INJECTIVITY OF RELU NETWORKS Perspectives from integral geometry and statistical physics

arXiv:2302.14112

Antoine Maillard

A. S. Bandeira, D. Belius, I. Dokmanic, S. Nakajima

EHzürich

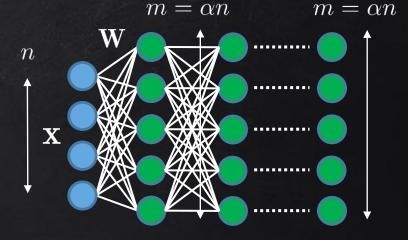
High Dimensional Statistics and Random Matrices – June 15th 2023

INJECTIVITY OF RELU NETWORKS

 $\operatorname{ReLU}(u) = \max(0, u)$

When is a ReLU neural network an injective function?

- > General weights: $\alpha = 2$ is necessary and sufficient [Puthawala & al '22].
- > Injectivity for "generic networks": random weights $\mathbf{W}_{\mu} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \mathbf{I}_n)$.



$$\varphi_{\mathbf{W}}(\mathbf{x})_{\mu} = \operatorname{ReLU}(\mathbf{W}_{\mu} \cdot \mathbf{x})$$

Layerwise injectivity

In the limit $m, n \to \infty$ with $\alpha = m/n = \Theta(1)$, let $p_{m,n} \equiv \mathbb{P}[\varphi_{\mathbf{W}} \text{ is injective}]$. Thresholds ?

$$\alpha_{\text{inj}}^{-} \equiv \sup\{\alpha : \lim_{n \to \infty} p_{m,n} = 0\} \le \alpha_{\text{inj}}^{+} \equiv \inf\{\alpha : \lim_{n \to \infty} p_{m,n} = 1\}$$

Sharp transition?

INJECTIVITY AND RANDOM GEOMETRY

 $\varphi_{\mathbf{W}}(\mathbf{x})_{\mu} = \operatorname{ReLU}(\mathbf{W}_{\mu} \cdot \mathbf{x})$

<u>Idea</u>: Quotient $\mathcal{R} \equiv \mathbb{R}^n / \sim$, with $\mathbf{x} \sim \mathbf{y} \Leftrightarrow \mathbf{W} \mathbf{x}$ and $\mathbf{W} \mathbf{y}$ are positive on the same set of coordinates.

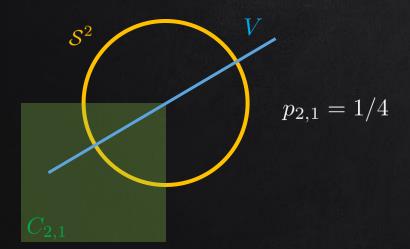
 $\longrightarrow arphi \mathbf{w}$ is linear on each $R \in \mathcal{R}$

 $|\varphi_W$ is injective $\langle \bullet \bullet \bullet \bullet \rangle$ there is no $R \in \mathcal{R}$ with less than n positive coordinates. a.s.

<u>Theorem</u>: $p_{m,n} \equiv \mathbb{P}[\varphi_{\mathbf{W}} \text{ is injective}] = \mathbb{P}[V \cap C_{m,n} = \{0\}] = \mathbb{P}[V \cap C_{m,n} \cap S^{m-1} = \emptyset]$

 $\succ V = \mathbf{W} \mathbb{R}^n$ is a random n-dimensional subspace of \mathbb{R}^m .

 $> C_{m,n}$ is the (nonconvex) cone of vectors in \mathbb{R}^m with less than n positive coordinates.



First bounds

 $m/n \to \alpha$

★ Cover's theorem [Cover '65]: p_{m,n} → 0 if α < 3.
★ Union bound over the orthants in C_{m,n}: p_{m,n} → 1 if α > 9.09.
★ Explicit certificate for non-injectivity: p_{m,n} → 0 if α ≤ 3.3.
[Puthawala&al '22, Paleka '21]

APPROACH FROM INTEGRAL GEOMETRY

<u>Kinematic Crofton formula</u> [Amelunxen &al 13]: estimate $\mathbb{P}[V \cap C \neq \{0\}]$ for C a <u>convex cone</u>

Details in [Paleka '21, Clum '22] V : random n-dimensional subspace of \mathbb{R}^m .

Spherical cinematic formulas [Schneider & Weil '08]

i. C is a <u>finite union of convex cones</u> \checkmark ii. $F(A \cup B) + F(A \cap B) = F(A) + F(B)$

 $\mathbb{E}[F(V \cap C)]$

 $C = C_{m,n}$ not convex

 $\mathbb{1}^{S}(A) \equiv \mathbb{1}\{A \cap S \neq \emptyset\}$

 α

 $\alpha_{\rm ini}^{\rm Euler} \simeq 8.34$

 $p_{m,n} = \mathbb{P}[V \cap C_{m,n} \cap \mathcal{S}^{m-1} = \emptyset] = 1 - \mathbb{E}[\mathbb{1}^S (V \cap C_{m,n})]$

 $(1/n)\log|q_{m,n}|$

<u>Theorem</u>: Only F that agrees with $1\!\!1^S$ on convex cones is $\chi^S(A) = \chi(A \cap \mathcal{S}^{m-1})$

 $[{
m ldea}$: Use $q_{m,n} = \mathbb{E}[\chi^S(V \cap C_{m,n})]$ as a surrogate for $1-p_{m,n}$.

Excursion sets of Gaussian random fields [Adler&Taylor '07]

$$q_{m,n+1} = \frac{(-1)^n}{2^{m-n-1}} \sum_{i=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^n \binom{m}{n-2i} \left(-\frac{1}{2}\right)^l \binom{n-2i}{l-2i} \sum_{j=0}^l \binom{m-n+l}{j}$$

PHYSICS POINT OF VIEW

 $p_{m,n} = \mathbb{P}[\mathbf{W}\mathbb{R}^n \cap C_{m,n} \cap \mathcal{S}^{m-1} = \emptyset] = \mathbb{P}_{\mathbf{W}}\Big[\min_{\mathbf{x} \in \mathcal{S}^{n-1}} E_{\mathbf{W}}(\mathbf{x}) \ge n\Big]$

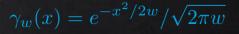
 $\theta(z) = \mathbb{1}[z > 0]$

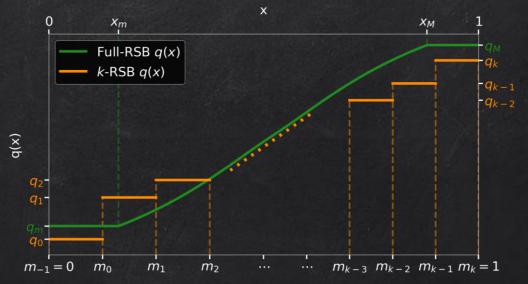
$$E_{\mathbf{W}}(\mathbf{x}) \equiv \sum_{\mu=1}^{m} \theta[(\mathbf{W}\mathbf{x})_{\mu}]$$

"Gardner-Derrida" perceptron cf. also [Franz & al '17], [Urbani '18]

<u>RSB strategy</u>

REPLICA SYMMETRY BREAKING THEORY





 $\Phi_{\text{FRSB}}(\beta) = \inf_{\{q(x)\}} \left\{ \frac{1}{2} \ln(1-q(1)) + \frac{q(0)}{2(1-\langle q \rangle)} + \frac{1}{2} \int_{0}^{1} du \frac{q'(u)}{\lambda(u)} + \alpha \gamma_{q(0)} \star \phi(x=0,h=0) \right\}$ $\begin{cases} \phi(1,h) = \ln \gamma_{1-q(1)} \star e^{-\beta\theta(h)} & \text{Parisi PDE} \\ \partial_{x}\phi(x,h) = -\frac{q'(x)}{2} [\partial_{h}^{2}\phi(x,h) + x\partial_{h}\phi(x,h)^{2}], \quad x \in (0,1) \end{cases}$ $Parisi PDE \quad \text{Parisi PDE}$ $\begin{cases} q_{M} \simeq 1 - \chi/\beta & \text{Parisi PDE} \\ \phi(q,h) \simeq \beta\phi_{\infty}(q,h) & \text{Parisi PDE} \\ \phi(q,h) \simeq \beta\phi_{\infty}(q,h) & \text{Parisi PDE} \\ 0 & \text$

Finite-temperature Parisi formula

Zero-temperature scalings ~

Algorithmic solution to F-RSB equations at T = O

 $\alpha = 6.0$, 200-RSB-like 0.8 0.04-0.95-0.7 t = 1t = 18 0.6 8 0.03-0.90t = 36 0.5^θ.0.9 0.4[°] t = 53 $q_{t-1} \|_{2}$ (×) d d ×0.02[⊥] t = 71 t = 88 0.80-ع (0.3 $||_{d_{t}}^{-3}$ t = 1060.01 t = 123 Ш 0.2 0.75-ພັ 10⁻⁴ 10⁰ t = 141 10^{1} 10^{2} 0.1 t = 158 0.70 0.00-10⁰ 0.0 101 1⁰² 10 Ó 6 Х 1.00^{-1} 0.95- $\alpha = 3.0$ $\alpha = 7.0$ 0.90-(×) か0.85-0.80-0.75-8 10 Ó Ż 6 Ó Ś. 10 6 Replica-symmetric ansatz FRSB. *k* = 100 FRSB. k = 30FRSB, k = 200--- 1-RSB ansatz FRSB, k = 50

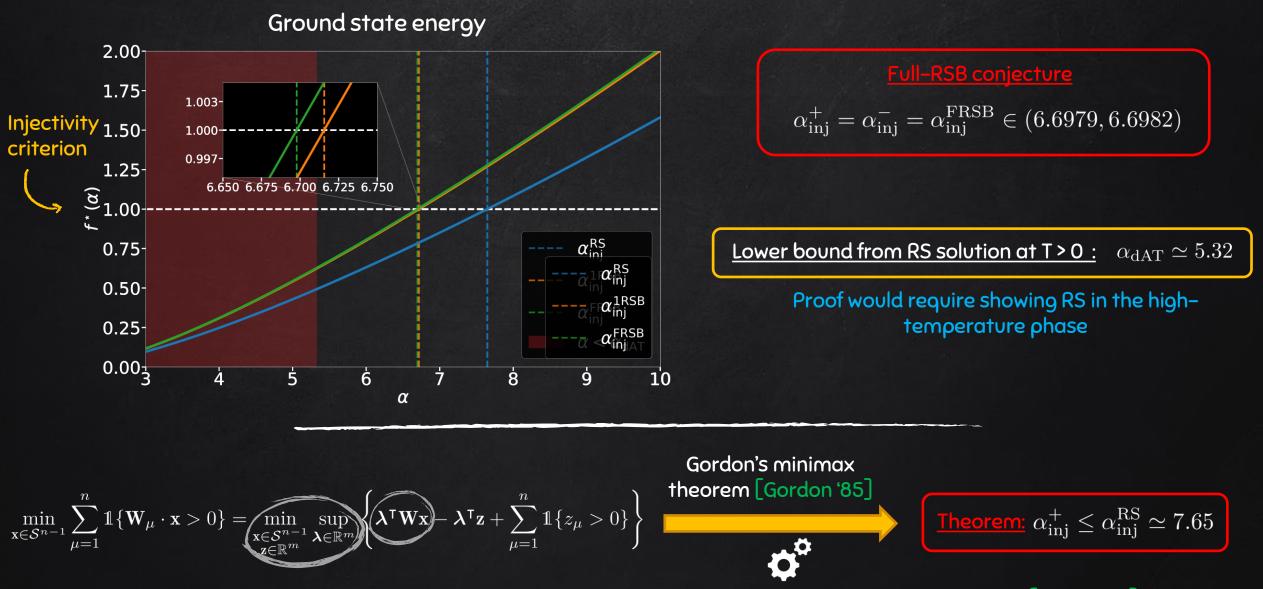
Discretization of the Parisi PDE in a "k-RSB-like" ansatz

 Fast gaussian convolutions using DFT and Shannon–Whittaker interpolation

$$\phi(x,h) \simeq \sum_{i=-N}^{N} \phi_i(x) \operatorname{sinc}\left(\frac{h-h_i}{\Delta h}\right)$$

Scales very well: ~5 minutes with k =
 200 on a standard desktop GPU.

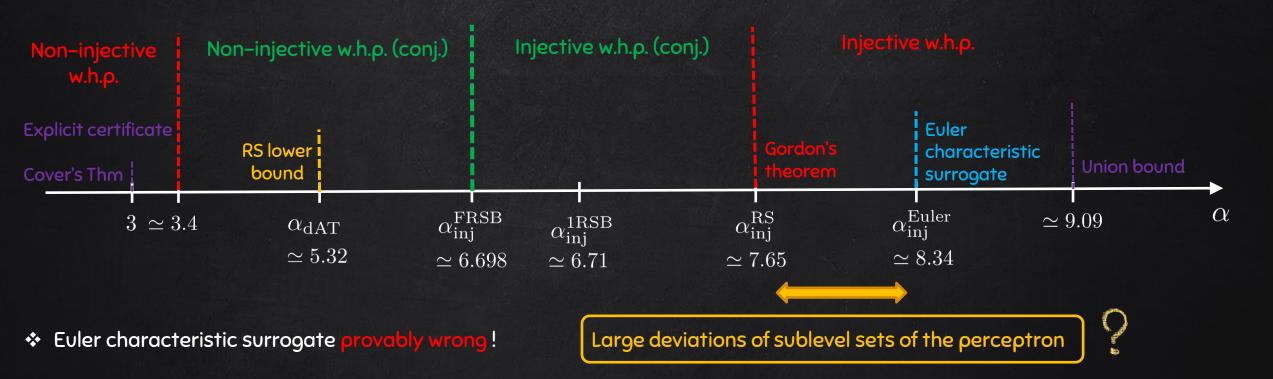
RESULTS OF REPLICA SYMMETRY BREAKING THEORY



Similar to the proof of the RS upper bound for the Gardner capacity in the negative perceptron [Stojnic '13]

SUMMARY & OUTLOOK

Expansivity thresholds for the injectivity of a random ReLU layer



- Stability: Lipschitz constant of $\varphi_{\mathbf{W}}^{-1}$ for $\alpha > \alpha_{\text{inj}}^{\text{FRSB}}$?
- Deep net: $\alpha \ge 2L \log L$ is enough for depth $L \gg 1$. [Paleka '21] Is this tight? Geometry of the image of the network?

THANK YOU!