫

RK
DZPout

{
y|(Q0 − q)1/2Z + q1/2ξ

}
. (80)

Here, we assumed a sign activation function and no noise, as well as a particular form for Q0 and q (see
the remarks above). Note that this implies that q1/2 =

√
qd1K +

√
qa+qd−

√
qd

K 1K1
ᵀ
K and that (Q0 − q)1/2 =

√
1− qd1K +

√
1−qa−qd−

√
1−qd

K 1K1ᵀK . All together, this gives the following explicit expression for IC(y, ξ) :

IC(y, ξ) ≡
∫

RK
DZ

× δ

{
y − sign

[
1√
K

K∑

l=1

sign
[√

1− qdZl +
(√

1− qa − qd −
√

1− qd
) 1ᵀKZ

K
+ (q1/2ξ)l

]]}
.

Introducing a new variable w ≡ 1ᵀKZ√
K

and a Fourier-transform of the then-introduced delta function, as well as
another variable u being the argument of the outer sign function in the previous equations, one obtains:

IC(y, ξ) =

∫

R

dwdŵ

2π

dudû

2π
eiwŵ+iuûδy,sign(u)

×
K∏

l=1

∫

R
Dze−iŵ

z√
K e
− iû√

K
sign

[
z+

[√
1−qa−qd

1−qd
−1

]
w√
K

+ 1√
1−qd

(q1/2ξ)l

]
.

Denote

λl(w, ξ) ≡
[√

1− qa − qd
1− qd

− 1

]
w√
K

+
1√

1− qd
(q1/2ξ)l,

such that

IC(y, ξ) =

∫

R

dwdŵ

2π

dudû

2π
eiwŵ+iuûδy,sign(u)

K∏

l=1

∫

R
Dze−iŵ

z√
K e
− iû√

K
sign[z+λl(w,ξ)].
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For 1 ≤ l ≤ K , one can rewrite the factorized integral in the last expression of IC(y, ξ) as:

IC(y, ξ) =

∫

R

dwdŵ

2π

dudû

2π
eiwŵ+iuûδy,sign(u)

K∏

l=1

J (λl(w, ξ), ŵ, û) , (81)

J (λl(w, ξ), ŵ, û) ≡ e−
λ2
l
2

+iλl
ŵ√
K

∫

R
Dzez(λl−i

ŵ√
K

)
e
− iû√

K
sign[z]

. (82)

We abusively dropped the dependency of λl on (w, ξ). Note the following identity:

F (α, iβ) ≡
∫

R
Dzeαz+iβ sign(z) = eα

2/2
[
cosβ + i sinβĤ(α)

]
, (83)

with Ĥ(x) = erf(x/
√

2). Using it in our previous expressions, we obtain:

J(λl, ŵ, û) = e−
1

2K
ŵ2

[
cos

(
û√
K

)
− i sin

(
û√
K

)
Ĥ

(
λl − i

ŵ√
K

)]
.

Note that by our committee-symmetry assumption, we have λl(w, ξ) = λl,0(ξ) + 1√
K
λ1(w, ξ) with λl,0 and

λ1 typically of order 1 when K →∞:

λl,0(ξ) ≡
√

qd
1− qd

ξl, (84)

λ1(w, ξ) ≡
[√

1− qa − qd
1− qd

− 1

]
w +

[√
qa + qd
1− qd

−
√

qd
1− qd

]
1ᵀKξ√
K
. (85)

Expanding J(λl, ŵ, û) as K →∞, we obtain using the known development of the error function:

J(λl, ŵ, û) = e−
1

2K
ŵ2

[
1− û2

2K
− iĤ [λl,0(ξ)]

û√
K
− i û [λ1(w, ξ)− iŵ]

K

√
2

π
e−

λl,0(ξ)2

2 +O(K−3/2)

]
.

This yields (putting back the (w, ξ) dependency):

K∏

l=1

J [λl(w, ξ), ŵ, û)] = e−
1
2
ŵ2

exp

[
− û

2

2
− iûS1 − i

√
2

π
û(λ1 − iŵ)Γ0 +

1

2
û2S2 +O(K−1/2)

]
, (86)

in which we de�ned the following quantities, that only depend on ξ (recall (84))

wξ(ξ) ≡
1√
K

K∑

l=1

ξl, Γ0(ξ) ≡ 1

K

K∑

l=1

e−
1
2
λl,0(ξ)2

,

S1(ξ) ≡ 1√
K

K∑

l=1

Ĥ(λl,0(ξ)), S2(ξ) ≡ 1

K

K∑

l=1

Ĥ(λl,0(ξ))2.

A detailed calculation actually shows that the previous expansion of (86) is valid up to O(K−1), and not only
O(K−1/2). Recall also (81), in which one can now readily perform the integration over all variables w, ŵ, u, û
to obtain (dropping the ξ dependency in wξ,Γ0, S1, S2):

IC(y, ξ) = H


−y

S1 +
√

2
πwξΓ0

√
qd+qa−

√
qd√

1−qd√
1− S2 − 2

πΓ2
0

qa
1−qd


+O(K−1), (87)
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in which H(x) ≡
∫∞
x Dz = 1

2

[
1− erf(x/

√
2)
]
. Note that all quantities wξ,Γ0, S1, S2 only depend on ξ via

its empirical measure, which implies that the integration over ξ ∈ RK will be tractable. We compute it in the
following, using theoretical physics methods. We denote the quantity that appears in (87) as a function of
wξ,Γ0, S1, S2:

G(y, wξ,Γ0, S1, S2) ≡ H


−y

S1 +
√

2
πwξΓ0

√
qd+qa−

√
qd√

1−qd√
1− S2 − 2

πΓ2
0

qa
1−qd


 .

Introducing once again delta functions and their Fourier transforms for wξ,Γ0, S1, S2, we write, starting from
(87):

IC =
∑

y=±1

∫

RK
DξIC(y, ξ) log IC(y, ξ)

=
∑

y=±1

∫
dwξdŵξ

2π

dΓ0dΓ̂0

2π

dS1dŜ1

2π

dS2dŜ2

2π
eiwŵ+iΓ0Γ̂0+iS1Ŝ1+iS2Ŝ2 G(y, wξ,Γ0, S1, S2)

× logG(y, wξ,Γ0, S1, S2)

[∫

RK
Dξe−iŵwξ(ξ)−iΓ̂0Γ0(ξ)−iŜ1S1(ξ)−iŜ2S2(ξ)

]
+O(K−1). (88)

The integral over ξ in (88) can be computed in the limit K →∞:

Λ ≡
∫

RK
Dξe−iŵwξ(ξ)−iΓ̂0Γ0(ξ)−iŜ1S1(ξ)−iŜ2S2(ξ)

=



∫

R
Dξ exp


−i ŵξ√

K
− i Γ̂0e

− qd
2(1−qd)

ξ2

K
− i

Ŝ1Ĥ
[√

qd
1−qd ξ

]

√
K

− i
Ŝ2Ĥ

[√
qd

1−qd ξ
]2

K







K

The large K expansion yields

Λ = exp

{
− 1

2
ŵ2 − iΓ̂

√
1− qd − Ŝ1ŵE

[
ξĤ

(√
qd

1− qd
ξ

)]

−
(

1

2
Ŝ2

1 + iŜ2

)
E

[
Ĥ

(√
qd

1− qd
ξ

)2
]}

+O(K−1) .

The expectations are taken with respect to a real variable ξ ∼ N (0, 1). These expectations are known by
properties of the error function:

E

[
Ĥ

(√
qd

1− qd
ξ

)2
]

=
2

π
arcsin qd ,

E
[
ξĤ

(√
qd

1− qd
ξ

)]
=

√
2qd
π
.

One can now compute the integrals over the “hat” variables in (88). Denote Γf0 ≡
√

2(1−qd)
π , and Sf2 ≡
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2
π arcsin qd. This yields:

IC =

∫

R2

DwDS1G

(
y, w,Γf0 ,

√
2(arcsin qd − qd)

π
S1 + w

√
2qd
π
, Sf2

)

logG

(
y, w,Γf0 ,

√
2(arcsin qd − qd)

π
S1 + w

√
2qd
π
, Sf2

)
. (89)

Note that

G

(
y, w,Γf0 ,

√
2(arcsin qd − qd)

π
S1 + w

√
2qd
π
, Sf2

)
= H


−y

√
2

π

√
arcsin qd − qdS1 + w

√
qd + qa√

1− 2
π (qa + arcsin qd)


 .

Making the change of variable Snew1 = S1 + w
√
qd+qa√

arcsin qd−qd
in (89), and de�ning γ ≡ 2

π (qa + arcsin qd), one
reaches:

IC =
∑

y=±1

∫

R
DxH

[
yx

√
γ

1− γ

]
logH

[
yx

√
γ

1− γ

]
+O(K−1).

The two values of y contribute in the same way, which �nally yields:

IC = 2

∫

R
DxH

[
x

√
γ

1− γ

]
logH

[
x

√
γ

1− γ

]
+O(K−1). (90)

Note that the parameter γ is naturally bounded to the interval [0, 1] by the conditions 0 ≤ qd ≤ 1 and
0 ≤ qa + qd ≤ 1.

D.2 The Gaussian prior

The prior part IP of the free entropy of (76) is very easy to evaluate in the Gaussian prior setting. We consider
a prior with covariance matrix Q0 = IK (we can simply rescale q by q/σ2 in the �nal expression for a �nite
variance Q0 = σ2IK as we already described). Performing the Gaussian integration in IP in (76) yields:

IP =
K

2
q̂d +

1

2
q̂a −

K − 1

2
log(1 + q̂d)−

1

2
log (1 + q̂d + q̂a) . (91)

D.3 The �xed point equations

From the de�nition of the free entropy (76) and the expansions for IP and IC obtained in (90) and (91), one
obtains the �xed point equations after having extremized over q̂d and q̂a (recall that α ≡ lim m

n ):

∂qa [IG(qd, qa) + αIC(qd, qa)] = 0, (92)
∂qd [IG(qd, qa) + αIC(qd, qa)] = 0, (93)

with IG(qd, qa) de�ned as:

IG(qd, qa) ≡
1

2
[qa +Kqd]−

K − 1

2
log

[
1

1− qd

]
− 1

2
log

[
1

1− qa − qd

]
,

IC(qd, qa) = 2

∫

R
DxH

[
x

√
γ

1− γ

]
logH

[
x

√
γ

1− γ

]
,
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and recall that γ ≡ 2
π (qa + arcsin qd).

The �xed point equations (92), (93) have di�erent behaviors depending on the scaling of α with the hidden
layer size K . We detail these di�erent behaviors in the following paragraphs.

D.3.1 Regime α = oK→∞(K)

In this regime (which in particular contains the case in which α stays of order 1 when K → ∞), the �xed
point equations (92), (93) can be simpli�ed as:

{
qd = 0,

qa = 2α(1− qa)∂IC∂qa
.

(94)

D.3.2 Regime α = ΘK→∞(K)

In this regime, we naturally de�ne α̃K ≡ α/K , such that α̃ will remain of order 1. One can show that the
solutions of the �xed point equations (92), (93) must satisfy the following scaling : qa + qd = 1 − χ

K , with
χ ≥ 0 a reaching a �nite value when K →∞. The �xed point equations in terms of χ and qd read:




qd = 2(1− qd)

(
1√

1−q2
d

− 1

)
α̃∂IC∂qa

,

χ−1 = 2α̃∂IC∂qa
.

(95)

Note that the State Evolution (SE) computation of Figure 2 was performed by solving the �xed point
equations (94) and (95) (depending on the regime of α).

The stability of the qd = 0 solution: It is easy to show that (95) always admit what we call a non-specialized
solution, i.e. a solution with qd = 0. This solution stops to be optimal in term of the free energy at a �nite
α̃spec ' 7.65. However, one can show that this solution will remain linearly stable for every α̃. Actually, it is
linearly stable in the much broader regime α = o(K2). Going back to the initial formulation of the �xed point
equations (92),(93), and adding the correct time indices to iterate them, one obtains:

qt+1
d =

F (qtd, q
t
a)

1 + F (qtd, q
t
a)
, (96)

qt+1
a =

G(qtd, q
t
a)(

1 + F (qtd, q
t
a)
) (

1 + F (qtd, q
t
a)G(qtd, q

t
a)
) , (97)

with F and G de�ned as:

F (qd, qa) ≡
2α

K − 1
[∂qdIC − ∂qaIC ] , (98)

G(qd, qa) ≡
2αK

K − 1

[
∂qaIC −

1

K
∂qdIC

]
. (99)

We focus on the behavior of (96) around qd = 0. Given our previous expansion of IC in the K → ∞
limit, and (98), one easily sees that for α = oK→∞(K2), ∂F∂qd |qd=0 →K→∞ 0, which means the qd = 0 solution
always remains linearly stable.

However, assume now that α = Θ(K2). Performing a similar calculation to the one shown in sec. D.1,
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one can show the following expansion:

IC(qd, qa) = I
(0)
C (qd, qa) +

1

K
I

(1)
C (qd, qa) +O

(
1

K2

)
.

The term of ∂F
∂qd
|qd=0 arising from I

(1)
C will thus have a possibly non-zero contribution in the K →∞ limit, as

seen from (98).
To summarize, the non-specialized solution always remains linearly stable in the large K limit at least for

α� K2. This implies that in this regime, Approximate Message Passing can not escape the non-specialized
�xed point to �nd the specialized solution, as seen in Fig. 3. For α of order larger than K2, one would have to
explicitly compute I(1)

C in order to check that ∂F
∂qd
|qd=0 6= 0 to show that the non-specialized solution is indeed

linearly unstable. This tedious calculation is left for future work.

D.4 The generalization error at large K

Recall the de�nition of the generalization error in (78). From the remarks of section C, one can compute it at
large K by applying the same techniques used to compute the channel integral IC in sec. D.1. One obtains
after a tedious, yet straightforward, calculation:

εBayes
g =

1

2
εGibbs
g =

1

π
arccos

[
2

π
(qa + arcsin qd)

]
+O(K−1). (100)

This expression is the one used in the computation of the generalization error in the left panel of Fig. 3.

E Linear networks show no specialization
An easy yet interesting case is a linear network with identical weights in the second layer and a �nal output
function σ : R → R, i.e a network in which ϕout(h) = σ

(
1√
K

∑K
l=1 hl

)
. For clarity, in this section, we

decompose the channel as Pout(y|ϕout(Z)) for Z ∈ RK instead of Pout(y|Z). We will compute the channel
integral IC of the replica solution (76). For simplicity, we assume that Q0 = 1K the identity matrix (i.e w has
identity covariance matrix under P0). Note that (76) gives IC as IC =

∫
R dy

∫
RK DξIC(y, ξ) log IC(y, ξ). One

can easily derive:

IC(y, ξ) = e−
1
2
ξᵀ(1K−q)−1qξ

∫

R2

dudû

2π
eiuûPout(y|σ(u))

×
∫

RK

dZ√
(2π)K det(1K − q)

e−
1
2
Zᵀ(1K−q)−1Z+ZᵀX(û,xi),

in which we denoted X(û, xi) , (1K − q)−1q1/2ξ − iû√
K
1K , with the unit vector 1K = (1)Kl=1. The inner

integration over Z can be done, as well as the integration over û:

IC(y, ξ) =
1√

1− 1
K 1ᵀKq1K

∫

R

du√
2π
Pout(y|σ(u)) exp


−

(
u− 1√

K
1ᵀRq

1/2ξ
)2

2
(
1− 1

K 1ᵀKq1K
)


 .

So we can formally write the total dependency of IC(y, ξ) on ξ and on q as

IC(y, ξ) = IC

(
y,

1√
K

1ᵀKq
1/2ξ,

1

K
1ᵀKq1K

)
.
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Note that we have the following identity, for any �xed vector x ∈ RK and smooth real function F :
∫

RK
DξF (xᵀξ) =

1√
2πxᵀx

∫

R
duF (u)e−

u2

2xᵀx . (101)

In the end, if we denote Γ(q) , 1
K 1ᵀKq1K , we have:

IC =

∫

R
dy

1√
2πΓ(q)

∫

R
dve
− v2

2Γ(q) IC(v, y) log IC(v, y), (102)

IC(v, y) ≡ 1√
2π(1− Γ(q))

∫

R
duPout(y|σ(u)) exp

[
− 1

2 (1− Γ(q))
(u− v)2

]
. (103)

Note that by hypothesis, both q and 1K − q are positive matrices, so 0 ≤ Γ(q) ≤ 1. As these equations show,
IC only depends on Γ(q) = K−1

∑
l,l′ qll′ . From this one easily sees that extremizing over q implies that the

optimal q̂ satis�es q̂ll′ = q̂/K for some real q̂. Subsequently, all qll′ are also equal to a single value, that we
can denote q

K . This shows that this network never exhibits a specialized solution.

F Update functions and AMP derivation
AMP can be seen as Taylor expansion of the loopy belief-propagation (BP) approach [13, 14, 55], similar to
the so-called Thouless-Anderson-Palmer equation in spin glass theory [35]. While the behaviour of AMP can
be rigorously studied [17, 18, 56], it is useful and instructive to see how the derivation can be performed in
the framework of belief-propagation and the cavity method, as was pioneered in [36, 38] for the single layer
problem. The derivation uses the Generalized AMP notations of [16] and follows closely the one of [26].

F.1 De�nition of the update functions

Let’s consider the distributions probabilities Qout and Q0, closely related to the inference problems eq. (3) and
eq. (4):

Qout(z;ω, y, V ) ≡ 1

ZPout

e−
1
2

(z−ω)ᵀV −1(z−ω)Pout(y|z); Q0(W ; Σ, T ) ≡ 1

ZP0

P0(W )e−
1
2
W ᵀΣ−1W+T ᵀΣ−1W .

We de�ne the update functions gout, ∂ωgout, fw and fc, which will be useful later in the algorithm:

gout(ω, y, V ) ≡ ∂ω log(ZPout) = V −1EQout [z − ω] ,

∂ωgout(ω, y, V ) = V −1EQout [(z − ω)(z − ω)ᵀ]− V −1 − goutg
ᵀ
out ,

fw(Σ, T ) ≡ ∂Σ−1T logZP0 = EQ0 [W ] ,

fc(Σ, T ) ≡ ∂Σ−1T fw = EQ0 [WW ᵀ]− fwfᵀw .

Note that gout is the mean of V −1(z − ω) with respect tor Qout and fw the mean of Q0.

F.2 Derivation of the Approximate Message Passing algorithm

F.2.1 Relaxed BP equations

Lets consider a set of messages {mi→µ, m̃µ→i}i=1..n,µ=1..m on the bipartite factor graph corresponding to
our problem Fig. 4. These messages correspond to the marginal probabilities of Wi if we remove the edges
i→ µ or µ→ i. The belief propagation (BP) equations (or sum-product equations) can be formulated as the
following [14, 55], where Wi = (wil)l=1..K ∈ RK :
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m̃µ→i

mi→µ

Pout (Yµ|{XµWi}ni=1)
µ = 1...m

Wi ∈ RK
i = 1...n

P0(Wi)
i = 1...n

Figure 4: Factor graph representation of the committee machine (for n = 4 and m = 3). The variable (circle)
Wi ∈ RK needs to satisfy a prior constraint (square) P0 and a constraint accounting for the fully connected layer,
that correlates all the variables together.





mt+1
i→µ(Wi) =

1

Zi→µ
P0(Wi)

m∏

k 6=µ
m̃t
ν→i(Wi) ,

m̃t
µ→i(Wi) =

1

Zµ→i

∫ n∏

j 6=i
dWjPout


Yµ|

1√
n

n∑

j=1

XµjWj


mt

j→µ(Wj) .

(104)

The term inside Pout can be decouple using its K-dimensional Fourrier transform

Pout


Yµ|

1√
n

n∑

j=1

XµjWj


 =

1

(2π)K/2

∫

RK
dξ exp


iξᵀ


 1√

n

n∑

j=1

XµjWj


 P̂out(Yµ, ξ)


 .

Injecting this representation in the BP equations, (104) becomes

m̃t
µ→i(Wi) =

1

(2π)K/2Zµ→i

∫

RK
dξP̂out(Yµ, ξ) exp

(
iξᵀ

1√
n
XµiWi

)

×
n∏

j 6=i

∫

RK
dWjm

t
j→µ(Wj) exp

(
iξᵀ

1√
n
XµjWj)

)

︸ ︷︷ ︸
≡Ij

,

and we de�ne the mean and variance of the messages




Ŵ t
j→µ ≡

∫

RK
dWjm

t
j→µ(Wj)Wj ,

Ĉtj→µ ≡
∫

RK
dWjm

t
j→µ(Wj)WjW

ᵀ
j − Ŵ

t
j→µ(Ŵ t

j→µ)ᵀ .

(105)

In the limit n→∞ the term Ij can be easily expanded and expressed using Ŵ and Ĉ

Ij =

∫

RK
dWjm

t
j→µ(Wj) exp

(
iξᵀ

Xµj√
n
Wj)

)
' exp

(
i
Xµj√
n
ξᵀŴ t

j→µ −
1

2

X2
µj

n
ξᵀĈtj→µ , ξ

)
,
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and �nally using the inverse Fourier transform, we obtain

m̃t
µ→i(Wi) '

1

(2π)KZµ→i

∫

RK
dzPout(Yµ, z)

∫

RK
dξe−iξ

ᵀzeiXµiξ
ᵀWi

×
n∏

j 6=i
exp

(
i
Xµj√
n
ξᵀŴ t

j→µ −
1

2

X2
µj

n
ξᵀĈtj→µξ

)

=
1

(2π)KZµ→i

∫

RK
dzPout(Yµ, z)

∫

RK
dξe−iξ

ᵀzeiXµiξ
ᵀWie

iξᵀ
n∑
j 6=i

Xµj√
n
Ŵ t
j→µ

e
− 1

2
ξᵀ

n∑
j 6=i

X2
µj
n
Ĉtj→µξ

=
1

(2π)KZµ→i

∫

RK
dzPout(Yµ, z)

√
(2π)K

det(V t
iµ)

e
− 1

2

(
z−

Xµi√
n
Wi−ωtiµ

)ᵀ
(V tiµ)−1

(
z−

Xµi√
n
Wi−ωtiµ

)
︸ ︷︷ ︸

≡Hiµ

,

where we de�ned the mean and variance, depending on the node i

ωtiµ ≡
1√
n

n∑

j 6=i
XµjŴ

t
j→µ , V t

iµ ≡
1

n

n∑

j 6=i
X2
µjĈ

t
j→µ . (106)

Again, in the limit n→∞, the term Hiµ can be expanded:

Hiµ ' e−
1
2(z−ωtiµ)

ᵀ
(V tiµ)−1(z−ωtiµ)

(
1 +

Xµi√
n
W ᵀ
i (V t

iµ)−1(z − ωtiµ)− 1

2

X2
µi

n
W ᵀ
i (V t

iµ)−1Wi

+
1

2

X2
µi

n
W ᵀ
i (V t

iµ)−1(z − ωtiµ)(z − ωtiµ)ᵀ(V t
iµ)−1Wi

)
.

Gathering all pieces, the message m̃µ→i can be expressed using de�nitions of gout and ∂ωgout

m̃t
µ→i(Wi) ∼

1

Zµ→i

{
1 +

Xµi√
n
W ᵀ
i gout(ω

t
iµ, Yµ, V

t
iµ) +

1

2

X2
µi

n
W ᵀ
i goutg

ᵀ
out(ω

t
iµ, Yµ, V

t
iµ)Wi+

1

2

X2
µi

n
W ᵀ
i ∂ωgout(ω

t
iµ, Yµ, V

t
iµ)Wi

}

=
1

Zµ→i

{
1 +W ᵀ

i B
t
µ→i +

1

2
W ᵀ
i B

t
µ→i(B

t
µ→i)

ᵀ(Wi)−
1

2
W ᵀ
i A

t
µ→iWi

}

=

√
det(Atµ→i)

(2π)K
exp

(
−1

2

(
W ᵀ
i − (Atµ→i)

−1Bt
µ→i
)ᵀ
Atµ→i

(
W ᵀ
i − (Atµ→i)

−1Bt
µ→i
))

,

with the following de�nitions of Aµ→i and Bµ→i:

Bt
µ→i ≡

Xµi√
n
gout(ω

t
iµ, Yµ, V

t
iµ), Atµ→i ≡ −

X2
µi

n
∂ωgout(ω

t
iµ, Yµ, V

t
iµ) (107)

Using the set of BP equations (104), we can �naly close the set of equations only over {mi→µ}iµ:

mt+1
i→µ(Wi) =

1

Zi→µ
P0(Wi)

m∏

ν 6=µ

√
det(Atν→i)

(2π)K
e−

1
2(Wi−(Atν→i)

−1Btν→i)
ᵀ
Atν→i(Wi−(Atν→i)

−1Btν→i).

In the end, computing the mean and variance of the product of gaussians, the messages are updated using
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fw and fc:




Ŵ t+1
i→µ = fw(Σt

µ→i, T
t
µ→i) ,

Ĉt+1
i→µ = fc(Σ

t
µ→i, T

t
µ→i) ,





Σt
µ→i ≡

(
m∑
ν 6=µ

Atν→i

)−1

,

T tµ→i ≡ Σt
µ→i

(
m∑
ν 6=µ

Bt
ν→i

)
.

(108)

Summary of the Relaxed BP set of equations:
In the end, using eq .(105,106,107, 108), relaxed BP equations can be written as the following set of equations:





ωtiµ =
n∑
j 6=i

Xµj√
n
Ŵ t
j→µ

V t
iµ =

n∑
j 6=i

X2
µj

n Ĉtj→µ

Bt
µ→i =

Xµi√
n
gout(ω

t
iµ, Yµ, V

t
iµ)

Atµ→i = −X2
µi

n ∂ωgout(ω
t
iµ, Yµ, V

t
iµ)





Σt
µ→i =

(
m∑
ν 6=µ

Atν→i

)−1

T tµ→i = Σt
µ→i

(
m∑
ν 6=µ

Bt
ν→i

)

Ŵ t+1
i→µ = fw(Σt

µ→i, T
t
µ→i)

Ĉt+1
i→µ = fc(Σ

t
µ→i, T

t
µ→i)

(109)

F.2.2 Approximate Message Passing algorithm

The relaxed BP algorithm uses O(n2) messages. However all the messages depend weakly on the target node.
On a tree, the missing message is negligible, that allows us to expand the previous relaxed BP equations (109)
to make appear the Onsager term at a previous time step, and reduce the number of messages to O(n). We
de�ne the following estimates and parameters based on the complete set of messages:




ωtµ ≡
n∑
j=1

Xµj√
n
Ŵ t
j→µ

V t
µ ≡

n∑
j=1

X2
µj

n Ĉtj→µ





Σt
i ≡

(
m∑
ν=1

Atν→i

)−1

T ti ≡ Σt
i

(
m∑
ν=1

Bt
ν→i

) (110)

Let’s now expand the previous messages eq. (109), making appear these new target-independent messages:

• Σt
µ→i

Σt
µ→i =




m∑

ν 6=µ
Atν→i



−1

=

(
m∑

ν=1

Atν→i −Atµ→i

)−1

=




m∑

ν=1

Atν→i


IK×K −

(
m∑

ν=1

Atν→i

)−1

Atµ→i





−1

=


IK×K −

(
m∑

ν=1

Atν→i

)−1

Atµ→i



−1(

m∑

ν=1

Atν→i

)−1

=
(
IK×K − Σt

iA
t
µ→i
)−1

︸ ︷︷ ︸
'IK×K+ΣtiA

t
µ→i+O(n−1)

Σt
i ' Σt

i +O
(

1

n

)

• T tµ→i

T tµ→i = Σt
µ→i




m∑

ν 6=µ
Bt
ν→i


 =

(
Σt
i +O

(
1

n

))( m∑

ν=1

Bt
ν→i −Bt

µ→i

)

= T ti − Σt
iB

t
µ→i +O

(
1

n

)
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• Ŵ t+1
i→µ

Ŵ t+1
i→µ = fw(Σt

µ→i, T
t
µ→i) = fw

(
Σt
i, T

t
i − Σt

iB
t
µ→i
)

+O
(

1

n

)

' fw
(
Σt
i, T

t
i

)
− dfw

dT

∣∣∣∣
(Σti,T

t
i )

Σt
iB

t
µ→i

= fw
(
Σt
i, T

t
i

)
︸ ︷︷ ︸

=Ŵ t+1
i

−
(
Σt
i

)−1
fc
(
Σt
i, T

t
i

)
Σt
i︸ ︷︷ ︸

=Ĉt+1
i

Bt
µ→i︸ ︷︷ ︸

'
Xµi√
n
gout(ωtµ,Yµ,V

t
µ)

= Ŵ t+1
i − Xµi√

n

(
Σt
i

)−1
Ĉt+1
i Σt

igout(ω
t
µ, Yµ, V

t
µ) +O

(
1

n

)

• Ĉt+1
i→µ

Let’s denote for convenience, E =
(
Σt
i

)−1
Ĉt+1
i Σt

igout(ω
t
µ, Yµ, V

t
µ). Then

Ĉt+1
i→µ = EQ0

[
Ŵ t
i→µ(Ŵ t

i→µ)ᵀ
]
− EQ0

[
Ŵ t
i→µ

]
EQ0

[
Ŵ t
i→µ

]ᵀ

= EQ0

[(
Ŵ t
i −

Xµi√
n
E
)(

Ŵ t
i −

Xµi√
n
E
)ᵀ]
− EQ0

[
Ŵ t
i −

Xµi√
n
E
]
EQ0

[
Ŵ t
i −

Xµi√
n
E
]ᵀ

= EQ0

[
Ŵ t
i (Ŵ

t
i )
ᵀ
]
− EQ0

[
Ŵ t
i

]
EQ0

[
Ŵ t
i

]ᵀ
+O

(
1√
n

)
= Ĉt+1

i +O
(

1√
n

)

• gout(ω
t
iµ, Yµ, V

t
iµ)

gout(ω
t
iµ, Yµ, V

t
iµ) = gout

(
ωtµ −

Xµi√
n
Ŵ t
i→µ, Yµ, V

t
µ −

X2
µi

n
Ĉti→l

)

= gout

(
ωtµ, Yµ, V

t
µ

)
− Xµi√

n

∂gout

∂ω

(
ωtµ, Yµ, V

t
µ

)
Ŵ t
i→µ︸ ︷︷ ︸

=Ŵ t
i +O

(
1√
n

)+O
(

1

n

)

= gout

(
ωtµ, Yµ, V

t
µ

)
− Xµi√

n

∂gout

∂ω

(
ωtµ, Yµ, V

t
µ

)
Ŵ t
i +O

(
1

n

)

• V t
µ

V t
µ =

n∑

i=1

X2
µi

n
Ĉti→l =

n∑

i=1

X2
µi

n
Ĉti +O

(
1

n3/2

)

• ωtµ

ωtµ =

n∑

i=1

Xµi√
n
Ŵ t
i→µ =

n∑

i=1

Xµi√
n

(
Ŵ t
i −Xµi

(
Σt−1
i

)−1
ĈtiΣ

t−1
i gout(ω

t−1
µ , Yµ, V

t−1
µ ) +O

(
1

n

))

=

n∑

i=1

Xµi√
n
Ŵ t
i −

n∑

i=1

X2
µi

n

(
Σt−1
i

)−1
ĈtiΣ

t−1
i gout(ω

t−1
µ , Yµ, V

t−1
µ ) +O

(
1

n3/2

)
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•
(
Σt
i

)−1

(
Σt
i

)−1
=

m∑

µ=1

Atµ→i = −
m∑

µ=1

X2
µi∂ωgout(ω

t
iµ, Yµ, V

t
iµ) = −

m∑

µ=1

X2
µi∂ωgout(ω

t
µ, Yµ, V

t
µ) +O

(
1

n3/2

)

• T ti

T ti = Σt
i




m∑

µ=1

Bt
µ→i


 = Σt

i

m∑

µ=1

Xµi√
n
gout(ω

t
iµ, Yµ, V

t
iµ)

= Σt
i

m∑

µ=1

Xµi√
n

(
gout

(
ωtµ, Yµ, V

t
µ

)
− Xµi√

n

∂gout

∂ω

(
ωtµ, Yµ, V

t
µ

)
Ŵ t
i +O

(
1

n

))

= Σt
i




m∑

µ=1

Xµi√
n
gout

(
ωtµ, Yµ, V

t
µ

)
−
X2
µi

n

∂gout

∂ω

(
ωtµ, Yµ, V

t
µ

)
Ŵ t
i


+O

(
1

n3/2

)

The AMP algorithm follows naturally the rBP updates (109) using the expanded estimates of the mean and
variance ωµ, Vµ, Ti and Σi, and �nally reads in pseudo language:

Algorithm 2 Approximate Message Passing for the committee machine
Input: vector Y ∈ Rm and matrix X ∈ Rm×n:
Initialize: gout,µ = 0,Σi = IK×K for 1 ≤ i ≤ n and 1 ≤ µ ≤ m at t = 0.
Initialize: Ŵi ∈ RK and Ĉi, ∂ωgout,µ ∈ S+

K for 1 ≤ i ≤ n and 1 ≤ µ ≤ m at t = 1.
repeat

Update of the mean ωµ ∈ RK and covariance Vµ ∈ S+
K :

ωtµ =
n∑
i=1

(Xµi√
n
Ŵ t
i −

X2
µi

n

(
Σt−1
i

)−1
ĈtiΣ

t−1
i gt−1

out,µ

)
| V t

µ =
n∑
i=1

X2
µi

n Ĉti

Update of gout,µ ∈ RK and ∂ωgout,µ ∈ S+
K :

gtout,µ = gout(ω
t
µ, Yµ, V

t
µ) | ∂ωg

t
out,µ = ∂ωgout(ω

t
µ, Yµ, V

t
µ)

Update of the mean Ti ∈ RK and covariance Σi ∈ S+
K :

T ti = Σt
i

( m∑
µ=1

Xµi√
n
gtout,µ −

X2
µi

n ∂ωg
t
out,µŴ

t
i

)
| Σt

i = −
( m∑
µ=1

X2
µi

n ∂ωg
t
out,µ

)−1

Update of the estimated marginals Ŵi ∈ RK and Ĉi ∈ S+
K :

Ŵ t+1
i = fw(Σt

i, T
t
i ) | Ĉt+1

i = fc(Σ
t
i, T

t
i )

t = t+ 1
until Convergence on Ŵ , Ĉ .
Output: Ŵ and Ĉ .

G State evolution equations from AMP
In this section, W ? denotes the ground truth weights of the teacher and we de�ne the overlap parameters at
time t, mt, σt, qt, Q and that respectively measure the correlation of the AMP estimator with the ground truth,
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its variance and the norms of student and teacher weights:




mt ≡ EW ? lim
n→∞

1

n

n∑

i=1

Ŵ t
i (W

?
i )ᵀ ,

qt ≡ EW ? lim
n→∞

1

n

n∑

i=1

Ŵ t
i (Ŵ

t
i )
ᵀ ,

and





σt ≡ EW ? lim
n→∞

1

n

n∑

i=1

Ĉti .

Q ≡ EW ? lim
n→∞

1

n

n∑

i=1

W ?
i (W ?

i )ᵀ ,

The aim is to derive the asymptotic behaviour of these overlap parameters, called state evolution. The idea is
to compute the overlap distributions starting with the relaxed BP equations eq. (109).

G.1 Messages distribution

In order to get the asymptotic behaviour of the overlap parameters, we need �rst to compute the distribution of
Σt
µ→i and T tµ→i. Besides, we recall that in our model, the output has been generated by a teacher according to

Yµ = ϕ0
out

(
1√
n
W ?Xµ, A

)
. We de�ne zµ ≡ 1√

n
W ?Xµ = 1√

n

∑n
i=1XµiW

?
i and zµ→i ≡ 1√

n

∑n
j 6=iXµjW

?
j .

And it useful to recall EX [Xµi] = 0 and EX [X2
µi] = 1.

• ωtµ→i
Under belief propagation assumption messages are independent. ωtµ→i is thus the sum of independent

variables and follows a gaussian distribution. Let’s compute the �rst two moments, using expansions of the
relaxed BP equations eq. (109):

EX
[
ωtµ→i

]
=

1√
n

n∑

j 6=i
EX [Xµj ] Ŵ

t
j→µ = 0 ,

EX
[
ωtµ→i(ω

t
µ→i)

ᵀ] =
1

n

n∑

j 6=i,k 6=i
EX [XµjXµk] Ŵ

t
j→µ(Ŵ t

k→µ)ᵀ =

n∑

j 6=i
EX
[
X2
µj

]
Ŵj→µ(Ŵj→µ)ᵀ

=
1

n

n∑

j 6=i
Ŵ t
j→µ(Ŵ t

j→µ)ᵀ =
1

n

n∑

i=1

Ŵ t
i (Ŵ

t
i )
ᵀ +O

(
1/n3/2

)
−→
n→∞

qt .

• zµ

EX [zµ] =
1√
n

n∑

i=1

EX [Xµi]W
?
i = 0 ,

EX,W ?

[
zµz

ᵀ
µ

]
= EW ?

1

n

n∑

j=1,k=1

EX [XµjXµk]W
?
j (W ?

k )ᵀ = EW ?
1

n

n∑

i=1

W ?
i (W ?

i )ᵀ −→
n→∞

Q .

• zµ and ωtµ→i

EX,W ?

[
ωtµ→iz

ᵀ
µ

]
= EW ?

1

n

n∑

j 6=i,k=1

EX [XµjXµk] Ŵ
t
j→µ(W ?

k )ᵀ = EW ?
1

n

n∑

j 6=i
Ŵ t
j→µ(W ?

j )ᵀ

= EW ?
1

n

n∑

i=1

Ŵ t
i (W

?
i )ᵀ +O

(
1/n3/2

)
−→
n→∞

mt .

Hence asymptotically (zµ, ωtµ→i) follow a Gaussian distribution with covariance matrix Qt =

[
Q mt

mt qt

]
.
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• Vµ→i concentrates around its mean:

EX,W ?

[
V t
µ→i
]

= EW ?
1

n

n∑

j 6=i
EX
[
X2
µj

]
Ĉtj→µ = EW ?

1

n

n∑

j 6=i
Ĉtj→µ = EW ?

1

n

n∑

i

Ĉti +O
(

1/n3/2
)
−→
n→∞

σt .

Let’s de�ne other order parameters, that will appear in the following:




q̂t ≡ αEω,z,A
[
gout(ω, ϕ

0
out(z,A), σt)gout(ω, ϕ

0
out(z,A), σt)ᵀ

]
,

m̂t ≡ αEω,z,A
[
∂zgout(ω, ϕ

0
out(z,A), σt)

]
,

χ̂t ≡ αEω,z,A
[
−∂ωgout(ω, ϕ0

out(z,A), σt)
]
.

• T tµ→i can be expanded around zµ→i:

(
Σt
µ→i
)−1

T tµ→i =




m∑

ν 6=µ
Bt
ν→i


 =




m∑

ν 6=µ

1√
n
Xνigout(ω

t
ν→i, ϕ

0
out


 1√

n

n∑

j 6=i
XνjW

?
j +XνiW

?
i , A


 , V t

ν→i)




=




m∑

ν 6=µ

1√
n
Xνigout(ω

t
ν→i, ϕ

0
out (zν→i, A) , V t

ν→i)


+




m∑

ν 6=µ

1

n
X2
νi∂zgout(ω

t
ν→i, ϕ

0
out (zν→i, A) , V t

ν→i)


W ?

i .

• Σt
µ→i

(
Σt
µ→i
)−1

=

m∑

ν 6=µ
Atν→i = −

m∑

ν 6=µ

1

n
X2
νi∂ωgout(ω

t
ν→i, Yν , V

t
ν→i)

= −
m∑

ν 6=µ

1

n
X2
νi∂ωgout(ω

t
ν→i, ϕ

0
out (zν→i, A) , V t

ν→i) +O
(

1/n3/2
)
.

Hence taking the average and the large size limit, the �rst moments of the variables Σt
µ→i and T tµ→i read:





Eω,z,A,X
[(

Σt
µ→i

)−1
T tµ→i

]
−→
n→∞

m̂tW ?
i ,

Eω,z,A,X
[(

Σt
µ→i

)−1
T tµ→i

(
T tµ→i

)ᵀ (
Σt
µ→i

)−1
]
−→
n→∞

q̂t ,

Eω,z,A,X
[(

Σt
µ→i

)−1
]
−→
n→∞

χ̂t .

And �nally T tµ→i ∼ (χ̂t)−1
(
m̂tW ?

i + (q̂t)1/2ξ
)

with ξ ∼ N (0,1) and
(

Σt
µ→i

)−1
∼ (χ̂t)−1 .

G.2 State evolution equations - Non Bayes optimal case

Let’s de�ne the following notations:

T t[W ?, ξ] ≡ (χ̂t)−1
(
m̂tW ? + (q̂t)1/2ξ

)

Σt ≡ (χ̂t)−1
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Gathering above results, the state evolution equations read:




mt+1 = EW ? lim
n→∞

1

n

n∑

i=1

Ŵ t
i (W

?
i )ᵀ = EW ?,ξ

[
fw
(
Σt, T t[W ?, ξ]

)
(W ?)ᵀ

]

qt+1 = EW ? lim
n→∞

1

n

n∑

i=1

Ŵ t+1
i (Ŵ t+1

i )ᵀ = EW ?,ξ

[
fw
(
Σt, T t[W ?, ξ]

)
fw
(
Σt, T t[W ?, ξ]

)ᵀ]

σt+1 = EW ? lim
n→∞

1

n

n∑

i=1

Ĉt+1
i = EW ?,ξ

[
fc
(
Σt, T t[W ?, ξ]

)]

and




q̂t = αEω,z,A
[
gout(ω, ϕ

0
out(z,A), σt)gout(ω, ϕ

0
out(z,A), σt)ᵀ

]

= α

∫
dPA(A)

∫
dzdωN

(
z, ω; 0,Qt

)
gout(ω, ϕ

0
out(z,A), σt)gout(ω, ϕ

0
out(z,A), σt)ᵀ

m̂t = αEω,z,A
[
∂zgout(ω, ϕ

0
out(z,A), σt)

]

= α

∫
dPA(A)

∫
dzdωN

(
z, ω; 0,Qt

)
∂zgout(ω, ϕ

0
out(z,A), σt)

χ̂t = αEω,z,A
[
−∂ωgout(ω, ϕ0

out(z,A), σt)
]

= −α
∫
dPA(A)

∫
dzdωN

(
z, ω; 0,Qt

)
∂ωgout(ω, ϕ

0
out(z,A), σt)

G.3 State evolution equations - Bayes optimal case

In the bayes optimal case, the student knows all the parameters of the teacher and then P ?0 = P0, ϕ0
out = ϕout,

mt = qt and q̂t = m̂t = χ̂t, σt = Q− qt and then, naturally

T t[W ?, ξ] ≡W ? + (q̂t)−1/2ξ ,

Σt ≡ (q̂t)−1 .

In the Bayes-optimal case, the set of state evolution equations reduces and simpli�es to:




qt+1 = EW ?,ξ

[
fw
(
Σt, T t[W ?, ξ]

)
fw
(
Σt, T t[W ?, ξ]

)ᵀ]
,

q̂t = αEω,z,A
[
gout(ω, ϕout(z,A), σt)gout(ω, ϕout(z,A), σt)ᵀ

]
,

(111)

where (z, ω) ∼ Nz,ω
(
0, 0;Qt

)
with Qt =

[
Q qt

qt qt

]
.

G.4 State evolution - Consistence between replicas and AMP - Bayes optimal case

State evolution - AMP
Using the change of variable ξ ← ξ +

(
q̂t
)1/2

W ?, eq. (111) becomes:

qt+1 = Eξ
[
ZP0

(
(q̂t)1/2ξ, (q̂t)−1

)
fw

(
(q̂t)1/2ξ, (q̂t)−1

)
fw

(
(q̂t)1/2ξ, (q̂t)−1

)ᵀ]
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In addition in the Bayes-optimal case, as:




EX
[
ωtµ→i(zµ − ωtµ→i)ᵀ

]
= mt − qt = 0

EX [ωtµ→i(ω
t
µ→i)

ᵀ] = qt

EX
[
(zᵀµ − ωtµ→i)(zµ − ωtµ→i)ᵀ

]
= Q− qt ,

the multivariate distribution can be written as a product: Nz,ω
(
0, 0;Qt

)
= Nω

(
0, qt

)
Nz
(
ω,Q− qt

)
. Hence,

using Pout(y|z) =
∫
dPA(A)δ

(
y − ϕ0

out(z,A)
)
, eq. (111) becomes:

q̂t = αEω,z,A
[
gout(ω, ϕ

0
out(z,A), Q− qt)gout(ω, ϕ0

out(z,A), Q− qt)ᵀ
]

= α

∫
dy

∫
dω

e−
1
2
ωᵀ(qt)−1ω

(2π)K/2 det(qt)1/2

∫
dzPout(y|z)

e−
1
2

(z−ω)ᵀ(Q−qt)−1(z−ω)

(2π)K/2 det(Q− qt)1/2
gout(ω, y,Q− qt)gout(ω, y,Q− qt)ᵀ

= α

∫
dy

∫
Dξ

∫
dzPout(y|z)

e−
1
2

(z−ω)ᵀ(Q−qt)−1(z−ω)

(2π)K/2 det(Q− qt)1/2
gout((q

t)1/2ξ, y,Q− qt)gout((q
t)1/2ξ, y,Q− qt)ᵀ

= αEy,ξ
[
ZPout

(
(qt)1/2ξ, y,Q− qt

)
gout

(
(qt)1/2ξ, y,Q− qt

)
gout

(
(qt)1/2ξ, y,Q− qt

)ᵀ]

Finally to summarize the state evolution equations can be written as:




qt+1 = Eξ
[
ZP0

(
(q̂t)1/2ξ, (q̂t)−1

)
fw

(
(q̂t)1/2ξ, (q̂t)−1

)
fw

(
(q̂t)1/2ξ, (q̂t)−1

)ᵀ]

q̂t = αEy,ξ
[
ZPout

(
(qt)1/2ξ, y,Q− qt

)
gout

(
(qt)1/2ξ, y,Q− qt

)
gout

(
(qt)1/2ξ, y,Q− qt

)ᵀ] (112)

State evolution - Replicas
Recall from sec. B, the free entropy eq. (76) reads





limn→∞ fn = extrq,q̂
{
−1

2Tr[qq̂] + IP + αIC
}
,

IP ≡ Eξ
[
ZP0(q̂1/2ξ, q̂−1) log(ZP0(q̂1/2ξ, q̂−1))

]
,

IC ≡ Eξ,y
[
ZPout(q

1/2ξ, y,Q− q) log(ZPout(q
1/2ξ, y,Q− q))

]
.

Taking the derivatives with respect to q and q̂, using an integration by part and the following identities:




∂ZPout
∂q = −1

2q
−1e

1
2
ξᵀξ∂ξ

[
e−

1
2
ξᵀξ∂ξZPout

]
,

∂ZP0
∂q̂ = −1

2 q̂
−1e

1
2
ξᵀξ∂ξ

[
e−

1
2
ξᵀξ∂ξZP0

]
,

the state evolution equations read:



q = 2∂IP∂q̂

q̂ = 2α∂IC∂q

with





∂IP
∂q̂ = 1

2Eξ
[
ZP0(q̂1/2ξ, q̂−1)fw(q̂1/2ξ, q̂)fw(q̂1/2ξ, q̂−1)ᵀ

]

∂IC
∂q = 1

2Ey,ξ
[
ZPout(q

1/2ξ, y,Q− q)gout(q
1/2ξ, y,Q− q)gout(q

1/2ξ, y,Q− q)ᵀ
]

that simpli�es and allows to recover the state evolutions equations directly derived from AMP eq. (112), but
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without time indices



q = Eξ

[
ZP0(q̂1/2ξ, q̂−1)fw(q̂1/2ξ, q̂)fw(q̂1/2ξ, q̂−1)ᵀ

]
,

q̂ = αEy,ξ
[
ZPout(q

1/2ξ, y,Q− q)gout(q
1/2ξ, y,Q− q)gout(q

1/2ξ, y,Q− q)ᵀ
]
.

H Parity machine for K = 2

Although we mainly focused on the committee machine, another classical two-layers neural network is the
parity machine [7] and our proof applies to this case as well. While learning is known to be computationally
hard for general K , the case K = 2 is special, and in fact can be reformulated as a committee machine, where
the sign activation function has been replaced by ϕ1(z) = 1(z 6= 0)− 1(z = 0):

Yµ = sign
[ K∏

l=1

sign
( n∑

i=1

XµiW
∗
il

)]
= ϕ1

[ K∑

l=1

sign
( n∑

i=1

XµiW
∗
il

)]
. (113)

We have repeated our analysis for the K = 2 parity machine and the phase diagram is summarized in
Fig. 5 where we show the generalization error and the elements of the overlap matrix for Gaussian (left) and
binary weights (right), with the results of the AMP algorithm (points).

Below the specialization phase transition α < αspec, the symmetry of the output imposes the non-
specialized �xed point q00 = q01 = 0 to be the only solution, with αGspec(K = 2) ' 2.48 and αBspec(K = 2) '
2.49. Above the specialization transition αspec, the overlap becomes specialized with a non-trivial diagonal
term.

Additionally, in the binary case, an information theoretical transition towards a perfect learning occurs
at αBIT(K = 2) ' 2.00, meaning that the perfect generalization �xed point (q00 = 1, q01 = 0) becomes the
global optimizer of the free entropy. It leads to a �rst order phase transition of the AMP algorithm which
retrieves the perfect generalization phase only at αBperf(K = 2) ' 3.03. This is similar to what happens in
single layer neural networks for the symmetric door activation function, see [11]. Again, these results for the
parity machine emphasize a gap between information-theoretical and computational performance.
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Figure 5: Similar plot as in Fig. 2 but for the parity machine with two hidden neurons. Value of the order parameter
and the optimal generalization error for a parity machine with two hidden neurons with Gaussian weights (left)
and binary/Rademacher weights (right). SE and AMP overlaps are respectively represented in full line and points.

50


	1 Introduction
	2 Summary of contributions and related works
	3 Main technical results
	3.1 A general model
	3.2 Two auxiliary inference problems
	3.3 The free entropy
	3.4 Learning the teacher weights and optimal generalization error
	3.5 Approximate message passing, and its state evolution

	4 From two to more hidden neurons, and the specialization phase transition
	4.1 Two neurons
	4.2 More is different

	5 Structure of the proof of Theorem 3.1
	5.1 Interpolating estimation problem
	5.2 Overlap concentration and fundamental sum rule
	5.3 A technical lemma and an assumption
	5.4 Matching bounds

	6 Discussion
	A Proof details for Theorem 3.1
	A.1 The Nishimori property in Bayes-optimal learning
	A.2 Setting in the Hamiltonian language
	A.3 Free entropy variation: Proof of Proposition 5.2
	A.4 Technical lemmas

	B Replica calculation
	C Generalization error
	C.1 The generalization error at K = 2

	D The large K limit in the committee symmetric setting
	D.1 Large K limit for sign activation function
	D.2 The Gaussian prior
	D.3 The fixed point equations
	D.4 The generalization error at large K

	E Linear networks show no specialization
	F Update functions and AMP derivation
	F.1 Definition of the update functions
	F.2 Derivation of the Approximate Message Passing algorithm

	G State evolution equations from AMP
	G.1 Messages distribution
	G.2 State evolution equations - Non Bayes optimal case
	G.3 State evolution equations - Bayes optimal case
	G.4 State evolution - Consistence between replicas and AMP - Bayes optimal case

	H Parity machine for K=2

