From disordered systems to the mathematics of data science

Antoine Maillard

ETHzürich

Argo team – February 12th 2024

Modern machine learning

Brown & al, 2020

Model Name	$n_{ m params}$	$n_{\rm layers}$	d_{model}	n_{heads}	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes10^{-4}$
		/					

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

Goal : fundamental limits in high-dimensional statistics

- When is learning/inference/optimisation (im)possible ?
- Which algorithms work ? Why ? Are there bottlenecks ?

High-dimensional statistics

Number of parameters $d \to \infty$					
+					
Size of dataset n –	$\rightarrow \infty$				

THIS IS YOUR MACHINE LEARNING SYSTEM?					
YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.					
WHAT IF THE ANSWERS ARE WRONG?					
JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.					
The second secon					

XKCD

A first example: from Bayes to Boltzmann

Inference : learn parameters from dataModelParameters
 $\mathbf{x}^{\star} \in \mathbb{R}^d$ Measurements y_1, \cdots, y_n

Physicists and mathematicians have studied high-dimensional disordered systems / spin glasses for 40+ years !

2

A toolbox from disordered systems and high-dimensional probability for e.g....

Bayesian inference and learning

Learning in two-layers neural networks ; Phase retrieval ; Matrix factorisation ; High-temperature expansions ; Generalised linear estimation ; Generative priors and data structure; Bottlenecks of MCMC algorithms ; ...

Random constraint satisfaction problems

 $Spherical\ perceptron\ ;\ random\ ellipsoid\ fitting\ ;\dots$

oid fitting ; ... graph colouring

High-dimensional optimisation

Landscape complexity: Kac-Rice formula, large deviations for random matrices, ...

 $\mathbb{P}[\mathbf{x}|\mathbf{y}] \propto P_0(\mathbf{x}) \prod^n P(y_i|\mathbf{x})$

 $\mathbb{P}[\mathbf{x}] \propto P_0(\mathbf{x}) \prod \mathcal{C}(y_i, \mathbf{x})$

$$\min_{\mathbf{x}\in\Sigma}\sum_{i=1}^n\mathcal{H}(y_i,\mathbf{x})$$

Example 1 : Phase retrieval

Example 1: Phase retrieval

Gaussian
Gaussian
Subsampled DFT
...

Review: Dong, Valzania, M., Pham, Gigan, Unser '23

Our toolbox

- Analytical predictions using replica/cavity method
- Efficient algorithms (message-passing)
- Rigorous proofs of replica predictions

Parisi, Mézard, Virasoro '87 ; Krzakala & Zdeborová '16 ;

imaging in complex media, ptychography, ...

Mézard & Montanari '09 ; Donoho, Maleki & Montanari '09 ; ...

Guerra & Toninelli '02 ; Talagrand '06 '10 ; Barbier, Krzakala, Macris, Miolane & Zdeborová '19 ;

Theorem: (M., Loureiro, Krzakala & Zdeborová '20)

 $\Phi~:$ Haar-sampled column-unitary matrix

"Hard phase"

- > $\alpha_{\rm IT} = 2$: # of samples needed for perfect recovery for any algorithm
- > $\alpha_{AMP} \simeq 2.27$: # of samples needed for perfect recovery for approximate message passing

conjectured optimal among **polynomial-time** ones (Gamarnik, Moore & Zdeborová '22)

Many extensions:

- Other models of Φ : a **zoology of hard phases**
- Noisy versions, other activations...

 $y_i \sim P_{\text{out}}(\cdot | \Phi_i \cdot x^\star)$

Fast and optimal algorithms for phase retrieval

- Semidefinite relaxations
- Non-convex optimisation
- Approximate Message-Passing

Two strategies inspired by disordered systems

Computationally heavy / Need informed initialisation

- AMP linearisation
- **Bethe Hessian** \simeq non-backtracking matrix in community detection [Saade & al '14]

- Φ : iid Gaussian
- Achieves optimal weak recovery
- Bethe Hessian is conjectured optimal
 [M., Lu, Krzakala & Zdeborová '22]

Improving spectral methods with gradient descent

M., Lu, Krzakala & Zdeborová '22

- Combined with gradient descent (on square loss): efficient and cheap !
 - Derived for synthetic signals, but efficient on real image recovery

Example 2 :

Phase transition in a Matrix Constraint Satisfaction Problem

Example 2: Phase transition in a Matrix Constraint Satisfaction Problem

$$x_1, \cdots, x_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \mathbf{I}_d/d)$$

 $n, d \to \infty$

Ellipsoid Fitting Property

 $\mathbb{P}[\exists S \in \mathbb{R}^{d \times d} : S \succeq 0 \text{ and } x_i^\top S x_i = 1 \text{ for all } i \in [n]]$

Statistical inference

Minimum Trace Factor Analysis: Saunderson & al '12

Independent Components Analysis: Podosinnikova & al '19

Motivations

Discrepancy of random matrices: Potechin & al '22

Theoretical computer science

Average-case characterization of SDPs: Hopkins & al '17, Barak & al '19, ...

The ellipsoid fitting conjecture

Open conjecture

$$\lim_{d \to \infty} \frac{n^{\star}(d)}{d^2} = \frac{1}{4}$$

The ellipsoid fitting conjecture: what is known

This talk

Disordered systems tools for ellipsoid fitting

Volume of solutions / "Partition function"

$$\sup(P_0) \subseteq S_d^+$$

$$\mathcal{Z} \coloneqq \int P_0(\mathrm{d}S) \prod_{i=1}^n \delta(x_i^\top S x_i - 1)$$

Replica method and numerics: M. & Kunisky '23

$$\longrightarrow$$
 \triangleright Derivation of $\alpha_c = \frac{1}{4}$

 Non-rigorous analytical methods
 \triangleright Analytical expressions for $p-\lim_{d\to\infty} \frac{1}{n} \log \mathcal{Z}$
 \triangleright ...

Rigorous disordered systems tools for ellipsoid fitting (M. & Bandeira '23)

$$\mathcal{Z} \coloneqq \int P_0(\mathrm{d}S) \prod_{i=1}^n \delta(x_i^\top S x_i - 1) \qquad \underbrace{\mathbb{I}}_{:} \cdot \text{``Gaussian universality'' lemma} : \frac{1}{n} \log \mathcal{Z} \simeq \frac{1}{n} \log \mathcal{Z}_G \\ x_i^\top S x_i \longrightarrow \mathrm{Tr}(SG_i) \\ \mathsf{Gaussian matrix} \\ \mathcal{Z}_G \coloneqq \int P_0(\mathrm{d}S) \prod_{i=1}^n \delta(\mathrm{Tr}(SG_i) - 1) \\ \underbrace{\mathbb{II}}_{:} \cdot \text{Random convex geometry tools for } \mathcal{Z}_G \text{ (Gordon '88 ; Amelunxen & al '14, ...}$$

Theorem (informal)

EFP'
$$\exists S \in \mathbb{R}^{d \times d} : S \succeq 0 \text{ and } |x_i^\top S x_i - 1| \ll \frac{1}{\sqrt{d}} \text{ for all } i \in [n]$$

has a SAT / UNSAT transition at $n^*(d) \simeq \frac{d^2}{4}$

First rigorous characterization of the SAT/UNSAT transition in (approximate) ellipsoid fitting