FITting ellipsoids to Random points

Antoine Maillard

GIHzürich

arXiv:2310.05787 (with A. Bandeira)
arXiv:2310.01169 (with D. Kunisky)
arXiv:2307.01181 (with A. Bandeira, S. Mendelson, E. Paquette)

FITTING ELLIPSOIDS TO RANDOM POINTS

$$
\begin{aligned}
& x_{1}, \cdots, x_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \mathrm{I}_{d} / d\right) \longrightarrow \mathbb{E}\left\|x_{i}\right\|^{2}=1 \\
& n, d \rightarrow \infty
\end{aligned}
$$

Ellipsoid Fitting Property (EFP)
Centered ellipsoid \mathcal{E} with $x_{1}, \cdots, x_{n} \in \mathcal{E}$
1
$\exists S \in \mathbb{R}^{d \times d}: S \succeq 0$ and $x_{i}^{\top} S x_{i}=1$ for all $i \in[n]$

$$
\begin{gathered}
\text { Principal axes of } \mathcal{E} \underset{\sim}{\square} \text { Eigenspaces of } S \\
r_{i}=\lambda_{i}(S)^{-1 / 2}
\end{gathered}
$$

EFP is a semidefinite program
$\left\{\begin{array}{l}>\text { Convex } \\ >\text { Efficient algorithms }\end{array}\right.$

A FEW MOTIVATIONS

$>$ Geometry: $\mathrm{EFP} \Rightarrow\left(\pm x_{1}, \cdots, \pm x_{n}\right) \in \operatorname{Bound}\left(\operatorname{Conv}\left(\pm x_{1}, \cdots, \pm x_{n}\right)\right)$
$>$ Statistical estimation

- Minimum Trace Factor Analysis [Saunderson \&al '12]

$$
\begin{aligned}
& \mathrm{MTFA}:=\min _{D, L: X=D+L} \operatorname{T\succeq }(L) \\
& \operatorname{col}\left(L^{\star}\right) \sim \operatorname{Unif}[r \text {-dim subspaces }] \square \underbrace{\mathbb{P}\left[\text { MTFA recovers }\left(L^{\star}, D^{\star}\right)\right]=p(n, n-r)} \begin{array}{r}
p(n, d)=\mathbb{P}\left[x_{1}, \cdots, x_{n} \in \mathbb{R}^{d} \text { satisfy EFP }\right]
\end{array}
\end{aligned}
$$

- Independent Component Analysis
[Podosinnikova\&al 19]
> Theoretical computer science
- Discrepancy of random matrices
- Characterization of SDPs in average-case scenarios...

THE ELLIPSOID FITTING CONJECTURE

```
p(n,d)=\mathbb{P}[\existsS\succeq0:\mp@subsup{x}{i}{\top}S\mp@subsup{x}{i}{}=1(\foralli\in[n])]
```


\& Upper bound $n \gtrsim d^{2} / 2$ by dimension counting.

* EFP is not universal \qquad $p(n, d)=1$

$$
S=\mathrm{I}_{d}
$$

LOWER BOUNDS

Existing works on EFP rely on an explicit estimate:

$>\hat{S}_{\mathrm{LS}}:=\underset{\left\{x_{i}^{T} S x_{i}=1\right\}}{\arg \min }\|S\|_{F}$

[Potechin\&al '22]

Theorem: $\hat{S}_{\text {LS }} \succeq 0$ w.h.p. if $n \lesssim d^{2} / \operatorname{polylog}(d)$
Non-rigorous analysis shows this holds for $n \leq d^{2} / 10$ [M.\&Kunisky '22]
> "Identity perturbation"

$$
\hat{S}_{\mathrm{IP}}:=\mathrm{I}_{d}+\sum_{i=1}^{n} q_{i} x_{i} x_{i}^{\top}
$$

$$
\left\{x_{i}^{\top} \hat{S}_{\mathrm{IP}} x_{i}=1\right\}_{i=1}^{n} n \text { linear equations in } q \in \mathbb{R}^{n}
$$

Theorem: $\quad \hat{S}_{\text {IP }} \succeq 0$ w.h.p. if

- $n \lesssim d^{2} / \operatorname{polylog}(d) \quad[K a n e ~ \& ~ D i a k o n i k o l a s ~ ' 22] ~$
- $n \leq d^{2} / C$ [Bandeira, M., Mendelson \& Paquette '23]

LOWER BOUNDS - SKETCH OF PROOF

$$
x_{i}=\sqrt{d_{i}} \omega_{i} \quad \omega_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Unif}\left(\mathcal{S}^{d-1}\right) \quad \text { Define }\left\{\begin{array}{l}
D=\operatorname{Diag}\left(\left\{d_{i}\right\}\right) \\
\Theta_{i j}:=\left\langle\omega_{i}, \omega_{j}\right\rangle^{2}
\end{array}\right.
$$

$$
\hat{S}_{\mathrm{IP}}:=\mathrm{I}_{d}+\underbrace{\sum_{i=1}^{n} q_{i} x_{i} x_{i}^{\top}}_{\text {We show }\|\cdot\|_{\mathrm{op}} \leq 1} \downarrow\left\{x_{i}^{\top} \hat{S}_{\mathrm{IP}} x_{i}=1\right\}_{i=1}^{n} \stackrel{q}{ }
$$

Goal: $\| \sum_{i=1}^{n}[\Theta^{-1} \underbrace{D^{-1} \mathbf{1}_{n}-\mathbf{1}_{n}})]_{i} \omega_{i} \omega_{i}^{\top} \|_{\mathrm{op}} \leq 1$ i.i.d., independent of ω_{i}
> Key difficulty: controlling $\left\|\Theta^{-1}\right\|_{\mathrm{op}}$.
$>$ Rest of the proof: classical ε-net argument.
$p=\binom{d+1}{2}$

$$
\Theta_{i j}=\left\langle\omega_{i} \omega_{i}^{\top}, \omega_{j} \omega_{j}^{\top}\right\rangle \quad \square \quad \text { Lemma: }\|\Theta-\mathbb{E} \Theta\|_{\mathrm{op}} \lesssim \sqrt{\frac{n}{d^{2}}}
$$

$$
\Longrightarrow\left\|\Theta^{-1}\right\|_{\text {op }} \leq 2 \text { for small enough } \frac{n}{d^{2}} .
$$

Gram matrix of sub-exp. random vectors in \mathbb{R}^{p}

```
EFP: \(\left\{\begin{array}{l}\operatorname{Tr}\left[S x_{i} x_{i}^{\top}\right]=1 \rightarrow S \in V=\left\{x \in \mathbb{R}^{p}:\left\langle x, h_{i}\right\rangle=1(\forall i \in[n])\right\} \text { random affine subspace in } \mathbb{R}^{p} \\ S \succeq 0 \rightarrow S \in K \text { closed convex cone }\end{array}\right.\)
```

General question

Heuristic
What if the directions of V were uniformly randomly oriented?
"Gaussian Fitting" (GF) $\left\{\begin{array}{l}x \in V=\left\{x \in \mathbb{R}^{p}:\left\langle x, h_{i \bar{i}}\right\rangle=\mathbb{1}(\mathbb{V} i \in[m \rrbracket])\right\} \\ x \in K\end{array}\right.$

$$
\text { Theorem [Gordon' } 88, \ldots] \text { GF is }\left\{\begin{array}{l}
\cdot \\
\text { SAT (whp) if } n \leq(1-\varepsilon) \omega(K)^{2} \\
\cdot \text { UNSAT (whp) if } n \geq(1+\varepsilon) \omega(K)^{2}
\end{array}\right]
$$

$$
\omega(K):=\mathbb{E} \max _{\substack{x \in K \\\|x\|=1}}\langle g, x\rangle \quad \text { Gaussian width }
$$

$$
g \sim \mathcal{N}\left(0, \mathrm{I}_{p}\right)
$$

For PSD matrices $\omega\left(\mathcal{S}_{d}^{+}\right) \sim \frac{d}{2} \quad \square \tilde{n}(d) \simeq \frac{d^{2}}{4}$ Heuristic for the ellipsoid fitting conjecture

NON—RIGOROUS RESULTS (Statistical physics of disordered systems

Free energy / volume of solution set:

Asymptotic formula

Replica method hints at universality of Φ with the "Gaussian fitting" problem.

NON-RIGOROUS RESULTS: SOME CONSEQUENCES

Spectrum of solutions/shape of ellipsoids

Near the transition: $\alpha \uparrow \frac{1}{4}$

- As $\alpha \uparrow \frac{1}{4}$ ellipsoid fits are "cylinders" in half directions!
- Truncated semicircular distribution

Universality with "Gaussian fitting" problem.

Generalization to non-Gaussian random vectors

Larger norm fluctuations

Ellipsoid fits harder to find

A RIGOROUS APPROACH INSPIRED BY PHYSICS

"Gaussian equivalence"

[Hu \& Lu '20 ; Montanari \& Saeed '22 ; Gerace \& al '22, ...]
Lemma: $\Phi \simeq \Phi_{G}$ if " $\sup _{S} "\left|\mathbb{E} \varphi\left(x^{\top} S x\right)-\mathbb{E} \varphi(\operatorname{Tr}[S Y])\right| \xrightarrow[d \rightarrow \infty]{ } 0$

1. We show this "uniform CLT of projections" using a Berry-Esseen-type CLT Focus on Φ_{G}
2. We leverage Gordon's theorem to study Φ_{G}

$$
\operatorname{EFP}_{\varepsilon} \text { Find } S \succeq 0 \text { such that } \underbrace{\frac{1}{n} \sum_{i=1}^{n} \sqrt{d}\left|x_{i}^{\top} S x_{i}-1\right|}_{=\Theta(1) \text { for } S=\mathrm{I}_{d}} \leq \varepsilon \text { "Relaxed" problem: } \mathrm{EFP}=\mathrm{EFP}_{0}
$$

Theorem

$n / d^{2} \rightarrow \alpha<1 / 4: \forall \varepsilon>0$, we can find \hat{S}_{ε} solution to $\operatorname{EFP}_{\varepsilon}$, and $\operatorname{Sp}\left(\hat{S}_{\varepsilon}\right) \subseteq\left[\lambda_{-}(\alpha), \lambda_{+}(\alpha)\right] \subseteq(0, \infty)$
$n / d^{2} \rightarrow \alpha>1 / 4: \exists \varepsilon(\alpha)>0$ s.t. $\forall \lambda_{+}>0$, there is no solution S to $\operatorname{EFP}_{\varepsilon}$ such that $\operatorname{Sp}(S) \subseteq\left[0, \lambda_{+}\right]$
(d) Rigorous characterization of the SAT/UNSAT transition in (approximate) ellipsoid fitting at $n \simeq \frac{d^{2}}{4}$

$$
\alpha<1 / 4
$$

Approximate solutions, up to arbitrary accuracy

We control the spectrum of solutions in the SAT phase
(shape of ellipsoid fits)

$$
\alpha>1 / 4
$$

* Rule out solutions with bounded spectrum

SUMMARY \& OUTLOOK

\& Other proof approaches for lower bounds?

```
\widehat{SNN}
```

\& Universality proof for non-Gaussian random vectors?

From approximate to exact ellipsoid fit ?
Rule out matrices with diverging spectral norm?
(ellipsoids with very small axes)
THANK YOU!

