A FEW CHALLENGES IN LARGE-RANK MATRIX DENOISING AND FACTORIZATION

Antoine Maillard

Vittorio Erba, Florent Krzakala, Marc Mézard,

Emanuele Troiani, Lenka Zdeborová

Journal of Statistical Mechanics 2022

Mathematical and Scientific Machine Learning 2022

NORDSTAT - June 22nd 2023

SETTING

$$\mathbf{F}^{\star} \sim P_F \quad \mathbf{X}^{\star} \sim P_X$$

$$Y_{\mu l} \sim P_{\text{out}} \left(\cdot \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} F_{\mu i}^{\star} X_{il}^{\star} \right| \right)$$

Goals

 $\mathsf{Recover}(\mathbf{F}^{\star}, \mathbf{X}^{\star})$

Matrix factorization

Recover
$$S^\star = F^\star X^\star$$

Matrix denoising

Dictionary learning, sparse coding, sparse PCA, matrix completion...

Setting:

- High-dimensional: $m,p \to \infty$
- P_F, P_X, P_{out} are known ("Bayes-optimal").

$$\frac{\text{Symmetric matrix}}{\text{factorization / denoising}} \left(Y_{\mu\nu} \sim P_{\text{out}} \Big(\cdot \Big| \frac{1}{\sqrt{n}} \sum_{i=1}^n X_{\mu i}^\star X_{\nu i}^\star \Big) \right)$$

$$\mathbf{X}^{\star} \sim P_X$$
$$m \to \infty$$

THE LARGE - RANK CHALLENGE

[M., Krzakala, Mézard & Zdeborová '22]

Symmetric matrix denoising
$$Y_{\mu\nu} \sim P_{\mathrm{out}}(\cdot|S_{\mu\nu}^{\star})$$

$$n = \mathcal{O}(1)$$

$$\mathbf{S}^{\star} = \frac{1}{\sqrt{n}} \mathbf{X}^{\star} (\mathbf{X}^{\star})^{\top} \quad \mathbf{X}^{\star} \in \mathbb{R}^{m \times n} \quad X_{\mu i} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

Statistical and algorithmic limits of the low-rank case are well understood.

Here:
$$m/n = \alpha \in (0, \infty)$$
 ; $m \to \infty$

[Rangan & Fletcher '12], [Deshpande & Montanari '14], [Lesieur, Krzakala & Zdeborová '15], [Perry, Wein, Bandeira & Moitra '16], [Lelarge & Miolane '19], [Aubin, Loureiro, M., Krzakala, Zdeborová '20],

- Posterior distribution $\mathbb{P}(\mathbf{S}|\mathbf{Y}) = \frac{1}{\mathcal{Z}(\mathbf{Y})} P_{\mathrm{Wish.}}^{(\alpha)}(\mathrm{d}\mathbf{S}) \prod_{1 \leq \mu, \nu \leq m} P_{\mathrm{out}}(Y_{\mu\nu}|S_{\mu\nu})$
- Minimal Mean Squared Error estimator

$$\hat{\mathbf{S}}(\mathbf{Y}) = \mathbb{E}[\mathbf{S}|\mathbf{Y}]$$

 $\overline{\mathrm{MMSE}} = \mathbb{E} \| \mathbb{E}[\mathbf{S}|\mathbf{Y}] - \mathbf{S}^{\star} \|_F^2$

Large m limit?

Reachable by efficient algorithms?

Assume noise is <u>additive</u> and <u>rotationally-invariant</u>

$$\mathbf{Y} = \mathbf{S}^\star + \mathbf{C}\overline{\Delta}\mathbf{Z}
ightarrow$$
 Gaussian (GOE) noise

 $^{>}$ Eigenvectors of ${f Y}$

Rotationally–invariant estimator (RIE)
$$\hat{\mathbf{S}}_{ ext{RIE}} = \sum_{\mu=1}^m \hat{\xi}_{\mu} \mathbf{u}_{\mu} \hat{\mathbf{u}}_{\mu}$$

$$\hat{\xi}_{\mu} = \underset{\boldsymbol{\xi} \in \mathbb{R}^m}{\arg \min} \|\mathbf{S}^{\star} - \hat{\mathbf{S}}(\boldsymbol{\xi})\|_F^2$$

Eigenvalues of ${f Y}$

$$\hat{\xi}_{\mu} = y_{\mu} - 2\Delta \times \text{P.P.} \int \rho_{\mathbf{Y}}(\mathrm{d}t) \frac{1}{t - y_{\mu}}$$

"Miraculous solution": only depends on the spectral properties of ${f Y}$

Easily computed with tools of free probability [Voiculescu, ...]

ROTATIONALLY-INVARIANT DENOISING (2)

$$\mathbf{Y} = \mathbf{S}^{\star} + \sqrt{\Delta}\mathbf{Z}$$

$$\mathbb{P}(\mathbf{S}|\mathbf{Y}) = \frac{1}{\mathcal{Z}(\mathbf{Y})} P_{\text{Wish.}}^{(\alpha)}(\mathbf{S}) \exp\left\{-\frac{1}{4\Delta} \|\mathbf{Y} - \mathbf{S}\|_F^2\right\} \propto P_{\text{Wish.}}^{(\alpha)}(\mathbf{S}) \exp\left\{-\frac{\|\mathbf{S}\|_F^2}{4\Delta} + \frac{1}{2\Delta} \text{Tr}[\mathbf{Y}\mathbf{S}]\right\}$$

$$f(\mathbf{O}\mathbf{D}\mathbf{O}^{\top}) = f(\mathbf{D}) \qquad \qquad \mathbb{E}[f(\mathbf{S})|\mathbf{Y}] = \int_{\mathbb{R}^m} d\mathbf{D} \, q(\mathbf{D}) \, f(\mathbf{D}) \, \int_{\mathcal{O}(m)} \mathcal{D}\mathbf{O} \, \exp\left\{\frac{1}{2\Delta} \mathrm{Tr}\left[\mathbf{Y}\mathbf{O}\mathbf{D}\mathbf{O}^{\top}\right]\right\}$$

"HCIZ" integral

[Harish-Chandra-Itzykson-Zuber]

$$\int_{\mathcal{O}(m)} \mathcal{D}\mathbf{0} \, \exp\left\{m \mathrm{Tr} \left[\mathbf{A} \mathbf{0} \mathbf{B} \mathbf{0}^{\top}\right]\right\}$$
Full-rank

 $\int_{\mathcal{O}(m)} \mathcal{D}\mathbf{0} \, \exp\left\{m \mathrm{Tr}\left[\mathbf{A}\mathbf{O}\mathbf{B}\mathbf{O}^{\top}\right]\right\} \quad \text{known for} \quad \begin{cases} \mathbf{\triangleright} \, \text{When } \mathrm{rank}(\mathbf{A}) = o(m) \, [\text{Guionnet '05}] \\ m \to \infty \end{cases} \quad \begin{cases} \mathbf{\triangleright} \, \text{When } \mathrm{rank}(\mathbf{A}) = o(m) \, [\text{Matytsin '94, Guionnet&al '02}] \end{cases}$

- ightharpoonup Analytical formula $ext{MMSE} = \int
 ho_{\mathbf{Y}}(\mathrm{d}t) \, (\cdots)$ cf also [Pourkamali, Barbier & Macris '23]
- Re-derivation of the optimal RIE estimator as $~\hat{f S}_{
 m opt.}=\mathbb{E}[f S|f Y]\simeq\hat{f S}_{
 m RIE}$

$$Y_{\mu\nu} \sim P_{\rm out}(\cdot|S_{\mu\nu}^{\star})$$

$$\mathbf{S}^{\star} = \frac{1}{\sqrt{n}} \mathbf{X}^{\star} (\mathbf{X}^{\star})^{\top}$$

- Exact characterization of the MMSE
- Efficient optimal estimator X

<u>Unknown</u>

Proposed Approximate Message Passing (AMP) algorithms

[Kabashima & al '16, Parker &al '14, Zou & al '21, Lucibello & al '21]

This talk: sketch a perturbative approach to clarify these difficulties, and lay a path for improvement.

$$S_{\mu\nu} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{\mu i} x_{\nu i}$$

 $H_{\mu\nu}$: conjugate field

$$\mathbb{P}(\mathbf{X}|\mathbf{Y}) = \frac{1}{\mathcal{Z}(\mathbf{Y})} \prod_{\mu,i} p_X(x_{\mu i}) \prod_{\mu,\nu} P_{\text{out}} \left(Y_{\mu \nu} \middle| \frac{1}{\sqrt{n}} \sum_{i=1}^n x_{\mu i} x_{\nu i} \right)$$

$$P(\mathbf{X}, \mathbf{H}) \propto \left[\prod_{\mu, i} p_X(x_{\mu i}) \right] \left[\prod_{\mu, \nu} Q(Y_{\mu \nu}, H_{\mu \nu}) \right] \exp \left\{ \frac{1}{\sqrt{n}} \sum_{i, \mu, \nu} H_{\mu \nu} x_{\mu i} x_{\nu i} \right\}$$

"Effective" distribution

PLEFKA-GEORGES-YEDIDIA EXPANSION

"Pure states"

Thouless-Anderson-Palmer approximation [TAP77]

There is a function $\Phi_{TAP}(\mathbf{m}, \sigma)$ whose maxima give the "pure states" in which $P(\mathbf{X}, \mathbf{H})$ concentrates its mass.

Worked out in spin glass models and simpler statistical inference models [Parisi&Potters '95], [M.&al '19]

$$\Phi_{\text{TAP}}(\mathbf{m}, \boldsymbol{\sigma}) = \sum_{k=0}^{\infty} \frac{\partial_{\eta}^{k} \Phi_{\text{TAP}}(\mathbf{m}, \boldsymbol{\sigma})[\eta = 0]}{k!}$$

• $\partial_k^{\eta}\Phi_{\mathrm{TAP}}(\mathbf{m}, {\pmb \sigma})[\eta=0]$ can be recursively computed by the "PGY" method

[Plefka '82, Georges&Yedidia '91]

• It turns out that (at least for the first orders) $\eta\Leftrightarrow\sqrt{m/n}=\sqrt{lpha}$:"overcomplete" limit ${f S}^\star\simeq {f I}_m+m{arepsilon}(lpha)$.

THE PGY EXPANSION

$$\Phi_{\text{TAP}}(\mathbf{m}, \boldsymbol{\sigma}) = \sum_{\mu, \nu} \left[\exp\left\{ -\omega_{\mu\nu} m_{\mu\nu} - \frac{b_{\mu\nu}}{2} \left(-\sigma_{\mu\nu}^2 + m_{\mu\nu}^2 \right) + \ln \int dz \, \frac{e^{-\frac{1}{2b_{\mu\nu}}(z - \omega_{\mu\nu})^2}}{\sqrt{2\pi b_{\mu\nu}}} \, P_{\text{out}}(Y_{\mu\nu}|z) \right\} \right]$$

$$+\frac{\eta^2}{2} \sum_{\mu,\nu} [m_{\mu\nu}^2 - \sigma_{\mu\nu}^2] + \mathcal{O}_{6n^{1/2}}^{\eta^3_{3}} \sum_{\substack{\mu_1,\mu_2,\mu_3 \text{pairwise distinct}}} m_{\mu_1\mu_2} m_{\mu_2\mu_3} m_{\mu_3\mu_1} + \mathcal{O}(\eta^4)$$

- \blacktriangleright Iterative equations to find the maxima of $\Phi_{
 m TAP}$ can be turned into an algorithm $M_{
 m m}$, Foini, &al '19]
- \blacktriangleright Truncating at order η^2 (AMP" algorithms of [Kabashima & al'16, ...]

We explicit their approximation

 \blacktriangleright However, order η^3 and above are <u>not negligible</u>

[Kabashima & al'16, ...] effectively neglect some 3rd order correlations

NUMERICS FOR GAUSSIAN DENOISING

$$\mathbf{Y} = \frac{\mathbf{X}^{\star}(\mathbf{X}^{\star})^{\intercal}}{\sqrt{n}} + \sqrt{\Delta}\mathbf{Z}$$
 ; $m = \alpha n$

- "PGY order 3" significantly improves over order 2, in the <u>overcomplete</u> regime $lpha \ll 1$.
- Analytical check that $\hat{\mathbf{S}}_{\mathrm{PGY}} \simeq \mathbb{E}[\mathbf{S}|\mathbf{Y}]$ up to order $(\sqrt{lpha})^3$

<u>Limitation of</u>
<u>the PGY method</u>

Orders 1, 2, 3, ... of the expansion

Educated conjecture about arbitrary orders

For orders ≥ 4 , PGY expansion becomes very tedious, need more investigation !

CONCLUSION

Some (of the many) open directions

- riangle PGY expansion at orders ≥ 4 ? Arbitrary orders ? Possible resummation of the series ?
- lacktriangle Efficient denoising/factorization algorithms when $n=\Theta(m)$ and for non-RI noise ? $Y_{\mu\nu}\sim P_{\mathrm{out}}(\cdot|\sqrt{m}S_{\mu\nu}^{\star})$
- Transition between low-rank and extensive-rank regimes when rotationally-invariant:

$$I(\mathbf{A}) = \frac{1}{m^2} \log \int_{\mathcal{O}(m)} \mathcal{D}\mathbf{O} \exp \left\{ m \operatorname{Tr} \left[\mathbf{A} \mathbf{O} \mathbf{B} \mathbf{O}^{\top} \right] \right\} \qquad \operatorname{rank}(A) = o(m) \qquad \qquad \operatorname{rank}(A) = \Theta(m)$$

[Alice Guionnet, "Rare events in Random Matrix theory", ICM 2022]

Other recent works: [Camilli & Mézard '23, Barbier & Macris '23, Pourkamali & Macris '23, Landau, Mel & Ganguli '23]

THANK YOU!