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THE LARGE — RANK CHALLENGE
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- Posterior distribution P(S[Y) = %P\ﬁlh (dS)1<H< P S,
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« Minimal Mean Squared Error estimator = S(Y) = E[S|Y] - MMSE = E|E[S|Y] — S*||%
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Large m limit ? Reachable by efficient algorithms ?

Generalizations [ Other priors Px, rotationally-invariant models for S*, matrix factorization. ]




ROTATIONALLY—INVARIANT DENOISING (1)

Assume noise is additive and rotationally-invariant

[Y e dA7Z }—> Gaussian (GOE) noise
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ROTATIONALLY—INVARIANT DENOISING (2) Y = $* + VAZ
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> Re-derivation of the optimal RIE estimator as gopt. = E[S|Y] ~ g

Estimator and asymptotic characterization extend to the non-symmetric setting



BEYOND ROTATION INVARIANT DENOISING
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Proposed Approximate Message Passing (AMP) algorithms

Convergence problems + hard-to-control assumptions

This talk: sketch a perturbative approach to clarify these difficulties, and lay a path for improvement.
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PLEFKA—GEORGES—YEDIDIA EXPANSION
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Thouless-Anderson-Palmer approximation

Thereis a function ®1ap(m, o) whose maxima give the “pure states” in which P(X, H)

concentrates its mass.

Worked out in spin glass models and simpler statistical inference models

‘ Prap(m, o) = Z 0y Prap(m, ‘7)[ =

« 0/ ®7ap(m,o)[n = 0] can be recursively computed by the “PGY” method

“Pure states”

“./ic

« It turns out that (at least for the first orders) < /m/n = \/a :“overcomplete” limit S* ~ I, + e(a).



THE PGY EXPANSION K = (Myw)
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pairwise distinct

> Iterative equations to find the maxima of ®15p can be turned into an algorithm

» Truncating at order 7” <:> “AMP” algorithms of

——> We explicit their approximation

» However, order 773 and above are not negligible

— effectively neglect some 3" order correlations
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« “PQY order 3" significantly improves over order 2, in the overcomplete regime a0 < 1.

« Analytical check that Spay ~ E[S|Y] up to order (v/a)?

Limitation of /!\
the PGY method

[Orders 1, 2,3, .. of the expansion - Educated conjecture about arbitrary orders ]

For orders > 4,PQY expansion becomes very tedious, need more investigation !




CONCLUSION

Some (of the many) open directions

ﬂ PGY expansion at orders > 4 ? Arbitrary orders ? Possible resummation of the series ? \
% Efficient denoising/factorization algorithms when n = ©(m) and for non-RI noise ? Y, ~ Pous(-[v/mS};,)

% Transition between low-rank and extensive-rank regimes when rotationally-invariant :
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Other recent works:
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