FITTING ELLIPSOIDS TO RANDOM POINTS

Antoine Maillard

- arXiv:2310.05787 (with A. Bandeira)
- arXiv:2310.01169 (with D. Kunisky)
- arXiv:2307.01181 (with A. Bandeira, S. Mendelson, E. Paquette)

EHzürich

FITTING ELLIPSOIDS TO RANDOM POINTS

Ellipsoid Fitting Property (EFP)

Centered ellipsoid \mathcal{E} with $x_1, \cdots, x_n \in \mathcal{E}$

 $\exists S \in \mathbb{R}^{d \times d} : S \succeq 0 \text{ and } x_i^\top S x_i = 1 \text{ for all } i \in [n]$

Principal axes of
$$\mathcal{E}$$
 Eigenspaces of S

 $r_i = \lambda_i (\mathcal{S})$

EFP is a <u>semidefinite program</u>

 $p(n,d) \coloneqq \mathbb{P}[(x_1,\cdots,x_n) \text{ satisfies EFP}]$

A FEW MOTIVATIONS

▷ <u>Geometry</u>: EFP \Rightarrow ($\pm x_1, \dots, \pm x_n$) \in Bound(Conv($\pm x_1, \dots, \pm x_n$))

> <u>Statistical estimation</u>

 $\min_{\substack{D,L:X=D+L\\L\succ 0}}$

MTFA :=

Minimum Trace Factor Analysis
 [Saunderson & al '12]

Diagonal
$$\succeq 0$$
 + low-rank
 $\downarrow \qquad \checkmark$
 $X = D^{\star} + L^{\star} \in \mathbb{R}^{n \times n}$

 $\operatorname{col}(L^{\star}) \sim \operatorname{Unif}[r\text{-dim subspaces}]$

 $\mathbb{P}[\text{MTFA recovers } (L^{\star}, D^{\star})] = p(n, n - r)$

 $p(n,d) = \mathbb{P}[x_1, \cdots, x_n \in \mathbb{R}^d \text{ satisfy EFP}]$

Independent Component Analysis[Podosinnikova&al '19]

 $\operatorname{Tr}(L)$

- Theoretical computer science
 - Discrepancy of random matrices
 - Characterization of SDPs in average-case scenarios...

[Potechin &al '22]

LOWER BOUNDS

Goal: $p(n,d) \rightarrow 1$ for $n < n_c(d)$

[Bandeira, M., Mendelson & Paquette '23]

Existing works on EFP rely on an <u>explicit estimate:</u>

$$\succ \hat{S}_{\mathrm{LS}} \coloneqq \operatorname*{arg\,min}_{\{x_i^\top S x_i = 1\}} \|S\|_F$$

[Potechin&al '22]

<u>Theorem:</u> $\hat{S}_{\text{LS}} \succeq 0$ w.h.p. if $n \lesssim d^2/\text{polylog}(d)$

Non-rigorous analysis shows this holds for $n \leq d^2/10$ [M.&Kunisky '22]

$$\hat{S}_{\mathrm{IP}} \coloneqq \mathrm{I}_d + \sum_{i=1}^n q_i x_i x_i^{\top}$$

$$\{x_i^{ op} \hat{S}_{\mathrm{IP}} x_i = 1\}_{i=1}^n \; \left[\; n \; \mathsf{linear equations in} \; q \in \mathbb{R}^n \right]$$

<u>Theorem:</u> $\hat{S}_{\text{IP}} \succeq 0$ w.h.p. if

• $n \lesssim d^2/\mathrm{polylog}(d)$ [Kane & Diakonikolas '22]

• $n \leq d^2/C$ [Bandeira, M., Mendelson & Paquette '23]

Numerically: $C \simeq 10$

Similar result obtained w. different estimates in [Hsieh&al'23; Tulsiani & Wu '23]

LOWER BOUNDS - SKETCH OF PROOF

 $\|\Theta^{-1}\|_{\mathrm{op}} \leq 2$ for small enough $rac{n}{d^2}.$

$$\begin{split} x_{i} &= \sqrt{d_{i}\omega_{i}} \quad \omega_{i} \stackrel{\text{t.i.d.}}{\longrightarrow} \text{Unif}(\mathcal{S}^{d-1}) & \text{Define} \begin{cases} D = \text{Diag}(\{d_{i}\}) \\ \Theta_{ij} &:= \langle \omega_{i}, \omega_{j} \rangle^{2} \end{cases} \\ \hat{S}_{\text{IP}} &:= \text{I}_{d} + \sum_{i=1}^{n} q_{i}x_{i}x_{i}^{\top} \quad \bigoplus \quad \{x_{i}^{\top}\hat{S}_{\text{IP}}x_{i} = 1\}_{i=1}^{n} \quad \bigoplus \quad q = D^{-1}\Theta^{-1}(D^{-1}\mathbf{1}_{n} - \mathbf{1}_{n}) \end{cases} \\ \text{We show } \|\cdot\|_{\text{op}} \leq 1 & \text{We show } \|\cdot\|_{\text{op}} \leq 1 & \text{Key difficulty: controlling } \|\Theta^{-1}\|_{\text{op}}. \quad \textcircled{I} \\ \text{i.i.d., independent of } \omega_{i} & \text{Rest of the proof: classical } \varepsilon\text{-net argument} \end{cases} \end{split}$$

$$\Theta_{ij} = \langle \omega_i \omega_i^{ op}, \omega_j \omega_j^{ op}
angle$$

Gram matrix of sub-exp.
random vectors in \mathbb{R}^p

<u>Goal:</u>

 $p = \binom{d+1}{2}$

[Bartl & Mendelson '22]

Lemma: $\|\Theta - \mathbb{E}\Theta\|_{ ext{op}} \lesssim \sqrt{rac{n}{d^2}}$

Ellipsoid fitting conjecture revisited

NON-RIGOROUS RESULTS (Statistical physics of disordered systems)

[M. & Kunisky '23]

Dilute expansion ($\theta \to \infty$) of $I_{\rm HCIZ}(\theta, \mu, \nu)$

 \mathbb{I} Replica method hints at <u>universality</u> of Φ with the "Gaussian fitting" problem.

NON-RIGOROUS RESULTS: SOME CONSEQUENCES

<u>Truncated semicircular distribution</u>
 Universality with "Gaussian fitting" problem.

<u>Generalization to non-Gaussian random vectors</u>

 $\alpha = n/d^2$

A RIGOROUS APPROACH INSPIRED BY PHYSICS

 $\begin{array}{l} \text{Free energy''} & \left\{ \begin{array}{l} \Phi \coloneqq \mathbb{E} \frac{1}{d^2} \log \int P_0(\mathrm{d}S) \exp\left\{-\beta \sum_{i=1}^n \ell\left[\sqrt{d}(x_i^\top S x_i - 1)\right]\right\} \\ \Phi_G \coloneqq \mathbb{E} \frac{1}{d^2} \log \int P_0(\mathrm{d}S) \exp\left\{-\beta \sum_{i=1}^n \ell\left[\sqrt{d}(\mathrm{Tr}[SY_i] - 1)\right]\right\} \end{array} \right\} \xrightarrow{} \\ \text{Gaussian fitting'' problem} \\ \text{Gaussian, same order-2 moments as } x_i x_i^\top \end{array}$

[Hu & Lu '20 ; Montanari & Saeed '22 ; Gerace & al '22, ...]

1. We show this "uniform CLT of projections" using a Berry-Esseen-type CLT

2. We leverage <u>Gordon's theorem</u> to study Φ_G

<u>Lemma:</u> $\Phi \simeq \Phi_G$ if " \sup_S " $|\mathbb{E}\varphi(x^\top Sx) - \mathbb{E}\varphi(\operatorname{Tr}[SY])| \xrightarrow[d \to \infty]{} 0$

Limitation: supremum over S with bounded spectrum

Focus on Φ_G

TRANSITION FOR APPROXIMATE EFP

[M. & Bandeira '23]

 EFP_0

$$\begin{array}{l} \mathrm{EFP}_{\varepsilon} \quad \left| \mathsf{Find} \ S \succeq 0 \ \mathsf{such that} \ \frac{1}{n} \sum_{i=1}^{n} \sqrt{d} |x_i^\top S x_i - 1| \leq \varepsilon \\ \\ = \Theta(1) \ \mathsf{for} \ S = \mathrm{I}_d \end{array} \right| \\ \end{array} \\ \begin{array}{l} \text{``Relaxed'' problem: } \mathrm{EFP} = \mathrm{I}_{\varepsilon} \\ \end{array}$$

<u>Theorem</u>

 $\succ n/d^2 \rightarrow \alpha < 1/4$: $\forall \varepsilon > 0$, we can find \hat{S}_{ε} solution to EFP_{ε} , and $\text{Sp}(\hat{S}_{\varepsilon}) \subseteq [\lambda_{-}(\alpha), \lambda_{+}(\alpha)] \subseteq (0, \infty)$

 $\succ n/d^2 \to \alpha > 1/4: \ \exists \varepsilon(\alpha) > 0 \text{ s.t. } \forall \lambda_+ > 0 \text{ , there is no solution } S \text{ to } EFP_{\varepsilon} \text{ such that } Sp(S) \subseteq [0, \lambda_+]$

Rigorous characterization of the SAT/UNSAT transition in (approximate) ellipsoid fitting at $n\simeq rac{d^2}{A}$

 $\alpha < 1/4$

- ✤ <u>Approximate</u> solutions, <u>up to arbitrary accuracy</u>
- We control the <u>spectrum of solutions</u> in the SAT phase (shape of ellipsoid fits)
- Rule out solutions with bounded spectrum
 (ellipsoid with axes not too small)

 $\alpha > 1/4$

SUMMARY & OUTLOOK

THANK YOU!